1 Existence of Travelling Wave Fronts for a Reaction-Diffusion Equation with QuadraticType Kinetics

Theorem. Consider the equation $u_{t}=D u_{x x}+f(u)$ with $f(0)=f(1)=$ $0, f(u)>0$ on $0<u<1, f^{\prime}(0)>0$, and $f^{\prime}(u)<f^{\prime}(0)$ on $0<u \leq 1$. There is a positive travelling wave solution for all wave speeds $\geq 2 \sqrt{D f^{\prime}(0)}$, and no positive travelling waves for speeds less than this critical value.

Proof. : The travelling wave solution of speed c is $u(x, t)=U(z), z=x-c t$, satisfying $D U^{\prime \prime}+c U^{\prime}+f(U)=0$, i.e.

$$
\begin{aligned}
U^{\prime} & =V \\
V^{\prime} & =-\frac{1}{D}[c V+f(U)]
\end{aligned}
$$

This has steady states: $(0,0),(1,0)$. Consider the behaviour near $(0,0)$. The stability matrix is:

$$
\left(\begin{array}{cc}
0 & 1 \\
-f^{\prime}(0) / D & -c / D
\end{array}\right)
$$

which has eigenvalues:

$$
\frac{1}{2 D}\left(-c \pm \sqrt{c^{2}-4 f^{\prime}(0) D}\right)
$$

Therefore, $(0,0)$ is a stable node if $c \geq 2 \sqrt{f^{\prime}(0) D}$, and a stable focus otherwise. If it is a focus then $U<0$ at some points, whereas we require $U \geq 0$. Therefore, there are no positive waves if $c<2 \sqrt{f^{\prime}(0) D}$.

Now consider the behaviour near $(1,0)$. The stability matrix is:

$$
\left(\begin{array}{cc}
0 & 1 \\
-f^{\prime}(1) / D & -c / D
\end{array}\right)
$$

which has eigenvalues:

$$
\frac{1}{2 D}\left(-c \pm \sqrt{c^{2}-4 f^{\prime}(1) D}\right)
$$

Therefore, $(1,0)$ is a saddle point. (Note that $\left.f^{\prime}(1)<0\right)$. Therefore, there is exactly one trajectory starting at $(1,0)$ with V becoming negative. If there is a travelling wave, it must correspond to this trajectory. Where does the trajectory go? There are three possibilities (see figure 1.1):

Figure 1.1: The three possible paths of the (unique) trajectory starting at $(1,0)$ with V becoming negative.

- In case 1: At the point $\mathrm{P}, f(U)>0$ and $V=0 \Rightarrow V^{\prime}<0$, while in fact V is changing from negative to positive $\Rightarrow V^{\prime}>0$. Therefore, case 1 cannot occur.
- In case 3: Let λ be one of the eigenvalues at $(0,0)$ (real and negative, since $\left.c \geq 2 \sqrt{f^{\prime}(0) D}\right)$. Consider the line $V=\lambda U$ in the phase plane. Then,

$$
\begin{aligned}
\frac{d V}{d U}=\frac{V^{\prime}}{U^{\prime}} & =\frac{-\frac{1}{D}[c V+f(U)]}{V} \\
& =-\frac{c}{D}+\frac{f(U)}{D(-V)} \\
& <-\frac{c}{D}+\frac{f^{\prime}(0) U}{D(-V)} \operatorname{using} f(U)<f^{\prime}(0) U \\
& =-\frac{c}{D}+\frac{f^{\prime}(0)}{-\lambda D} \text { using } V=\lambda U \\
& =\lambda,
\end{aligned}
$$

since $D \lambda^{2}+c \lambda+f^{\prime}(0)=0$ is the eigenvalue equation. At point $Q, d V / d U<\lambda$. But $d V / d U>\lambda$ (see figure 1.2). Hence, case 3 cannot occur.

Hence, case 2 must occur, i.e. whenever $c \geq 2 \sqrt{f^{\prime}(0) D}$, the trajectory leaving $(1,0)$ ends at $(0,0)$, corresponding to a travelling wave solution.

Figure 1.2: An illustration of the intersection that would occur in case 3, between the travelling wave trajectory and the line $V=\lambda U$.

2 Existence of Travelling Wave Fronts for a Reaction-Diffusion Equation with Bistable Kinetics

Theorem. Consider the equation $u_{t}=D u_{x x}+f(u)$ with $f\left(u_{1}\right)=f\left(u_{2}\right)=$ $f\left(u_{3}\right)=0, f^{\prime}\left(u_{1}\right)<0, f^{\prime}\left(u_{2}\right)>0, f^{\prime}\left(u_{3}\right)<0$. There is a positive travelling wave solution $u(x, t)=U(x-c t)$ with $U(-\infty)=u_{1}$ and $U(+\infty)=u_{3}$ for exactly one value of the wave speed c.

Proof. : Write $u(x, t)=U(z), z=x-c t$ (travelling wave solution), and $V(z)=d U / d z$. Without loss of generality assume that f is such that the wave moves from u_{1} to u_{3}. The travelling wave ODEs are:

$$
\begin{aligned}
U^{\prime} & =V \\
V^{\prime} & =-\frac{c}{D} V-\frac{f(U)}{D}
\end{aligned}
$$

The eigenvalues at the steady states are:

$$
\lambda=\frac{1}{2 D}\left[-c \pm \sqrt{c^{2}-4 f^{\prime}\left(u_{i}\right)}\right]
$$

Now $f^{\prime}<0$ at $\left(u_{1}, 0\right)$ and $\left(u_{3}, 0\right) \Rightarrow$ both are saddle points (two real eigenvalues, one positive, one negative).

A travelling wave corresponds to a trajectory leaving $\left(u_{1}, 0\right)$ and ending at $\left(u_{3}, 0\right)$ with $V>0$ (U is increasing). Therefore, the trajectory must leave $\left(u_{1}, 0\right)$ along T_{1} and enter $\left(u_{3}, 0\right)$ along T_{3} (see figure (2.1))

Figure 2.1: An illustration of the trajectories T_{1} and T_{3}.
Therefore, there is a travelling wave $\Leftrightarrow T_{1}$ and T_{3} are the same trajectory.

Fix $\xi \in\left(u_{1}, u_{3}\right)$ and let V_{1}, V_{3} be the values of V at which T_{1}, T_{3} hit the line $U=\xi$. Then

$$
\frac{d V}{d U}=-\frac{c}{D}-\frac{f(U)}{D}, \text { which decreases as } c \text { increases. }
$$

Hence, V_{1} decreases and V_{3} increases as c increases (explained below). Moreover
as $c \rightarrow+\infty, d V / d U \rightarrow-\infty$, everywhere $\Rightarrow V_{3} \rightarrow+\infty, V_{1} \rightarrow-\infty$
and
as $c \rightarrow-\infty, d V / d U \rightarrow+\infty$, everywhere $\Rightarrow V_{3} \rightarrow-\infty, V_{1} \rightarrow+\infty$.
Therefore, V_{1} and V_{3} are the same for exactly one value of $c \Rightarrow$ there is a travelling wave for this speed only.

Why does $V_{1} \downarrow$ as $c \uparrow$?
The eigenvector for T_{1} at $\left(u_{1}, 0\right)$ is $\left(1, \frac{1}{2 D}\left[-c+\sqrt{c^{2}-4 f^{\prime}\left(u_{1}\right)}\right]\right)$, which becomes shallower as c increases. Therefore, if $V_{1}\left(c=c_{B}\right)>V_{1}\left(c=c_{A}\right)$ with $c_{B}>c_{A}$, then at P :

$$
\left.\frac{d V}{d U}\right|_{c=c_{B}}>\left.\frac{d V}{d U}\right|_{c=c_{A}} .
$$

But, $d V / d U \downarrow$ as $c \uparrow$. (Similarly, for $V_{3} \uparrow$ as $c \downarrow$).

3 Condition for Stability of Periodic Travelling Waves in $\lambda-\omega$ Equations with $\omega($.$) con-$ stant

Work with the equations for r and θ, which are:

$$
\begin{aligned}
r_{t} & =r \lambda(r)+r_{x x}-r \theta_{x}^{2} \\
\theta_{t} & =\omega_{0}+\theta_{x x}+\frac{2}{r} r_{x} \theta_{x}
\end{aligned}
$$

where $\omega(.) \equiv \omega_{0}$. A periodic travelling wave solution is $r=R, \theta=\sqrt{\lambda(R)} x+$ $\omega_{0} t$. Consider a small perturbation:

$$
\begin{gathered}
r=R+\tilde{r}(x, t) \\
\theta=\sqrt{\lambda(R)} x+\omega_{0} t+\tilde{\theta}(x, t) .
\end{gathered}
$$

Substitute this into the $\lambda-\omega$ PDEs and linearise:

$$
\begin{aligned}
\tilde{r}_{t} & =\tilde{r} \lambda(R)+R \lambda^{\prime}(R) \tilde{r}+\tilde{r}_{x x}-2 R \sqrt{\lambda(R)} \tilde{\theta}_{x}-\tilde{r} \lambda(R) \\
\tilde{\theta}_{t} & =\tilde{\theta}_{x} x+\frac{2}{R} \sqrt{\lambda(R)} \tilde{r}_{x}
\end{aligned}
$$

Look for solutions: $\tilde{r}=\bar{r} . e^{\nu t+i k x}, \tilde{\theta}=\bar{\theta} . e^{\nu t+i k x}$, where $\bar{r}, \bar{\theta}$ are constants:

$$
\begin{gathered}
\left\{\nu-R \lambda^{\prime}(R)+k^{2}\right\} \bar{r}+2 i k . R \sqrt{\lambda(R)} \bar{\theta}=0 \\
\frac{2 i k}{R} \sqrt{\lambda(R)} \bar{r}-\left(k^{2}+\nu\right) \bar{\theta}=0
\end{gathered}
$$

Therefore, for non-trivial solutions we require:

$$
\begin{gathered}
\left\{\nu-R \lambda^{\prime}(R)+k^{2}\right\}\left(k^{2}+\nu\right)=4 k^{2} \lambda(R) \\
\text { i.e. } \quad \nu^{2}+\left[2 k^{2}-R \lambda(R)\right] \nu+k^{2}\left[k^{2}-\left\{4 \lambda(R)+R \lambda^{\prime}(R)\right\}\right]=0 .
\end{gathered}
$$

We have $\lambda^{\prime}(R)<0$, so that the coefficient of ν is strictly positive. Therefore there are either:
two real negative roots for $\nu \quad \Rightarrow$ wave is stable
or complex conjugate roots with -ve real part for $\nu \Rightarrow$ wave is stable
or one real + ve and one real -ve root for $\nu \quad \Rightarrow$ wave is unstable.

The condition for the third possibility is $k^{2}-\left\{4 \lambda(R)+R \lambda^{\prime}(R)\right\}<0$. This is true for some real $k \Longleftrightarrow 4 \lambda(R)+R \lambda^{\prime}(R)>0$. Therefore, the wave is stable \Longleftrightarrow stable to perturbations with any wavenumber k $\Longleftrightarrow 4 \lambda(R)+R \lambda^{\prime}(R)<0$.

4 Generation of Periodic Waves in $\lambda-\omega$ Systems

Local disturbance of $u=v=0$ causes travelling fronts in r and θ_{x}. Ahead of these fronts, u and $v \rightarrow 0$, and behind them u and v approach periodic travelling waves (so that r and θ_{x} approach constant values). The $r-\theta$ PDEs are:

$$
\left\{\begin{aligned}
r_{t} & =r \lambda(r)+r_{x x}-r \theta_{x}^{2} \\
\theta_{t} & =\omega(r)+\theta_{x x}+2 r_{x} \theta_{x} / r .
\end{aligned}\right.
$$

Look for solutions of form:

$$
\left\{\begin{aligned}
r & =\bar{r}(x-s t) \\
\theta_{x} & =\bar{\psi}(x-s t) \Rightarrow \theta=\overbrace{\widetilde{\Psi}(x-s t)}^{\text {integral of } \bar{\psi}}+f(t) .
\end{aligned}\right.
$$

As $x \rightarrow \infty, r \rightarrow 0$ and $\theta_{x} \rightarrow 0 \Rightarrow \theta \rightarrow \omega(0) t \Rightarrow, f(t)=\omega(0) t+$ constant. Substituting this into the $r-\theta$ PDEs gives:

$$
\left\{\begin{array}{cl}
-s \bar{r}^{\prime} & =\bar{r} \lambda(\bar{r})+\bar{r}^{\prime \prime}-\bar{r} \bar{\psi}^{2} \\
-s \bar{\psi}+\omega(0) & =\omega(\bar{r})+\psi^{\prime}+2 \bar{r}^{\prime} \bar{\psi} / \bar{r}
\end{array}\right.
$$

Now consider behaviour as $x \rightarrow-\infty$ (so that $\bar{r} \rightarrow r_{s}, \bar{\psi} \rightarrow \psi_{s}$):

$$
\begin{array}{r}
\left\{\begin{array}{ccc}
0 & = & r_{s} \lambda\left(r_{s}\right)+0-r_{s} \psi_{s}^{2} \\
-s \psi_{s}+\omega(0) & = & \omega\left(r_{s}\right)+0+0
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{ccc}
\psi_{s} & = & \pm \sqrt{\lambda\left(r_{s}\right)} \\
\underbrace{s^{2} \lambda\left(r_{s}\right)}_{\text {decreasing function of } r_{s}} & & \underbrace{\left[\omega(0)-\omega\left(r_{s}\right)\right]^{2}}_{\text {increasing function of }}
\end{array}\right.
\end{array}
$$

Therefore, there is a unique solution for r_{s}, dependent on the front speed s.
The front speed s can be expected to be $2 \sqrt{\lambda(0)}$ based on results for scalar equations (linearising ahead of the front gives $r_{t}=\lambda(0) r+r_{x x}$). A proof of this is currently lacking (but numerical simulations provide strong evidence that it's correct). Hence, a unique periodic wave is selected, with amplitude given by the solution of:

$$
4 \lambda(0) \lambda\left(r_{s}\right)=\left[\omega(0)-\omega\left(r_{s}\right)\right]^{2} .
$$

Some examples of wave generation of this type are illustrated on the next page (figure 4.1).

Figure 4.1: Examples of the generation of periodic travelling waves by local disturbance of $u=v=0$ in $\lambda-\omega$ systems. For details of functional forms and parameter values, see the legend of Figure 2 in the paper J.A. Sherratt: Periodic waves in reaction-diffusion models of oscillatory biological systems. FORMA 11: 61-80 (1996). which is available from www.ma.hw.ac.uk/~ jas/publications.html

5 Spiral Waves in $\lambda-\omega$ Systems

Look for a solution of the form:

$$
\left\{\begin{array}{ccc}
r= & r(\rho) & \rho, \phi \equiv \text { polar coordinates in } x-y \text { plane } \\
\theta=\Omega t+m \phi+\psi(\rho) & r, \theta \equiv \text { polar coordinates in } u-v \text { plane } .
\end{array}\right.
$$

In 2-D, $r-\theta$ PDEs are:

$$
\Rightarrow\left\{\begin{aligned}
r_{t} & =r \lambda(r)+\nabla^{2} r-r|\nabla \theta|^{2} \\
\theta_{t} & =\omega(r)+\nabla^{2} \theta+\frac{2}{r} \nabla r . \nabla \theta .
\end{aligned}\right.
$$

Substitute the solution form into these equations using expressions for ∇ and ∇^{2} in polar coordinates:

$$
\Rightarrow\left\{\begin{array}{ccc}
r^{\prime \prime}+\frac{1}{\rho} r^{\prime}-r \psi^{\prime 2}-\frac{1}{\rho^{2}} m^{2}+r \lambda(r) & = & 0 \\
\psi^{\prime \prime}+\left(\frac{1}{\rho}+\frac{2 r^{\prime}}{r}\right) \psi^{\prime} & =\Omega-\omega(r)
\end{array}\right.
$$

We require r and $\psi^{\prime} \rightarrow$ constants as $\rho \rightarrow \infty$ (\leftrightarrow periodic travelling wave):

$$
\Rightarrow\left\{\begin{array}{clr}
\lambda\left(r_{\infty}\right) & =\psi_{\infty}^{\prime 2} & \text { (compatible with periodic trav. wave) } \\
0 & =\Omega-\omega\left(r_{\infty}\right) & \text { (this determines } \Omega \text {). }
\end{array}\right.
$$

Now consider solutions near $\rho=0$. Then, to leading order:

$$
\left\{\begin{array}{l}
r^{\prime \prime}+\frac{1}{\rho} r^{\prime}-\frac{m^{2}}{\rho^{2}} r=0 \\
\psi^{\prime \prime}(0)=\Omega-\omega(0)
\end{array}\right.
$$

(Note that $\psi^{\prime}(0)=0$ for regularity, but $\psi(0) \neq 0$ in general)
Therefore, the form of the solution near the origin is:

$$
u \sim \rho^{m} \underset{\sin }{\cos }(\Omega t+m \phi+\underbrace{\psi(0)+\frac{1}{2}(\Omega-\omega(0)) \rho^{2 m}}_{\text {Taylor expansion of } \psi \text { near zero }})
$$

The maximum of u occurs when $\Omega t+m \phi+\psi(0)+\frac{1}{2}(\Omega-\omega(0)) \rho^{2 m}=0$. For fixed t this implies

$$
\phi=\frac{1}{2 m}\left(\omega(0)-\omega\left(r_{\infty}\right)\right) \rho^{2 m}+\text { constant } .
$$

This is the polar coordinate equation of a spiral.

