1 Existence of Travelling Wave Fronts for a
Reaction-Diffusion Equation with Quadratic-
Type Kinetics

Theorem. Consider the equation uy = Duy, + f(u) with f(0) = f(1) =
0,f(u) >0 0n0<u<l,f(0)>0, and f'(u) < f'(0) on 0 <u <1. There
is a positive travelling wave solution for all wave speeds > 2/ D f'(0), and
no positive travelling waves for speeds less than this critical value.

Proof. : The travelling wave solution of speed ¢ is u(x,t) = U(z),z = z —ct,
satisfying DU"” + cU' + f(U) =0, i.e.
U =V
1
Vi= =5V + fU)]

This has steady states: (0,0), (1,0). Consider the behaviour near (0,0). The
stability matrix is:

0 1
—f(0)/D —¢/D
which has eigenvalues:

1

2D <—cj: c?— 4f’(O)D> .

Therefore, (0,0) is a stable node if ¢ > 24/ f'(0)D, and a stable focus other-
wise. If it is a focus then U < 0 at some points, whereas we require U > 0.
Therefore, there are no positive waves if ¢ < 24/ f/(0)D.

Now consider the behaviour near (1,0). The stability matrix is:

0 1
—f(1)/D —¢/D
which has eigenvalues:
1
ﬁ <—C + C2 — 4f’(1)D> .

Therefore, (1,0) is a saddle point. (Note that f’(1) < 0). Therefore, there is
exactly one trajectory starting at (1,0) with V' becoming negative. If there
is a travelling wave, it must correspond to this trajectory. Where does the
trajectory go? There are three possibilities (see figure 1.1):
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Possibility 1 Possibility 2 Possibility 3

P

Figure 1.1: The three possible paths of the (unique) trajectory starting at
(1,0) with V' becoming negative.

e In case 1: At the point P, f(U) > 0and V =0 =V’ < 0, while in fact
V' is changing from negative to positive = V' > 0. Therefore, case 1
cannot occur.

e In case 3: Let A be one of the eigenvalues at (0,0) (real and negative,
since ¢ > 24/f'(0)D). Consider the line V= AU in the phase plane.
Then,

av v — L[V + f(U)]
v U %
_ _c )
- D DY)
f'(ou

D)
(

c [0
= _5+—/\D using V = AU

pu— A’

D
g using f(U) < f/(0)U

since DA? + ¢\ + f'(0) = 0 is the eigenvalue equation. At point
Q,dV/dU < X. But dV/dU > X (see figure 1.2). Hence, case 3 cannot

occur.

Hence, case 2 must occur, i.e. whenever ¢ > 2./ f/(0)D, the trajectory leaving
(1,0) ends at (0,0), corresponding to a travelling wave solution. O



Figure 1.2: An illustration of the intersection that would occur in case 3,
between the travelling wave trajectory and the line V' = A\U.



2 Existence of Travelling Wave Fronts for a
Reaction-Diffusion Equation with Bistable
Kinetics

Theorem. Consider the equation uy = Duy, + f(u) with f(uy) = f(ug) =
flug) =0, f'(u1) < 0, f'(ug) > 0, f'(u3) < 0. There is a positive travelling
wave solution u(x,t) = U(x — ct) with U(—o0) = uy and U(+00) = ugz for
exactly one value of the wave speed c.

Proof. : Write u(x,t) = U(z),z = x — ct (travelling wave solution), and
V(z) = dU/dz. Without loss of generality assume that f is such that the
wave moves from u; to us. The travelling wave ODEs are:

U =V
, e, O
Vi = DV D

The eigenvalues at the steady states are:

A= % [—ci 2 —4f’(ui)] :
Now f" < 0 at (u1,0) and (us,0) = both are saddle points (two real eigen-
values, one positive, one negative).

A travelling wave corresponds to a trajectory leaving (uq,0) and ending
at (us,0) with V' > 0 (U is increasing). Therefore, the trajectory must leave
(u1,0) along T and enter (us,0) along T3 (see figure (2.1))

Tl T3

SN

Figure 2.1: An illustration of the trajectories T} and Tj.

Therefore, there is a travelling wave < T} and T3 are the same trajectory.



Fix € € (u1,u3) and let V3, V3 be the values of V' at which T3, T3 hit the
line U = &£. Then

dv U
- L M, which decreases as ¢ increases.

dU D D

Hence, V) decreases and V3 increases as ¢ increases (explained below). More-
over

as ¢ — +oo, dV/dU — —oo, everywhere = V3 — 400, V] — —00
and
as ¢ — —o0, dV/dU — +o00, everywhere = V3 — —o00, V) — +00.

Therefore, V; and V3 are the same for exactly one value of ¢ = there is a
travelling wave for this speed only. O

Why does V; | as ¢ 17

» 2D
comes shallower as ¢ increases. Therefore, if Vi(c = c¢p) > Vi(
cg > C4, then at P:

The eigenvector for T} at (uq,0) is <1 L [—c + 4/ — 4f/(u1)D, which be-
¢ = cy) with

avy o dv
dU | _ au| _
c=cp c=cp

But, dV/dU | as ¢ 1. (Similarly, for V3 T asc]). O




3 Condition for Stability of Periodic Travel-
ling Waves in A\ —w Equations with w(.) con-
stant

Work with the equations for r and 6, which are:

7y =1 A1) + 1o — 707

2
Qt = wp + Qa:a: + ;Tzrga:

where w(.) = wp. A periodic travelling wave solution is r = R, 6 = \/A(R)x+
wot. Consider a small perturbation:

r=R+7(z,t),
0 = VAR)x + wot + 0(x, 1) .
Substitute this into the A — w PDEs and linearise:
7 = FA(R) + RN (R)F + Fp — 2R/ A(R)0, — 7A(R)
b =B+ AT
Look for solutions: 7 = 7.e""t# e § = §.e"'*++¢ where 7,0 are constants:
{v—RN(R) +k*} 7+ 2ik.R\/A(R)0 = 0
2ik

R

Therefore, for non-trivial solutions we require:

MR)F — (K> +1v)0 =0.

{v—RN(R) + k*} (K> +v) = 4k*\(R)

ie. 124 2k — RA(R)] v+ K [¥* — {4\(R) + RN (R)}] = 0.

We have X'(R) < 0, so that the coefficient of v is strictly positive. Therefore
there are either:

two real negative roots for v = wave is stable
or complex conjugate roots with -ve real part for v = wave is stable
or one real +ve and one real -ve root for v = wave is unstable.
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The condition for the third possibility is k&% — {4\(R) + RN (R)} < 0. This
is true for some real k <= 4A\(R) + RN (R) > 0. Therefore,

the wave is stable <= stable to perturbations with any wavenumber k
<= 4\ (R)+ RN(R) <O0.



4 Generation of Periodic Waves in A —w Sys-
tems

Local disturbance of u = v = 0 causes travelling fronts in r and 6,. Ahead
of these fronts, v and v — 0, and behind them w and v approach periodic
travelling waves (so that r and 6, approach constant values). The r—6 PDEs
are:

re = rAr) 4+ re, — 102

O, = w(r)+ 0pp +2r,0,/r.
Look for solutions of form:

r = 7(x— st)
integral of 1)

_ —
0, = Y(x—st)=0= V(x—st) +f(t).

Asx — oco,r — 0and 0, — 0 = 0 — w(0)t =, f(t) = w(0)t+ constant.

Substituting this into the r — § PDEs gives:

{ —sT = FA(F) + 7 — 7P
—sth +w(0) = w(F)+ + 27 /7.

Now consider behaviour as x — —oo (so that 7 — r,, ¥ — 1,):

0 = r\(rs) +0—rap?
—sts +w(0) = w(rs)+0+4+0

P = £/ A(r5)
= sA(rs) = [w(0) —w(r,))”
—— —_—
decreasing function of r; increasing function of r;

Therefore, there is a unique solution for r,, dependent on the front speed s.

The front speed s can be expected to be 24/A(0) based on results for
scalar equations (linearising ahead of the front gives ry = A(0)r + ry,). A
proof of this is currently lacking (but numerical simulations provide strong
evidence that it’s correct). Hence, a unique periodic wave is selected, with
amplitude given by the solution of:

AN (1) = [w(0) — w(ry)].

Some examples of wave generation of this type are illustrated on the next
page (figure 4.1).



00
00
10
20

(®

00¥ 00€ 002 00T

U, (x,t)

u(x,t) [—> t incr]

¥ 0—
£0—
20—
4‘[04
00
00
20

il
i

R
S
£

SRR

R P
S

(%14

08

021

u(x,t) [—> t inecr] g o o o @«
R >
G >
s [ >
o
D e

2

r0°0
20
t70

Q)

08

021

00
10
lz'o
0

0
S0

Q
t\\\\‘\\\
NN
\\\\\\
\\\\\\\

O

bl
bl

R
N
3\‘“\
.
W
\

O
R
\\t\;\
N
W\
S

N
Q

N
S
R
&
\t\\\
\

N
N
\:\\\\
2
D
3

Qx
X
N

R
Q

QX

™

00S Q¥ 00€ 003 00T

Figure 4.1: Examples of the generation of periodic travelling waves by
local disturbance of u = v = 0 in Aw systems. For details of func-
tional forms and parameter values, see the legend of Figure 2 in the pa-
per J.A. Sherratt: Periodic waves in reaction-diffusion models of oscilla-
tory biological systems. FORMA 11: 61-80 (1996). which is available from
www.ma.hw.ac.uk/~ jas/publications.html
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5 Spiral Waves in A — w Systems

Look for a solution of the form:

r = r(p) p, @ = polar coordinates in x — y plane
0 = Qt+mo+1Y(p) r 0= polar coordinates in u — v plane.

In 2-D, r — # PDEs are:

o= rA(r) + Vir —r|Vo|?
6 = w(r)+ V2 +2Vr.Ve.

Substitute the solution form into these equations using expressions for V and
V2 in polar coordinates:

rl i — 2 — Im2 4 rA(r) = 0
= p " " ’
W2y 0wl

We require r and 1)" — constants as p — oo (« periodic travelling wave):

N Mroo) = 2 (compatible with periodic trav. wave)
0 = Q—w(ry) (this determines ().

Now consider solutions near p = 0. Then, to leading order:

r”—i—%r’—?—;r:(]
¥"(0) = Q — w(0).

(Note that ¢'(0) = 0 for regularity, but 1(0) # 0 in general)
Therefore, the form of the solution near the origin is:

u m COS 1 om
o P Qt +mo + w(0)+§(Q—w(O))p

-

Taylor eXpansio‘;l of 1) near zero
The maximum of u occurs when Qt +m¢ + (0) + 5(2 — w(0))p*™ = 0. For
fixed t this implies
1
o= %(w(O) — w(rs))p®™ + constant.

This is the polar coordinate equation of a spiral.
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