Lecture 15: Biological Waves

Jonathan A. Sherratt
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1 Wave Fronts I: Modelling Epidermal Wound Healing
1.1 Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. disst

migrating

\\ip::heaaai r:e‘lis_//‘

basement membrana

Healing is due to

e cell movement



Cell division is upregulated by chemicals produced by thks ce

1.2 A Mathematical Model

Cell division is upregulated by chemicals produced by tHisce
Model variablesn(z,t) ande(z, t).

Model equations:

cell cell cell
movement division death
—_—NN ————— A~
on/ot = DV*n +s(c)(N —n)n— don
dc/0t = D.V?c+ An/(1+an®) — A,
chemical production decay
diffusion by cells




1.3 Reduction to One Equation

on/ot DV?n + s(c)(N — n)n — én
dc/ot = D.V?c+ An/(1+an®) — Ac.

The chemical kinetics are very fast A, A large.
So to a good approximatian= (A/\) - n/(1 + an?).

= On/ot = DV?n + f(n)
where

fn)=s (ﬁ) (N —n)n — on.

f(n)

2 Wave Fronts Il: The Speed of Epidermal Repair

2.1 Travelling Wave Solutions

Figure 1: This figure shows a typical model solution



During most of the healing, the solution moves with constaated and shape.
This is a “travelling wave solution”

n(x,t) = N(z — at)

whereaq is the wave speed. We will write = « — at. Thendn/0x = dN/dz and
on/ot = —adN/dz

2.1.1 The Speed of Travelling Waves
We know thatN — 0 asz — oo. Recall that

2N dN
D—— +a— N)=0.
12 —|—adz +f(N)=0
Therefore whenV is small

d*N dN
+a— + f'(O)N =0

Jp il
dz? dz

to leading order. This has solution&(z) = Nye** with
ANgar+1=0=A=1 (—aj: a2—4Df'(0)).

If a < 2,/Df’(0) then) is complex=- the solutions oscillate abodf = 0, which
does not make sense biologically.

So we requirer > 2,/Df’(0). Mathematical theory implies that in applications,

waves will move at the minimum possible spe2d,D f/(0).
For the wound healing model

£/(0) = Ns(0) — 6

= wave speed = 21/D(Ns(0) —9).



2.2 General Results on Wave Speed

Consider the equatiodu/dt = D 8%u/dx? + f(u) with f(0) = f(1) =0, f(u) >0
on0 <u<1,f(0)>0andf’(u) < f/(0)on0 < u < 1.

For this equation, two important theorems were proved byrtgorov, Petrovskii
and Piskunov; a similar but slightly less general study wasedat the same time by
Fisher.

Theorem 1. There is a positive travelling wave solution for all wavesgs> 2./ D f(0),
and no positive travelling waves for speeds less than titisalrvalue.

A proof of theorem 1 is in the supplementary material.

Theorem 2. Suppose that(z,t = 0) = 1 for « sufficiently large and negative,
andu(x,t = 0) = 0 for « sufficiently large and positive. Then the solutiafr, ¢)
approaches the travelling wave solution with the critigeed2/D f/(0) ast — oo.

The form of the approach to the travelling wave is discusaeiepth by Bramson
(1983).The proof of theorem 2 is extremely difficult.

References:

Bramson, M.D. 1983 Convergence of solutions of the Kolmogarquation to travelling
waves.Mem. AMS44 no. 285.

Fisher, R.A. 1937 The wave of advance of advantageous génesEug.7, 355-369.

Kolmogorov, A., Petrovskii, I., Piskunov, N. 1937 Etude tglation de la diffusion avec
croissance de la quantité de matiére et son application aalmgme biologiqueMoscow Univ.
Bull. Math. 1, 1-25.

2.2.1 Therapeutic Addition of Chemical

Now return to the wound healing model and consider addintaestiemical to the wound as a
therapy.
The equation for the chemical changes to

dc/dt = An/(1+ an®) — Ae+ v

= f(n) changes to

~ An
<X + 7)\(1_’_&”2)) (N —n)n —on

S
= f'(0) changes tdVs(y/\) — §
= observed (min poss) wave speee- 21/ D(Ns(y/A) — 0)

Wave
speed|

Chemical application rat¥



2.2.2 Deducing the Chemical Profile

Since we know as a function of:, there is also a travelling wave of chemical, whose form we
can deduce. The chemical profile has a peak in the wave front.
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However, there are no theorems on the speed of wave frontgsteras of reaction-diffusion
equations, except in a few special cases (which do not iedhid model).

3 Wave Fronts lll: Bistable Kinetics (Spruce Budworm)

3.1 Spruce Budworm Dynamics

The spruce budworm is an important forestry pest in North Acae

3.1.1 Travelling Waves in the Spruce Budworm Model

A simple model is

ou/dt = Dd*u/dz* + f(u)
where
fw) = kul —u/k:) +u?/(1+u”)
logistic predation
growth by birds



f(u)

In applications, waves travelling between= u; (“refuge state”) and. = w3z (“outbreak

state”) are important. Both of these steady states arelyostable. Therefore the direction of
wave propagation is not obvious.

3.2 Direction of Wave Propagation

Travelling wave solution#/(z) (z = x — ct) satisfy

DU" +cU' + f(U)

+oo +oo
= [%DU’Q]f:)Jrc/ U’2dz+/ fO)U'dz = 0

Il
o

— 00 oo

We know that/’ (+00) = 0. Therefore for a wave front it/ (—oo) = w1 andU (+o00) = us,
c has the same sign asf:f f(U)dU.

For the spruce budworm model, this can be used to predicthehetlocal outbreak will die
out or spread.

Outbreak dies out

Outbreak spreads



3.3 Existence of Travelling Waves

Theorem [Fife & McLeod, 1977]. Consider the equatidh./dt = D 8*u/dx? + f(u) with
flur) = flu2) = f(us) =0, f'(u1) < 0, f'(u2) > 0, f'(u3) < 0. This equation has a
travelling wave solutionu(z, t) = U(z — ct) with U(—o00) = uy andU (+o0) = us for exactly
one value of the wave speed

A proof of this theorem is in the supplementary material.

Reference:
Fife, P.C. & McLeod, J.B. 1977 The approach of solutions aflimar diffusion equations
to travelling front solutionsArch. Rat. Mech. Anal65, 335-361.

There is no general result on talue of the unique wave speed for a reaction-diffusion
equation with bistable kinetics.

4 Periodic Travelling Waves

4.1 A Model for Predator-Prey Interactions

dp/dt = DpV’p+akph/(1+kh)— bp
—— —— =~
dispersal  benefit from  death
predation
Oh/dt = Dy h+rh(1 — h/ho) — ckph/(1 + kh
/ DuVh+h(1~ h/ho) = choh/(1 + ki)
dispersal intrinsic predation

birth & death

4.1.1 Predator-Prey Kinetics

For some parameters, the kinetic ODEs have a stable coeséstdeady state (left-hand phase
plane). For other parameters, the coexistence steadyistatstable, and there is a stable limit
cycle (right-hand phase plane).

Op/ot = akph/(1+ kh)
—bp
Oh/Ot = rh(l—h/ho)

—ckph/(1 + kh)
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4.1.2 Example of a Cyclic Population
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Field voles in Kielder Forest are cyclic (period 4 years)at&gemporal field data shows that the

cycles are spatially organised into a periodic travelliraye

4.2 What is a Periodic Travelling Wave?
A periodic travelling wave is an oscillatory solution mogiwith constant shape and speed. Itis

periodic as a function of space (at a fixed time point).

(ewry Joutr yym) Lead

Space
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Speed = space period/time period

4.2.1 The Periodic Travelling Wave Family

Theorem [Kopell & Howard, 1973]. Any oscillatory reaction-diffusn system has a one-
parameter family of periodic travelling waves.

Amplitude of limit eycle in kinetics

Wave amplitude

Wave speed

Reference: Kopell, N. & Howard, L.N. 1973 Plane wave sohsido reaction-diffusion
equationsStud. Appl. Math52, 291-328.

4.3 )M—w Equations

Mathematical analysis is not possible for the predatoy-mguations. Instead we consider a
simpler example known as the<w equations:

Ut = Ugx + A(r)u —w(r)v

Ve = Uga +w(r)u+ A(r)v

where A\(r) = 1-—7°
w(r) = wo+ wir?.

Typical phase planes of the predator-prey ard kinetics are:
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The periodic travelling wave family is
u = Rcos [w(R)t £ 4/ /\(R):c}
v = R sin {w(R)t £ 4/ /\(R):c}
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4.3.1 )—w Equations in Polar Coordinates

A\—w equations are simplified by working with= v/u2 + v2 andf = tan™"'(v/u), giving
e = Tee—TO2+ r(l— rz)
0 = Oza+2ry0/7 4+ wo — wir.

The periodic travelling waves are

r=R 0 =£\/AR)x+w(R)t
which have

time period= _2m speed= M

wavelength= .
9 (B NE)

2m
VAR)
4.4 Stability in the Periodic Travelling Wave Family

Some members of the periodic travelling wave family arelstab solutions of the partial differ-
ential equations, while others are unstable.
For the \—w system, the stability condition is

AN(R) [14w'(R)?/XN(R)’] + RN (R) <0.

Amplitude of limit cycle in kinetics

Wave amplitude

Wave speed

This condition is hard to derive in general (see Kopell & Hotya 973). For the special case of
w(.) constant, the derivation is given in the supplementary rizdte

4.5 Extensions: Wave Generation and Spiral Waves
4.5.1 Generation of Periodic Travelling Waves

One way in which periodic travelling waves develop in #aev equations is via the local perturb-
ation of the unstable equilibrium = v = 0. This process selects a particular wave amplitude,
that can be calculated explicitly. Details of this are giirethe supplementary material.

For the predator-prey model, a corresponding process iggheration of periodic travelling
waves by the invasion of a prey population by predators. Etait$ of this, see

Sherratt, J.A., Lewis, M.A. & Fowler, A.C. 1995 Ecologicdlans in the wake of invasion.
Proc. Natl. Acad. Sci. US82, 2524-2528.

(This paper can be downloaded fremwv. ma. hw. ac. uk/ ~j as/ publ i cati ons. htm)
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4.5.2 Extension to Two Space Dimensions: Spiral Waves

Periodic travelling waves are important in their own rigditd also as the one-dimensional equi-
valents of target patterns and spiral waves.
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A brief introduction to spiral waves in tha—w equations is given in the supplementary
material.
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