
1 Existence of Travelling Wave Fronts for a

Reaction-Diffusion Equation with Quadratic-

Type Kinetics

Theorem. Consider the equation ut = Duxx + f(u) with f(0) = f(1) =
0, f(u) > 0 on 0 < u < 1, f ′(0) > 0, and f ′(u) < f ′(0) on 0 < u ≤ 1. There

is a positive travelling wave solution for all wave speeds ≥ 2
√

Df ′(0), and

no positive travelling waves for speeds less than this critical value.

Proof. : The travelling wave solution of speed c is u(x, t) = U(z), z = x− ct,
satisfying DU ′′ + cU ′ + f(U) = 0, i.e.

U ′ = V

V ′ = −
1

D
[cV + f(U)] ,

This has steady states: (0, 0), (1, 0). Consider the behaviour near (0, 0). The
stability matrix is:

(
0 1

−f ′(0)/D −c/D

)

which has eigenvalues:

1

2D

(

−c±
√

c2 − 4f ′(0)D
)

.

Therefore, (0, 0) is a stable node if c ≥ 2
√

f ′(0)D, and a stable focus other-
wise. If it is a focus then U < 0 at some points, whereas we require U ≥ 0.
Therefore, there are no positive waves if c < 2

√

f ′(0)D.
Now consider the behaviour near (1, 0). The stability matrix is:

(
0 1

−f ′(1)/D −c/D

)

which has eigenvalues:

1

2D

(

−c±
√

c2 − 4f ′(1)D
)

.

Therefore, (1, 0) is a saddle point. (Note that f ′(1) < 0). Therefore, there is
exactly one trajectory starting at (1, 0) with V becoming negative. If there
is a travelling wave, it must correspond to this trajectory. Where does the
trajectory go? There are three possibilities (see figure 1.1):
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Figure 1.1: The three possible paths of the (unique) trajectory starting at
(1, 0) with V becoming negative.

• In case 1: At the point P, f(U) > 0 and V = 0 ⇒ V ′ < 0, while in fact
V is changing from negative to positive ⇒ V ′ > 0. Therefore, case 1
cannot occur.

• In case 3: Let λ be one of the eigenvalues at (0, 0) (real and negative,
since c ≥ 2

√

f ′(0)D). Consider the line V = λU in the phase plane.
Then,

dV

dU
=
V ′

U ′
=

− 1

D
[cV + f(U)]

V

= −
c

D
+

f(U)

D(−V )

< −
c

D
+
f ′(0)U

D(−V )
using f(U) < f ′(0)U

= −
c

D
+
f ′(0)

−λD
using V = λU

= λ,

since Dλ2 + cλ + f ′(0) = 0 is the eigenvalue equation. At point
Q, dV/dU < λ. But dV/dU > λ (see figure 1.2). Hence, case 3 cannot
occur.

Hence, case 2 must occur, i.e. whenever c ≥ 2
√

f ′(0)D, the trajectory leaving
(1, 0) ends at (0, 0), corresponding to a travelling wave solution.
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Figure 1.2: An illustration of the intersection that would occur in case 3,
between the travelling wave trajectory and the line V = λU .
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2 Existence of Travelling Wave Fronts for a

Reaction-Diffusion Equation with Bistable

Kinetics

Theorem. Consider the equation ut = Duxx + f(u) with f(u1) = f(u2) =
f(u3) = 0, f ′(u1) < 0, f ′(u2) > 0, f ′(u3) < 0. There is a positive travelling

wave solution u(x, t) = U(x − ct) with U(−∞) = u1 and U(+∞) = u3 for

exactly one value of the wave speed c.

Proof. : Write u(x, t) = U(z), z = x − ct (travelling wave solution), and
V (z) = dU/dz. Without loss of generality assume that f is such that the
wave moves from u1 to u3. The travelling wave ODEs are:

U ′ = V

V ′ = −
c

D
V −

f(U)

D
.

The eigenvalues at the steady states are:

λ =
1

2D

[

−c±
√

c2 − 4f ′(ui)
]

.

Now f ′ < 0 at (u1, 0) and (u3, 0) ⇒ both are saddle points (two real eigen-
values, one positive, one negative).

A travelling wave corresponds to a trajectory leaving (u1, 0) and ending
at (u3, 0) with V > 0 (U is increasing). Therefore, the trajectory must leave
(u1, 0) along T1 and enter (u3, 0) along T3 (see figure (2.1))

Figure 2.1: An illustration of the trajectories T1 and T3.

Therefore, there is a travelling wave ⇔ T1 and T3 are the same trajectory.
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Fix ξ ∈ (u1, u3) and let V1, V3 be the values of V at which T1, T3 hit the
line U = ξ. Then

dV

dU
= −

c

D
−
f(U)

D
,which decreases as c increases.

Hence, V1 decreases and V3 increases as c increases (explained below). More-
over

as c→ +∞, dV/dU → −∞, everywhere ⇒ V3 → +∞, V1 → −∞

and

as c→ −∞, dV/dU → +∞, everywhere ⇒ V3 → −∞, V1 → +∞.

Therefore, V1 and V3 are the same for exactly one value of c ⇒ there is a
travelling wave for this speed only.

Why does V1 ↓ as c ↑?

The eigenvector for T1 at (u1, 0) is
(

1, 1

2D

[

−c +
√

c2 − 4f ′(u1)
])

, which be-

comes shallower as c increases. Therefore, if V1(c = cB) > V1(c = cA) with
cB > cA, then at P :

dV

dU

∣
∣
∣
∣
c=cB

>
dV

dU

∣
∣
∣
∣
c=cA

.

But, dV/dU ↓ as c ↑. (Similarly, for V3 ↑ as c ↓).
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3 Condition for Stability of Periodic Travel-

ling Waves in λ−ω Equations with ω(.) con-

stant

Work with the equations for r and θ, which are:

rt = rλ(r) + rxx − rθ2

x

θt = ω0 + θxx +
2

r
rxθx

where ω(.) ≡ ω0. A periodic travelling wave solution is r = R, θ =
√

λ(R)x+
ω0t. Consider a small perturbation:

r = R+ r̃(x, t),

θ =
√

λ(R)x+ ω0t+ θ̃(x, t) .

Substitute this into the λ− ω PDEs and linearise:

r̃t = r̃λ(R) +Rλ′(R)r̃ + r̃xx − 2R
√

λ(R)θ̃x − r̃λ(R)

θ̃t = θ̃xx+
2

R

√

λ(R)r̃x .

Look for solutions: r̃ = r̄.eνt+ikx, θ̃ = θ̄.eνt+ikx, where r̄, θ̄ are constants:

{
ν −Rλ′(R) + k2

}
r̄ + 2ik.R

√

λ(R)θ̄ = 0

2ik

R

√

λ(R)r̄ − (k2 + ν)θ̄ = 0 .

Therefore, for non-trivial solutions we require:

{
ν − Rλ′(R) + k2

}
(k2 + ν) = 4k2λ(R)

i.e. ν2 +
[
2k2 −Rλ(R)

]
ν + k2

[
k2 − {4λ(R) +Rλ′(R)}

]
= 0 .

We have λ′(R) < 0, so that the coefficient of ν is strictly positive. Therefore
there are either:

two real negative roots for ν ⇒ wave is stable
or complex conjugate roots with -ve real part for ν ⇒ wave is stable
or one real +ve and one real -ve root for ν ⇒ wave is unstable.
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The condition for the third possibility is k2 − {4λ(R) +Rλ′(R)} < 0. This
is true for some real k ⇐⇒ 4λ(R) +Rλ′(R) > 0. Therefore,

the wave is stable ⇐⇒ stable to perturbations with any wavenumber k
⇐⇒ 4λ(R) +Rλ′(R) < 0.

7



4 Generation of Periodic Waves in λ−ω Sys-

tems

Local disturbance of u = v = 0 causes travelling fronts in r and θx. Ahead
of these fronts, u and v → 0, and behind them u and v approach periodic
travelling waves (so that r and θx approach constant values). The r−θ PDEs
are: {

rt = rλ(r) + rxx − rθ2
x

θt = ω(r) + θxx + 2rxθx/r .

Look for solutions of form:






r = r̄(x− st)

θx = ψ̄(x− st) ⇒ θ =

integral of ψ̄
︷ ︸︸ ︷

Ψ̄(x− st) +f(t) .

As x → ∞, r → 0 and θx → 0 ⇒ θ → ω(0)t ⇒, f(t) = ω(0)t+ constant.
Substituting this into the r − θ PDEs gives:

{
−sr̄

′

= r̄λ(r̄) + r̄
′′

− r̄ψ̄2

−sψ̄ + ω(0) = ω(r̄) + ψ
′

+ 2r̄
′

ψ̄/r̄.

Now consider behaviour as x→ −∞ (so that r̄ → rs, ψ̄ → ψs):
{

0 = rsλ(rs) + 0 − rsψ
2
s

−sψs + ω(0) = ω(rs) + 0 + 0

⇒







ψs = ±
√

λ(rs)

s2λ(rs)
︸ ︷︷ ︸

decreasing function of rs

= [ω(0) − ω(rs)]
2

︸ ︷︷ ︸

increasing function of rs

Therefore, there is a unique solution for rs, dependent on the front speed s.
The front speed s can be expected to be 2

√

λ(0) based on results for
scalar equations (linearising ahead of the front gives rt = λ(0)r + rxx). A
proof of this is currently lacking (but numerical simulations provide strong
evidence that it’s correct). Hence, a unique periodic wave is selected, with
amplitude given by the solution of:

4λ(0)λ(rs) = [ω(0) − ω(rs)]
2 .

Some examples of wave generation of this type are illustrated on the next
page (figure 4.1).
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Figure 4.1: Examples of the generation of periodic travelling waves by
local disturbance of u = v = 0 in λ–ω systems. For details of func-
tional forms and parameter values, see the legend of Figure 2 in the pa-
per J.A. Sherratt: Periodic waves in reaction-diffusion models of oscilla-
tory biological systems. FORMA 11: 61-80 (1996). which is available from
www.ma.hw.ac.uk/∼jas/publications.html

.
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5 Spiral Waves in λ− ω Systems

Look for a solution of the form:
{
r = r(ρ) ρ, φ ≡ polar coordinates in x− y plane
θ = Ωt+mφ + ψ(ρ) r, θ ≡ polar coordinates in u− v plane.

In 2-D, r − θ PDEs are:

⇒

{
rt = rλ(r) + ∇2r − r|∇θ|2

θt = ω(r) + ∇2θ + 2

r
∇r.∇θ .

Substitute the solution form into these equations using expressions for ∇ and
∇2 in polar coordinates:

⇒

{

r
′′

+ 1

ρ
r
′

− rψ
′2 − 1

ρ2m
2 + rλ(r) = 0

ψ
′′

+ (1

ρ
+ 2r

′

r
)ψ

′

= Ω − ω(r)

We require r and ψ
′

→ constants as ρ→ ∞ (↔ periodic travelling wave):

⇒

{
λ(r∞) = ψ

′2
∞

(compatible with periodic trav. wave)
0 = Ω − ω(r∞) (this determines Ω).

Now consider solutions near ρ = 0. Then, to leading order:
{

r
′′

+ 1

ρ
r
′

− m2

ρ2 r = 0

ψ
′′

(0) = Ω − ω(0).

(Note that ψ
′

(0) = 0 for regularity, but ψ(0) 6= 0 in general)
Therefore, the form of the solution near the origin is:

u
v

∼ ρm cos
sin








Ωt+mφ+ ψ(0) +
1

2
(Ω − ω(0))ρ2m

︸ ︷︷ ︸

Taylor expansion of ψ near zero








The maximum of u occurs when Ωt+mφ+ ψ(0) + 1

2
(Ω− ω(0))ρ2m = 0. For

fixed t this implies

φ =
1

2m
(ω(0) − ω(r∞))ρ2m + constant.

This is the polar coordinate equation of a spiral.
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