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Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters
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Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

Healing is due to

cell movement
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Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

Healing is due to

cell movement

increased cell division
near the wound edge
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Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

Healing is due to

cell movement

increased cell division
near the wound edge

Cell division is
upregulated by
chemicals produced
by the cells
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A Mathematical Model

Cell division is upregulated by chemicals produced by the cells
Model variables: n(x , t) and c(x , t).

Model equations:

∂n/∂t =

cell
movement
︷ ︸︸ ︷

D∇2n +

cell
division

︷ ︸︸ ︷

s(c)(N − n)n−

cell
death
︷︸︸︷

δn

∂c/∂t = Dc∇2c
︸ ︷︷ ︸

chemical
diffusion

+ An/(1 + αn2)
︸ ︷︷ ︸

production
by cells

− λc
︸︷︷︸

decay
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Reduction to One Equation

∂n/∂t = D∇2n + s(c)(N − n)n − δn

∂c/∂t = Dc∇2c + An/(1 + αn2) − λc

The chemical kinetics are very fast ⇒ A, λ large.
So to a good approximation c = (A/λ) · n/(1 + αn2).
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Reduction to One Equation

∂n/∂t = D∇2n + s(c)(N − n)n − δn

∂c/∂t = Dc∇2c + An/(1 + αn2) − λc

The chemical kinetics are very fast ⇒ A, λ large.
So to a good approximation c = (A/λ) · n/(1 + αn2).

⇒ ∂n/∂t = D∇2n + f (n)

where

f (n) = s
(

An
λ(1 + αn2)

)

(N − n)n − δn
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Travelling Wave Solutions

During most of the healing, the solution moves with constant
speed and shape.

This is a “travelling wave solution”

n(x , t) = N(x − at)

where a is the wave speed. We will write
z = x − at . Then ∂n/∂x = dN/dz and
∂n/∂t = −a dN/dz

⇒ D
d2N
dz2 + a

dN
dz

+ f (N) = 0

c
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The Speed of Travelling Waves

We know that N → 0 as z → ∞. Recall that

D
d2N
dz2 + a

dN
dz

+ f (N) = 0

Therefore when N is small

D
d2N
dz2 + a

dN
dz

+ f ′(0)N = 0

to leading order. This has solutions N(z) = N0eλz with

λ2 + aλ + 1 = 0 ⇒ λ = 1
2

(

−a ±
√

a2 − 4Df ′(0)

)

.
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The Speed of Travelling Waves

We know that N → 0 as z → ∞. Recall that

D
d2N
dz2 + a

dN
dz

+ f (N) = 0

Therefore when N is small

D
d2N
dz2 + a

dN
dz

+ f ′(0)N = 0

to leading order. This has solutions N(z) = N0eλz with

λ2 + aλ + 1 = 0 ⇒ λ = 1
2

(

−a ±
√

a2 − 4Df ′(0)

)

.

If a < 2
√

Df ′(0) then λ is complex ⇒ the
solutions oscillate about N = 0, which
does not make sense biologically
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The Speed of Travelling Waves

We know that N → 0 as z → ∞. Recall that

D
d2N
dz2 + a

dN
dz

+ f (N) = 0

Therefore when N is small

D
d2N
dz2 + a

dN
dz

+ f ′(0)N = 0

to leading order. This has solutions N(z) = N0eλz with

λ2 + aλ + 1 = 0 ⇒ λ = 1
2

(

−a ±
√

a2 − 4Df ′(0)

)

.

If a < 2
√

Df ′(0) then λ is complex ⇒ the
solutions oscillate about N = 0, which
does not make sense biologically

So we require
a ≥ 2

√

Df ′(0).

Jonathan A. Sherratt Lecture 17: Biological Waves



Wave Fronts I: Modelling Epidermal Wound Healing
Wave Fronts II: The Speed of Epidermal Repair

Wave Fronts III: Bistable Kinetics (Spruce Budworm)
Periodic Travelling Waves

Typical Model Solution
Travelling Wave Solutions
General Results on Wave Speed
Deducing the Chemical Profile

The Speed of Travelling Waves (contd)

We require a ≥ 2
√

Df ′(0)

Mathematical theory implies that in applications, waves will
move at the minimum possible speed, 2

√

Df ′(0).
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Applications to Wound Healing

For the wound healing model

f ′(0) = Ns(0) − δ

⇒ wave speed a = 2
√

D(Ns(0) − δ)
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General Results on Wave Speed

Consider the equation ∂u/∂t = D ∂2u/∂x2 + f (u) with
f (0) = f (1) = 0, f (u) > 0 on 0 < u < 1, f ′(0) > 0 and
f ′(u) < f ′(0) on 0 < u ≤ 1.
For this equation, two important theorems were proved by
Kolmogorov, Petrovskii and Piskunov; a similar but slightly less
general study was done at the same time by Fisher.
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General Results on Wave Speed

Consider the equation ∂u/∂t = D ∂2u/∂x2 + f (u) with
f (0) = f (1) = 0, f (u) > 0 on 0 < u < 1, f ′(0) > 0 and
f ′(u) < f ′(0) on 0 < u ≤ 1.
For this equation, two important theorems were proved by
Kolmogorov, Petrovskii and Piskunov; a similar but slightly less
general study was done at the same time by Fisher.

Theorem 1. There is a positive travelling wave solution for all
wave speeds ≥ 2

√

Df ′(0), and no positive travelling waves for
speeds less than this critical value.

A proof of theorem 1 is in the supplementary material.

Jonathan A. Sherratt Lecture 17: Biological Waves



Wave Fronts I: Modelling Epidermal Wound Healing
Wave Fronts II: The Speed of Epidermal Repair

Wave Fronts III: Bistable Kinetics (Spruce Budworm)
Periodic Travelling Waves

Typical Model Solution
Travelling Wave Solutions
General Results on Wave Speed
Deducing the Chemical Profile

General Results on Wave Speed

Consider the equation ∂u/∂t = D ∂2u/∂x2 + f (u) with
f (0) = f (1) = 0, f (u) > 0 on 0 < u < 1, f ′(0) > 0 and
f ′(u) < f ′(0) on 0 < u ≤ 1.
For this equation, two important theorems were proved by
Kolmogorov, Petrovskii and Piskunov; a similar but slightly less
general study was done at the same time by Fisher.

Theorem 2. Suppose that u(x , t = 0) = 1 for x sufficiently large
and negative, and u(x , t = 0) = 0 for x sufficiently large and
positive. Then the solution u(x , t) approaches the travelling wave
solution with the critical speed 2

√

Df ′(0) as t → ∞.

The form of the approach to the travelling wave is discussed in
depth by Bramson (1983). The proof of theorem 2 is extremely
difficult.
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General Results on Wave Speed

Consider the equation ∂u/∂t = D ∂2u/∂x2 + f (u) with
f (0) = f (1) = 0, f (u) > 0 on 0 < u < 1, f ′(0) > 0 and
f ′(u) < f ′(0) on 0 < u ≤ 1.
For this equation, two important theorems were proved by
Kolmogorov, Petrovskii and Piskunov; a similar but slightly less
general study was done at the same time by Fisher.

References:
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Eug. 7, 355-369.
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la diffusion avec croissance de la quantité de matière et son application
à un problème biologique. Moscow Univ. Bull. Math. 1, 1-25.
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Therapeutic Addition of Chemical

Now return to the wound healing model and consider adding
extra chemical to the wound as a therapy.
The equation for the chemical changes to

∂c/∂t = An/(1 + αn2) − λc + γ

⇒ f (n) changes to

s
(

γ

λ
+

An
λ(1 + αn2)

)

(N − n)n − δn

⇒ f ′(0) changes to Ns(γ/λ) − δ

⇒ observed (min poss) wave speed a = 2
√

D(Ns(γ/λ) − δ)

Wave
speed

a

Chemical application rate χ
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Deducing the Chemical Profile

Since we know c as a function of n, there is also a travelling
wave of chemical, whose form we can deduce. The chemical
profile has a peak in the wave front.
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Deducing the Chemical Profile

Since we know c as a function of n, there is also a travelling
wave of chemical, whose form we can deduce. The chemical
profile has a peak in the wave front.

c

n
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Deducing the Chemical Profile

Since we know c as a function of n, there is also a travelling
wave of chemical, whose form we can deduce. The chemical
profile has a peak in the wave front.

However, there are no
theorems on the speed of
wave fronts in systems of
reaction-diffusion
equations, except in a few
special cases (which do
not include this model).
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Spruce Budworm Dynamics

The spruce budworm is an important forestry pest in North
America.
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Spruce Budworm Dynamics

The spruce budworm is an important forestry pest in North
America.

A simple model is

∂u/∂t = D ∂2u/∂x2 + f (u)

where

f (u) = k1u(1 − u/k2)
︸ ︷︷ ︸

logistic
growth

+ u2/(1 + u2)
︸ ︷︷ ︸

predation
by birds
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Travelling Waves in the Spruce Budworm Model

A simple model is

∂u/∂t = D ∂2u/∂x2 + f (u)

where

f (u) = k1u(1 − u/k2)
︸ ︷︷ ︸

logistic
growth

+ u2/(1 + u2)
︸ ︷︷ ︸

predation
by birds

In applications, waves travelling between u = u1 (“refuge state”)
and u = u3 (“outbreak state”) are important. Both of these
steady states are locally stable. Therefore the direction of wave
propagation is not obvious.
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Direction of Wave Propagation

Travelling wave solutions U(z) (z = x − ct) satisfy

DU ′′ + cU ′ + f (U) = 0

⇒
[

1
2DU ′2

]+∞

−∞

+ c
∫

+∞

−∞

U ′2dz +

∫
+∞

−∞

f (U)U ′dz = 0

We know that U ′(±∞) = 0. Therefore for a wave front with

U(−∞) = u1 and U(+∞) = u3, c has the same sign as
−

∫ u3
u1

f (U)dU.
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Direction of Wave Propagation

For a wave front with U(−∞) = u1 and U(+∞) = u3, c has the
same sign as −

∫ u3
u1

f (U)dU.

For the spruce budworm model, this can be used to predict
whether a local outbreak will die out or spread.

Outbreak dies out Outbreak spreads
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Existence of Travelling Waves

Theorem [Fife & McLeod, 1977]. Consider the equation
∂u/∂t = D ∂2u/∂x2 + f (u) with f (u1) = f (u2) = f (u3) = 0,
f ′(u1) < 0, f ′(u2) > 0, f ′(u3) < 0. This equation has a travelling
wave solution u(x , t) = U(x − ct) with U(−∞) = u1 and
U(+∞) = u3 for exactly one value of the wave speed c.

A proof of this theorem is in the supplementary material.

Reference:
Fife, P.C. & McLeod, J.B. 1977 The approach of solutions of nonlinear
diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal.
65, 335-361.
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The Value of the Wave Speed

There is no general result on the value of the unique wave
speed for a reaction-diffusion equation with bistable kinetics.
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Outline

1 Wave Fronts I: Modelling Epidermal Wound Healing

2 Wave Fronts II: The Speed of Epidermal Repair

3 Wave Fronts III: Bistable Kinetics (Spruce Budworm)

4 Periodic Travelling Waves
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A Model for Predator-Prey Interactions

predators

∂p/∂t = Dp∇2p
︸ ︷︷ ︸

dispersal

+ akph/(1 + kh)
︸ ︷︷ ︸

benefit from
predation

− bp
︸︷︷︸

death

prey

∂h/∂t = Dh∇2h
︸ ︷︷ ︸

dispersal

+ rh(1 − h/h0)
︸ ︷︷ ︸

intrinsic
birth & death

− ckph/(1 + kh)
︸ ︷︷ ︸

predation
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Predator-Prey Kinetics
For some parameters, the kinetic ODEs have a stable
coexistence steady state.

predators

∂p/∂t = akph/(1 + kh)

−bp

prey

∂h/∂t = rh(1 − h/h0)

−ckph/(1 + kh)
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Predator-Prey Kinetics
For other parameters, the coexistence steady state is unstable,
and there is a stable limit cycle.

predators

∂p/∂t = akph/(1 + kh)

−bp

prey

∂h/∂t = rh(1 − h/h0)

−ckph/(1 + kh)
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Example of a Cyclic Population
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Example of a Cyclic Population

Field voles in Kielder Forest are cyclic (period 4 years)
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Example of a Cyclic Population

Field voles in Kielder Forest are cyclic (period 4 years)

Spatiotemporal field data shows that the cycles are spatially
organised into a periodic travelling wave
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What is a Periodic Travelling Wave?

A periodic travelling wave is an oscillatory solution moving with
constant shape and speed.

It is periodic as a function of time (at a fixed space point).
It is periodic as a function of space (at a fixed time point).

Speed =
space period/
time period
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The Periodic Travelling Wave Family

Theorem [Kopell & Howard, 1973]. Any oscillatory
reaction-diffusion system has a one-parameter family of
periodic travelling waves.

Reference: Kopell, N. &
Howard, L.N. 1973 Plane wave
solutions to reaction-diffusion
equations. Stud. Appl. Math.
52, 291-328.
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λ–ω Equations

Mathematical analysis is not possible for the predator-prey
equations. Instead we consider a simpler example known as
the λ–ω equations:

ut = uxx + λ(r)u − ω(r)v

vt = vxx + ω(r)u + λ(r)v

where λ(r) = 1 − r2

ω(r) = ω0 + ω1r2.
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λ–ω Equations

Mathematical analysis is not possible for the predator-prey
equations. Instead we consider a simpler example known as
the λ–ω equations:

ut = uxx + λ(r)u − ω(r)v

vt = vxx + ω(r)u + λ(r)v

where λ(r) = 1 − r2

ω(r) = ω0 + ω1r2.
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λ–ω Equations

Mathematical analysis is not possible for the predator-prey
equations. Instead we consider a simpler example known as
the λ–ω equations:

ut = uxx + λ(r)u − ω(r)v

vt = vxx + ω(r)u + λ(r)v

where λ(r) = 1 − r2

ω(r) = ω0 + ω1r2.

The periodic travelling wave family is

u = R cos
[

ω(R)t ±
√

λ(R)x
]

v = R sin
[

ω(R)t ±
√

λ(R)x
]
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λ–ω Equations in Polar Coordinates

λ–ω equations are simplified by working with r =
√

u2 + v2 and
θ = tan−1(v/u), giving

rt = rxx − rθ2
x + r(1 − r2)

θt = θxx + 2rxθx/r + ω0 − ω1r2.

The periodic travelling waves are

r = R θ = ±
√

λ(R)x + ω(R)t

wavelength =
2π

√

λ(R)
time period =

2π

|ω(R)| speed =
|ω(R)|
√

λ(R)
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Stability in the Periodic Travelling Wave Family

Some members of the periodic
travelling wave family are stable as
solutions of the partial differential
equations, while others are unstable.
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Stability in the Periodic Travelling Wave Family

Some members of the periodic
travelling wave family are stable as
solutions of the partial differential
equations, while others are unstable.

For the λ–ω system, the stability
condition is

4λ(R)
[

1 + ω′(R)2/λ′(R)2
]

+Rλ′(R) ≤ 0 .

This condition is hard to derive in general (see Kopell & Howard,
1973). For the special case of ω(.) constant, the derivation is
given in the supplementary material.
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Generation of Periodic Travelling Waves

One way in which periodic travelling waves develop in the λ–ω
equations is via the local perturbation of the unstable
equilibrium u = v = 0. This process selects a particular wave
amplitude, that can be calculated explicitly. Details of this are
given in the supplementary material.

For the predator-prey model, a corresponding process is the
generation of periodic travelling waves by the invasion of a prey
population by predators. For details of this, see

Sherratt, J.A., Lewis, M.A. & Fowler, A.C. 1995 Ecological chaos in
the wake of invasion. Proc. Natl. Acad. Sci. USA 92, 2524-2528.

(This paper can be downloaded from
www.ma.hw.ac.uk/∼jas/publications.html)
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Extension to Two Space Dimensions: Spiral Waves

Periodic travelling waves are important in their own right, and
also as the one-dimensional equivalents of target patterns and
spiral waves.

A brief introduction to spiral waves in the λ–ω equations is
given in the supplementary material.
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