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Abstract Many natural systems are subject to seasonal environmental change. As a
consequence many species exhibit seasonal changes in their life history parameters—
such as a peak in the birth rate in spring. It is important to understand how this
seasonal forcing affects the population dynamics. The main way in which seasonal
models have been studied is through a two dimensional bifurcation approach. We
augment this bifurcation approach with extensive simulation in order to understand
the potential solution behaviours for a predator–prey system with a seasonally forced
prey growth rate. We consider separately how forcing influences the system when the
unforced dynamics have either monotonic decay to the coexistence steady state, or
oscillatory decay, or stable limit cycles. The range of behaviour the system can exhibit
includes multi-year cycles of different periodicities, parameter ranges with coexisting
multi-year cycles of the same or different period as well as quasi-periodicity and
chaos. We show that the level of oscillation in the unforced system has a large effect
on the range of behaviour when the system is seasonally forced. We discuss how the
methods could be extended to understand the dynamics of a wide range of ecological
and epidemiological systems that are subject to seasonal changes.
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1 Introduction

Many natural systems are subject to significant seasonal fluctuations in their life history
parameters. This has been studied in the context of epidemiology, and seasonal forcing
has been proposed as the cause of multi-year cycles for a number of diseases in human
and wildlife populations (Dietz 1976; Finkenstadt and Grenfell 2000; Dushoff et al.
2004; Altizer et al. 2006; Keeling and Rohani 2008; Smith et al. 2008). Literature
on interacting populations which include seasonal forcing is also plentiful. Interacting
population systems can often cycle without forcing, implying a richer range of potential
effects of seasonality, and conclusions from previous studies indicate that seasonal
forcing can have critical effects on the population behaviour (Scheffer et al. 1997;
Holt and Colvin 1997; Stenseth et al. 1998; Mabille et al. 2010).

The main mathematical approach to investigating the effects of seasonal forcing in
epidemiological and ecological models is the bifurcation approach of Rinaldi and co-
workers (Kuznetsov et al. 1992; Rinaldi et al. 1993; Rinaldi and Muratori 1993;
Kuznetsov and Piccardi 1994; Kuznetsov 1995) and continued by others
(Mancusi et al. 2004; Bolzoni et al. 2008). This uses numerical bifurcation software
to construct bifurcation diagrams of solution behaviour as the forcing parameters
are varied. It provides a systematic method for investigating solution structure and
revealing all possible solutions. However, when there are multiple stable solutions,
it gives no information on the relative frequency with which these arise. Alternative
approaches include the resonance approach pioneered by Greenman (Greenman et al.
2004; Ireland et al. 2004; Greenman and Norman 2007; Greenman and Pasour 2011)
and bifurcation analysis in the manner of King and Schaffer (1999, 2001) and Schaffer
et al. (2001). The resonance approach constructs resonance diagrams to demonstrate
increases in solution amplitude when the forcing period and the underlying period
of the unforced system are integer multiples of one another. The approach used by
King and Schaffer examines the bifurcation structure by formulating the model as a
perturbation of a Hamiltonian limit, and then presents the work through a combination
of two-dimensional bifurcation diagrams and sections of the Poincaré map.

In this paper, we will focus on the bifurcation approach to understand solution
behaviour and augment it by a systematic program of numerical simulations in order
to give more information on basins of attraction. We consider the specific case of
the Rosenzweig–MacArthur predator–prey model with sinusoidal forcing of the prey
growth rate. In reality, biological systems are very complex with the likelihood that all
parameters are in some way affected by the seasons but with different forcing strengths
and phases. We assume that the growth rate varies while the carrying capacity remains
constant. This reflects the situation where the host has a defined breeding season but
resources remain constant (and therefore breeding and resources are driven by different
environmental factors). This differs to the work of Rinaldi et al. (1993) who applied
temporal forcing to the growth rate and additionally forced the carrying capacity (with
the same temporal forcing term). The prey growth rate is distinguished as the only
model parameter that does not affect the stability of the predator–prey coexistence
equilibrium (details in Sect. 2) thus allowing us to study the effects of the forcing
from a different perspective, namely studying the three cases of monotonic decay
to the coexistence equilibrium, oscillatory decay and cycles in the unforced system
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separately. This provides a novel outlook on the impact of seasonal forcing, illustrating
how the resulting cyclic behaviour is dependent on the unforced dynamics.

In Sect. 2 we describe the predator–prey model, its properties in the unforced
case, and the different forcing scenarios we will consider. In Sect. 3 we summarise
the necessary bifurcation theory, and the results of this bifurcation approach follow
in Sect. 4. Simulation work is shown in Sect. 5 while in Sect. 6 we consider the
importance of our choices for a controlling parameter. In Sect. 7, we discuss how the
methods support and verify each other as well as possible extensions and applications.

2 Model

We consider the widely used Rosenzweig–MacArthur predator–prey model (Rosen-
zweig and MacArthur 1963):

dx

dt
= r

(
1 − x

K

)
x − axy

b + x
(1a)

dy

dt
= caxy

b + x
− dy (1b)

where x(t) and y(t) are the prey and predator density at time t . All parameters are
positive; r and K represent the growth rate and carrying capacity of the prey population
respectively; d is the natural death rate for the predator population; and c relates birth
of new predators to prey intake. The Holling Type II predation term is a saturating
function in which a is the maximum predation rate and b is the density of prey at
which the predation rate is half its maximum.

The model (1) has a coexistence steady state which is stable when:

K1 ≡ bd

ca − d
< K <

b(ca + d)

ca − d
≡ K2. (2)

There is a transcritical bifurcation at K = K1 denoting a change to the prey-only
equilibrium; at K = K2 there is a supercritical Hopf bifurcation, and a stable limit
cycle arises. For K1 < K < K2 there is either monotonic decay or oscillatory decay to
equilibrium, with oscillatory decay occurring for larger K , say K > K ∗ ∈ (K1, K2)

(see Fig. 1). Notice that the growth rate r is significant as the only parameter not
involved in the formula for K1 and K2; however, r does affect K ∗ and the values of x
and y at the steady state.

We introduce yearly forcing through the growth rate of the prey and following many
previous studies (Rinaldi et al. 1993; Dietz 1976; Greenman et al. 2004; Choisy et al.
2006; He and Earn 2007) we use a sinusoidal form:

r(t) = r0(1 + ε sin(2π t)). (3)

When ε = 0 then the seasonally forced model collapses to the unforced case with
r0 = r . Throughout, we will use r to denote the growth rate in the unforced system,
with r(t) being the growth rate in the forced system and r0 being the mean value
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Fig. 1 The change in stability of the coexistence steady state as r and K vary. The other parameters are
fixed at a = 4π, b = 0.3, c = 1, d = 2π . The switch between monotonic decay and oscillatory decay
(K = K ∗) increases with r . As r → ∞, K ∗ → K2 = 0.9

of the growth rate in the forced system. This is to emphasise when we are referring
to the unforced case. The parameter ε is the forcing amplitude. We will vary the two
parameters in the forcing term, r0 and ε, for fixed values of the other parameter values;
following Rinaldi et al. (1993) we choose a = 4π, b = 0.3, c = 1, d = 2π . For these
values K1 = 0.3 and K2 = 0.9.

We will focus on three different values of K : K = 1, giving a stable limit cycle in
the unforced system; K = 0.8, giving oscillatory decay to the coexistence equilibrium;
and K = 0.35, giving monotonic decay unless r0 is small. We can consider these
three cases separately because the threshold value K2 is independent of the forcing
parameter. Therefore we can analyse how the strength of oscillations in the unforced
system affects the complexity of behaviour when seasonality is introduced.

3 Bifurcation theory of periodically forced ODEs

For the benefit of readers unfamiliar with the bifurcation theory of periodically forced
ODEs, we now give a brief summary. Kuznetsov (1995) provides full details of all
bifurcation theory necessary while Seydel (1994) and Guckenheimer and Holmes
(1983) are perhaps more accessible for those unfamiliar with the theory. Useful back-
ground on Arnol’d Tongues is given in Greenman and Benton (2004) and King and
Schaffer (1999). The standard procedure for locating bifurcations uses the Poincaré
(or stroboscopic) map P that transforms the continuous system into a discrete one
by sampling the solution once in each forcing period; one year in our case. Note that
the stable/unstable annual cycles become stable/unstable fixed points of P . Discrete
bifurcation theory reveals that this fixed point is unstable if one of the eigenvalues of
its linearisation has modulus larger than 1. Changes in stability are of three possible
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types. If the eigenvalue is equal to −1, it is a period-doubling (flip) bifurcation; if the
eigenvalue is equal to +1 it is a fold (saddle-node, tangent) bifurcation; and if there
is a pair of complex conjugate eigenvalues with modulus 1, it is a Neimark–Sacker
(torus) bifurcation.

Period-Doubling Bifurcation At a period-doubling bifurcation, the fixed point of P
loses stability but no new fixed points appear. However, the same fixed point of the
second iterate of P (P2) undergoes a pitchfork bifurcation leading to two fixed points
of P2. Thus the solution alternates between two different points on the Poincaré
section. For the continuous system this produces a two year cycle, which will typically
become more distinctively biennial as one moves away from the bifurcation. A period-
doubling bifurcation can then happen to the new two year cycles leading to a four year
cycle, etc; this can yield an infinite cascade of period-doublings, ultimately ending
in chaos. On our bifurcation diagrams, we will denote by PDk a period-doubling
bifurcation curve across which a stable cycle of period k loses stability and a stable
cycle of period 2k arises.

Fold Bifurcation When the eigenvalue is +1 the system undergoes a fold bifurcation.
On one side of the bifurcation point there is no solution but on the other side there
are both stable and unstable solution branches, which curve around (“fold”) at the
bifurcation point. By stability, we mean locally stable as a solution to the ODEs. Thus,
when crossing a fold curve on the bifurcation diagram, a new solution appears to arise
from nowhere. In fact, it is arising when the forcing period (p = 1 year) and the
underlying period of the model (denoted by p0) have the ratio p

p0
= 1

n (n ∈ N). These
bifurcations are the boundaries of Arnol’d Tongues, with each tongue denoting a region
in which a specific periodic solution occurs. Thus, when crossing a fold bifurcation
curve on the bifurcation diagram, denoted by FDk, a stable cycle of period k arises.

Neimark–Sacker Bifurcation A Neimark–Sacker bifurcation is a discrete version of
a Hopf bifurcation. For a standard supercritical Neimark–Sacker bifurcation, when
the eigenvalues are complex with modulus 1 the fixed point on the Poincaré section
becomes unstable and a stable closed invariant curve arises around the point on the
Poincaré section (provided that certain non-degeneracy conditions hold including that
strong resonances should be excluded). If this is a space-filling curve, that is, if there
is no number l such that l iterations of the Poincaré map P will bring the solution
back to the same point on the curve, then it produces a quasi-periodic solution. More
precisely, this means that the points of the solution on the Poincaré section are dense
within this closed invariant curve. When considered in the continuous setting, a quasi-
periodic solution may superficially appear periodic but in fact it has no finite period.
The Neimark–Sacker bifurcation is also known as a torus bifurcation, due to the shape
produced as it goes around the Poincaré section. Far away from the bifurcation point,
the torus can undergo torus destruction leading to an area of chaotic behaviour, caused
by a global bifurcation.

The condition for the closed invariant curve in the Poincaré map to be a space-filling
curve is that the ratio of the two frequencies describing motion along the axis and along
the cross-section of the torus is irrational. This ratio is the same as that between the
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forcing period and the underlying period of the unforced model, which we discussed
earlier. Due to the larger cardinality of irrational numbers over rational numbers, quasi-
periodicity is the typical behaviour beyond a Neimark–Sacker bifurcation curve in the
bifurcation diagram. This bifurcation curve is denoted by NSk where it is a cycle of
period k which loses stability.

If the two frequencies have a rational ratio m
n then there is phase-locking or

frequency-locking. The solution becomes entrained on a periodic cycle within the
curve on the Poincaré section and the period of the solution will be given by n. For
example, if the forcing period and the underlying period have a ratio of 1

3 , then the
system will respond with a solution of period 3. The fold bifurcation discussed ear-
lier also gives phase-locking, with m = 1. As in the m = 1 case, solutions with a
given m �= 1 (and n > 1) occur within an Arnol’d Tongue, whose boundaries are
fold bifurcations of the solution within the tongue. The fact that m can now take any
positive integer value leads to different “families” of tongues which are numerated by
m. However, the family with m = 1 usually has the largest tongue on the bifurcation
diagram. Thus, period ratios of 2

3 and 1
3 will both produce 3 year solutions within their

respective Arnol’d Tongue, but the latter will usually be more prominent in the bifur-
cation diagram (see later, Fig. 3b, where several FDk curves representing different
Arnol’d Tongues are plotted). Typically, most tongues are so thin that they are difficult
to find via simulation.

Finally in this section, we comment that throughout the paper we will use the term
“subharmonics” to refer to any solution which has a period that is an integer multiple
of the external forcing period (Seydel 1994). As the external period in question is
one year, subharmonics will be multi-year cycles of period 2, 3, 4 years etc. There-
fore, both the period-doubling and fold bifurcations produce subharmonics. We state
this explicitly because confusion can arise from the fact that period-doubling bifur-
cations are sometimes called subharmonic bifurcations. Further, subharmonics are
often described as being associated with the ratio of the different periods interacting,
although this is only really true for the fold bifurcation and not the period-doubling
bifurcation.

4 The bifurcation approach

We used the software package auto (Doedel 1981; Doedel et al. 1991, 2006; Doedel
and Oldeman 2009) to calculate bifurcation diagrams for (1). We describe separately
the results for K = 0.8 (oscillatory decay), K = 1 (limit cycles) and K = 0.35
(monotonic decay). We restrict attention almost entirely to ε < 1, which guarantees
that the prey growth rate is always positive.

4.1 Two-dimensional bifurcation diagram for K = 0.8

Figure 2 shows a bifurcation diagram in the ε–r0 plane; recall that ε is the forcing
amplitude and r0 is the mean of the forced growth rate.

For low levels of forcing (i.e. small ε), there are yearly solutions in region 0,
which emulate the forcing oscillation. As ε is increased a period-doubling curve is
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Fig. 2 A two-dimensional bifurcation diagram for K = 0.8 when the unforced system has oscillatory
decay to the coexistence steady state. The two parameters varied in the diagram are those involved in the
forcing term (Eq. 3), that is the mean value of the forcing, r0, and the amplitude of the forcing, ε. The
other parameters are a = 4π, b = 0.3, c = 1, d = 2π, K = 0.8. Dot-dash lines represent period-doubling
bifurcation curves while solid lines are for fold bifurcation curves. In region 0 the system responds to the
forcing with yearly cycles but after crossing the period-doubling curve PD1, indicating that a cycle of period
1 loses stability, the solution behaviour is two year cycles (region 1). The fold bifurcation curve shows an
area where two year cycles can occur outside of the period-doubling region, thus between the two curves
both the one year and the two year solutions are stable

crossed and thus the stable solution in region 1 is a two year cycle; the yearly solution
also exists but is unstable. There is a fold bifurcation curve which implies a (small)
region of parameter space outside the period-doubling region 1, containing two year
solutions. The yearly solutions are also stable in this region: they do not lose stability
until the period-doubling bifurcation curve is crossed. Thus between the two curves
there are two different stable solutions. This is the full range of behaviour possible for
when K = 0.8 as there are no more fold bifurcation curves for higher period cycles.
However, in Sect. 5, we produce detailed simulation diagrams to investigate the basins
of attraction for Fig. 2.

4.2 Two-dimensional bifurcation diagram for K = 1

The two-dimensional bifurcation diagram for the case K = 1 (stable limit cycles) is
shown in Fig. 3 with and without the Arnol’d Tongues related to solutions of period
greater than 2. Note that when r0 is varied with no forcing (ε = 0), the period of the
limit cycles increases with decreasing r0.

Figure 3a shows that a larger range of complex population behaviour is possi-
ble compared to when there is oscillatory decay in the unforced system (Fig. 2).
A Neimark–Sacker bifurcation curve, labelled as NS1 occurs for this set-up. As we
increase ε from 0 in a system with a limit cycle, the system typically responds with
quasi-periodic solutions due to the appearance of the Neimark–Sacker bifurcation,
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Fig. 3 A two-dimensional bifurcation diagram for K = 1 when the unforced system has stable limit
cycles. Other parameters and details of the bifurcation diagram are as in Fig. 2. Dot-dash lines represent
period-doubling bifurcation curves, solid lines are for fold bifurcation curves and dashed lines represent
Neimark–Sacker bifurcation curves. a Stable behaviour by region: region 0—one year solution; region
1/1*—quasi-periodic cycles; region 2—two year solution; region 3—two different two year solutions;
region 4—one year and two year solutions; region 5—quasi-periodic solution and two year solution; region
6—four year solution. Grey dashed lines refer to one-dimensional bifurcation diagrams in the relevant
figures. Points (a)–(d) refer to the simulations shown in Fig. 4. b This includes the fold bifurcation curves
relating to all multi-year simulations found. There are two FD3 curves indicating the appearance of three
year cycles in different regions, one FD4 curve, two FD5, one FD7, FD8 and FD9 curves. We believe that
the fold curves FD8 and FD9 do in reality extend to the ε = 0 axis, with the earlier end a numerical artefact

and this is the generic behaviour in regions 1 and 1*. These quasi-periodic solutions
will be very similar, for very low levels of forcing, to the limit cycles on the ε = 0
axis, but increasing forcing pushes the solutions away from this period. Crossing the
NS1 curve from region 1 to region 0 leads to the torus disappearing and the yearly
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cycle becoming stable. Therefore the stable behaviour in region 0 is one year cycles.
This implies that increasing the level of forcing is actually able to produce more reg-
ular behaviour—stable yearly cycles rather than quasi-periodicity. Although counter-
intuitive, this does make sense as we are imposing yearly forcing on to an inherent
cyclic solution (limit cycle) and with enough forcing, i.e. once ε is large enough, this
cycle becomes entrained onto the yearly cycle. Note that if r had been part of condition
(2) for a Hopf bifurcation, then the Neimark–Sacker bifurcation curve would have hit
the ε = 0 axis at the value of r where the Hopf bifurcation occurs.

As for K = 0.8, crossing from region 0 to region 2 across the period-doubling
bifurcation curve PD1 leads to stable two year cycles in region 2 and the loss of
stability of the yearly cycles. This new two year cycle itself undergoes period-doubling
as indicated by the curve PD2. Thus the stable solution behaviour in region 6 is four
year cycles. There is another period-doubling curve PD4, and a subsequent cascade of
period-doubling to chaos, in the region ε > 1. There is also a second Neimark–Sacker
bifurcation curve, NS2, in region 2. As r0 decreases past this curve, it indicates the
loss of stability of the two year cycles in region 2 and the onset of stable quasi-periodic
solutions. However, this region is very thin and further decrease in r0 causes a loss of
stability due to crossing the period-doubling curve PD1.

Thus in Fig. 3a there are four main types of behaviour shown on this two-
dimensional bifurcation diagram, namely one year, two year, four year and quasi-
periodic cycles. There is also the possibility that there may be chaotic dynamics in
some parts of the “quasi-periodic regions”; we have not investigated this. Examples of
these behaviours are shown in Fig. 4; the corresponding parameters sets are labelled
(a)–(d) in Fig. 3a.

We now consider Fig. 3b which includes the higher period Arnol’d Tongues. We
used simulation in order to obtain initial conditions as starting solutions for numerical
continuation. Specifically we input into auto one whole period of the solution from a
Matlab simulation and trace the solution branch to see what bifurcations occur along
it, in particular the fold bifurcation curve enclosing the periodic solutions.

We see that the three year fold curve which has a root on the ε = 0 axis at approx-
imately r0 = 3 is the largest of these additional tongues. However, there are many
different period solutions, as well as multiple regions of the same period solution. In
Fig. 5 we explore the two separate regions of three year stability by showing a rep-
resentative solution from each of these regions, plotted as a function of time. Recall
that a tongue is characterised by the rotation number m

n within the torus. Here n is
the period and m is the number of peaks in the solution per period. Thus the three
year simulations found in Fig. 5a have m = 1, n = 3 while Fig. 5b corresponds
to m = 2, n = 3. However, this rotation number also relates to the forcing period
(1 year) and the underlying period of the unforced system. The larger 3 year fold
curve hits the axis where the unforced system has a period of 3 years, thus leading
to this rotation number of 1

3 . Furthermore, the smaller three year fold curve hits the
axis at r0 = 9.5 when the unforced system has a period of 1.5 years. Thus the rotation
number is 1

1.5 = 2
3 as expected.

This rotation number relationship is the same for all the Arnol’d tongues in Fig. 3b
and we show this in Fig. 6. For example, the four year tongue on Fig. 3b touches
the ε = 0 axis where the limit cycles have period 1.25 so that the solution has
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Fig. 4 Simulation examples of different solutions found through the bifurcation diagram approach. Para-
meter values are (ε, r0) = (a) (0.05, 8.8), (b) (0.35, 8.8), (c) (0.65, 8.8), (d) (0.88, 8.8) and correspond
to the four points labelled on Fig. 3a with other parameters as in Fig. 3 (K = 1). The prey and predator
solutions are plotted against time (years), with the simulations run for 2000 years so that they have settled
to equilibrium. The Matlab ode solver (ode15s) was run with tolerances: reltol = 10−8 and abstol = 10−6.
Grey dashed lines highlight a full period of the solution. The initial conditions were (x0, y0) = (0.3, 0.3)

in all cases

m
n = 1

1.25 = 3
4 . Thus we state m

n = peak
period for each of the plots in Fig. 6(a)–(f) respec-

tively, as 3
4 , 1

5 , 3
5 , 3

7 , 3
8 , 4

9 . These cycles may of course change in qualitative behaviour
(although still being of the same period) as the ε and r0 values move closer to the edge
of the Arnol’d Tongue. In particular, the quasi-periodic behaviour near the tongue
often looks similar to the periodic solution at the edge of the tongue.

Figure 3b shows a large number of tongues close to the ε = 0 axis, and in fact
general theory implies that there are an infinite number (see Sect. 3 and Kuznetsov
1995). However, in practice for small ε most of the tongues are very thin and the cor-
responding cycles will actually be very similar to the nearby quasi-periodic cycles. As
ε increases, the tongues usually get thicker and the cycles begin to be more distinctively
multi-year. Note also that in principle period-doubling can occur within the tongues.
However, we have only found this within the three year fold near r0 = 3, leading
to six year cycles, and this occurs for ε > 1. Also there are more Neimark–Sacker
bifurcation curves which we did not calculate to avoid even more complexity on the
diagram.
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Fig. 5 Two different simulations of three year solutions. The simulations are taken from two differ-
ent regions on the bifurcation diagram in Fig. 3b. The prey and predator solutions are plotted against
time (years), with the simulations run for 2000 years so that it will have settled to equilibrium. The ode
solver (ode15s) was run with tolerances: reltol = 10−8 and abstol = 10−6. Initial conditions were taken
as (x0, y0) = (0.5479, 0.7230) and (0.1440, 0.6490). Grey dashed lines highlight a full period of the
solution. The number of peaks over each three year period indicates which Arnol’d tongue the solutions
belong to

General theory also implies that close to the ε = 0 axis the Arnol’d tongues are
non-overlapping since they are each governed by a different ratio of underlying period
to forcing period at the root of the tongue (Kuznetsov 1995). However, for larger
ε overlap can occur because the ratio determines only the root and period of the
tongue; this is seen easily in Fig. 3b where the seven, eight and nine year tongues
overlap the three year tongue. The points where different bifurcation curves intersect,
for example where the fold curve FD2 hits the period-doubling curve PD1, are called
codimension-two bifurcation points. These are flagged when tracing the curves in
auto , indicating the presence of other bifurcation curves and providing a useful tool
for finding all curves on the bifurcation diagram. The theory behind codimension-two
bifurcation curves is well developed (see Kuznetsov 1995).

4.3 One-dimensional bifurcation diagrams for K = 1

We wish to analyse more closely the area enclosed by the fold bifurcation curve FD2 in
Fig. 3a, where there are stable two year cycles. To do this, we switch to one-dimensional
bifurcation diagrams, plotting the size (L2-Norm) of the prey population against ε, for
fixed r0. We compare the solution behaviour when crossing the period-doubling curve
PD1 for different values of r0, in order to clarify how the fold bifurcation interacts
with the period-doubling bifurcation.

When r0 = 14 the fold curve is not present, and results show a supercritical period-
doubling bifurcation, with the additional region of instability of the yearly cycle due
to the Neimark–Sacker bifurcation (for ε < 0.12) (Fig. 7a). Once the yearly solution
becomes stable, ε > 0.12, it remains stable until it hits the period-doubling bifurcation
curve (ε = 0.35). At this point the yearly solution becomes unstable and a stable two
year cycle arises.
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Fig. 6 Examples of solutions found in the bifurcation diagram for the case K = 1 (Fig. 3b). Parameter
values are (ε, r0) = (a) (0.1, 12), (b) (0.5, 1), (c) (0.3, 8), (d) (0.7, 3.8), (e) (0.95, 3), (f) (0.65, 4) and
the cycle period for each case is indicated in each subplot. The prey and predator solutions are plotted
against time (years). Further details are in Fig. 5. Grey dashed lines highlight a full period of the solution.
Two different five year solutions are shown as two different regions of five year solution behaviour were
found. Note that the time scale differs between cases as does the predator density plotting range. Initial
conditions were taken as (x0, y0) = (0.3, 0.3) except for the seven year cycles (0.8147, 0.9058) and eight
year cycles (0.3448, 0.2718)

123



Seasonal forcing and multi-year cycles in interacting populations 1753

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 r
0
 = 14

NS1 PD1

ε

L 2no
rm

(P
re

y)

NS1 PD1

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 r

PD1FD2 2DP1SN

ε

PD1FD2 2DP1SN

0
 = 8.8

PD1FD2 2DP1SN

(a) (b)

Fig. 7 A one-dimensional bifurcation diagram for fixed r0 and varying ε with the other parameters as in
Fig. 3a (K = 1). Along the vertical axis is the L2-Norm of the prey solution. Thick black curves: 1 year
equilibria, thick grey curves: 2 year equilibria, thin black curves: 4 year equilibria. Solid curves are stable
while dotted curves are unstable. In (a) a supercritical period-doubling bifurcation occurs while in (b) the
period-doubling bifurcation is subcritical and the solution then undergoes a fold. The thin grey dashed lines
indicate when curves on the two-dimensional bifurcation diagram are crossed, labelled appropriately

When r0 = 8.8 (Fig. 7b), we see a similar profile for the yearly cycle, going from
unstable to stable to unstable as it first crosses the Neimark–Sacker bifurcation curve
and then the period-doubling bifurcation curve. However, there is a marked change in
the behaviour of the two year cycle. Again it bifurcates from the yearly cycle at the
period-doubling bifurcation curve (ε = 0.49), but now the bifurcation is subcritical.
Thus it is initially unstable and only exists for ε < 0.49, until it folds (at ε = 0.36), at
which point it becomes stable. Thus for values of ε between the fold bifurcation curve
and the period-doubling bifurcation curve (0.36 < ε < 0.49) there are two stable
solutions—a one year solution and a two year solution. Lastly, Fig. 7b shows that for
larger ε the two year cycle loses stability (at ε = 0.8) and a stable four year cycle
appears. This arises from crossing the period-doubling curve PD2.

Further understanding of the fold curve in Fig. 3a can be gained by examining
a one-dimensional bifurcation diagram for r0 = 11.2 (Fig. 8a). In particular, vari-
ation in ε will mean that region 3 in Fig. 3a will be explored. For ε < 0.4 the
one year solution has a similar behaviour to that shown in Fig. 7 (unstable, stable
and then unstable due to the Neimark–Sacker bifurcation and the period-doubling
bifurcation). In Fig. 8a one can see that the two year solution arises and is stable
from the period-doubling bifurcation at ε = 0.42. It then undergoes two folds giving
it an “S shape” before continuing for increasing ε as a stable solution. More pre-
cisely, it hits the fold bifurcation curve FD2 twice, at ε = 0.435 and ε = 0.452.
In Fig. 3a, this is reflected by the fact that region 3 is bounded on both sides by the
fold curve FD2. Thus for 0.42 < ε < 0.435 and ε > 0.452 there is one stable two
year solution, whereas for 0.435 < ε < 0.452 there are two stable two year solu-
tions. Examples of the two different two year solutions are shown in Fig. 8b,c for the
prey population; these solutions are for the same parameter values but different initial
conditions.

From the above one-dimensional bifurcation diagrams, one can see that increasing
ε leads to an increase in the L2-Norm of the solution and in that sense the two year
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Fig. 8 Exploring region 3 in Fig. 3a. In (a) there is a one-dimensional bifurcation diagram for r0 = 11.2,
focussed in on 0.4 < ε < 0.5; behaviour outside this range is similar to Fig. 7a. A stable two year
cycle appears when the yearly solution hits the PD1 curve. This undergoes two “folds”, with instability
in between, before continuing as a stable solution. Two stable two year solutions are shown in (b) and (c)
with the same parameter values (ε, r0) = (0.44, 11.2) but different initial conditions; namely (b)(x0, y0) =
(0.8245, 0.5211) and (c)(x0, y0) = (0.9189, 0.7191). Here, the prey population is plotted against time over
an interval of 20 years, once the solution has settled to equilibrium. For details on the numerical method
see Fig. 4

cycle is larger than the one year cycle. This is also seen in Fig. 4 and complements the
work of Greenman et al. (2004) and others (e.g. Bolzoni et al. 2008; Childs and Boots
2010). It ties in with the resonance peaks seen on Greenman’s resonance diagram:
subharmonics are a type of “resonant solution”, with a higher amplitude than that of
the applied forcing (Choisy et al. 2006). However, it should also be noted that the four
year cycle is smaller in L2-Norm than the two year cycle. This can be understood by
looking at Fig. 4c, d where the two solutions have similar amplitude except that the
four year solution only reaches this value every other peak.

4.4 Two-dimensional bifurcation diagram for K = 0.35

We now consider the final case of monotonic decay to the coexistence steady state. We
have mentioned previously the importance of the interaction between the oscillations
in the unforced model and the forcing term as a driver of complex behaviour. Thus, it is
expected that the lack of any oscillations in the unforced model will cause the system
to respond simply by emulating the forcing term. Both bifurcation and simulation
analysis for K = 0.35 indicate that yearly cycles are the only possible population
behaviour. A plot of the period-doubling curve (PD1) for different values of K (Fig. 9)
indicates that the period-doubling region reduces in size as K decreases and entirely
disappears at a value of K slightly greater than 0.6. As discussed in Sect. 2, the value
K ∗ at which there is a switch from monotonic to oscillatory decay in the unforced
model is an increasing function of r , with K ∗ < 0.6 throughout the range of values of
r(t) = r0(1+ε sin(2π t)) that we are considering. Thus, the period-doubling curve has
disappeared while the system is still oscillatory and so one does not expect multi-year
cycles in the monotonic decay regime.
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Fig. 9 Investigating whether complex behaviour can occur when the unforced system has monotonic
decay to the coexistence steady state. The period-doubling curve indicating the appearance of stable two
year solutions is drawn in the two-dimensional bifurcation diagram for decreasing values of K . As K
decreases towards 0.6, the curve shrinks

This result suggests that a reasonable level of oscillatory decay is necessary in
order for forcing to induce population behaviour that is more complex than annual
cycles. If the period-doubling curve does not exist then the two year fold curve (FD2)
also cannot exist. Further, we have not found Arnol’d tongues for these values of K
(e.g. Fig. 12, below). This suggests that yearly cycles are the only possible behaviour
when annual forcing is introduced into the system with monotonic decay to steady state.

4.5 AUTO details

The bifurcation diagrams discussed in this section were created in auto (Doedel
1981; Doedel et al. 1991, 2006; Doedel and Oldeman 2009) using essentially standard
numerical continuation techniques. However, a few complications are worth men-
tioning. (i) We impose periodic forcing by augmenting (1) with a decoupled pair of
ODEs which have an oscillatory solution of the form required for the forcing (Doedel
and Oldeman 2009, §14.5). (ii) We found that versions of auto earlier than 07p-
0.8 (2011) were not capable of continuing the Neimark–Sacker bifurcation curve.
(iii) Although it can be useful to overspecify parameters so that it is always possible to
see clearly the r0 and ε values and to extract data easily, it has to be remembered that
this is not possible when tracing the Neimark–Sacker bifurcation curve since auto
will assume that a fourth specified parameter relates to the rotation angle around the
torus. (iv) When trying to trace the period-doubling, fold and Neimark–Sacker bifur-
cation curves it is important to use a small step size so that the restart point for tracing
the curve is determined accurately. Otherwise auto tends to have problems tracing
the bifurcation curve from the restart point. (v) The labels for our curves were cho-
sen to be Period-Doubling—PD, Fold—FD and Neimark–Sacker—NS. In auto the
corresponding labels are PD, LP and TR respectively.
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5 Simulation

This section will produce simulations of the model equations in order to elucidate the
results presented in the bifurcation diagrams. In the previous section the bifurcation
diagrams showed that there exist regions which have more than one type of possible
solution behaviour. Simulation results can be used to estimate the likelihood of each
of the solutions i.e. the relative sizes of their basins of attraction. Thus, simulation
can expand our knowledge of subharmonic solutions. A comparison of the simulation
results and bifurcation diagrams can therefore provide a clearer understanding of how
forcing drives the population dynamics.

5.1 Simulation details

The predator–prey model equations (1) were solved using Matlab (ode15s) for 2,000
years and the solutions were tested to determine whether there was a periodic solution
with period 1–9 years; if not, the solution was taken to be quasi-periodic. The choice
of 9 years as a maximum test period is arbitrary; there could in principle be solutions
with any finite integer period, but an upper limit is required for numerical study. To
test whether a solution had a period of, for example, four years, the value of the prey
solution was recorded for 20 time points at intervals of 4 years, after an initial time
period of sufficient length that transients had decayed. If the difference between the
maximum and minimum of these numbers was less than 2.5 % of their mean value,
then it was declared a four year solution. Tests of some difficult cases near bifurcation
curves or within multiple solution regions led to the choice of 2,000 years run time, 20
test points and 2.5 % variation as they enabled periodic and quasi-periodic solutions
to be distinguished. We also investigated the use of the fast Fourier transform to find
power spectra as a means of calculating the period but it was found to be less effective.
We considered the parameter region 1 < r0 < 20, 0 < ε < 1. For each set of
parameter values, solutions were replicated 50 times using different (random) initial
conditions between 0 and 1, independently chosen for both prey and predator. We
determine the basins of attraction by examining the frequency of particular solutions
from these 50 simulations. However, points in parameter space which showed multiple
attractors were recomputed with 500 simulations to gain increased accuracy of the
relative sizes of the basins of attractions. This straightforward method for estimating
basins of attraction is effective (particularly as numerical investigations indicate that
the basins of attraction have a complicated profile). Other, more sophisticated methods
such as using Lyapunov functions (Giesl 2007) could also be used.

5.2 Simulation results for K = 0.8

Again we first explore the simpler case of when there is oscillatory decay to the
coexistence steady state. In this case the two-dimensional bifurcation diagram (Fig. 2)
showed only two types of behaviour—one year cycles and two year cycles.

Figure 10a shows the results from the K = 0.8 simulation program. Again, the
only behaviours to occur are one year cycles (light blue) and two year cycles (pink).
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Fig. 10 In (a) there is a simulation diagram for K = 0.8 when the unforced system has oscillatory decay
to the coexistence steady state. At each point tested on the (ε, r0) grid, a pie chart shows what proportion
of the 50 (or 500) simulations had a particular period. Points which showed multiple solution behaviour
were run with 500 simulations for increased accuracy of the basins of attraction. The other parameters are
kept constant at a = 4π, b = 0.3, d = 2π, c = 1. Each simulation was run with random initial conditions
(between 0 and 1 for both prey and predator) and the period was tested after 2,000 years. The Matlab ode
solver (ode15s) was run with tolerances: reltol = 10−8 and abstol = 10−6. The period is illustrated by the
colour with light blue being one year cycles and pink being two year cycles. In the print version, one year
cycles are light grey and two year cycles are darker grey. In (b) a close-up of the diagram to focus on the
area where more than one solution appeared at the same point. This shows eleven points tested had multiple
solution behaviour (colour figure online)
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Fig. 11 A simulation diagram for K = 1 so that the unforced system has stable limit cycles. At each point
tested on the (ε, r0) grid, a pie chart shows what proportion of the 50 (or 500) simulations had a particular
period indicated by the legend. Each simulation was run with random initial conditions (between 0 and 1
for both prey and predator) and the period was then tested after 2,000 years. The Matlab ode solver (ode15s)
was run with tolerances: reltol = 10−8 and abstol = 10−6 (colour figure online)

At (ε, r0) = (0.4, 7) in Fig. 10a, there is a pie chart indicating that multiple solution
behaviour is predicted. This is close to the fold bifurcation curve in Fig. 2 and so
we examine this region in more detail in Fig. 10b. We expect both one and two
year solutions to be possible in the region between the fold bifurcation curve and the
period-doubling curve in Fig. 2. In Fig. 10b we see that this behaviour is found through
simulation at more than one grid location and the relative proportion of the two colours
indicates that the two year solutions are more likely at these parameter sets. Even in the
zoomed-in simulation diagram (Fig. 10b), only eleven of the pie charts show multiple
solutions since the region is so small.

5.3 Simulation results for K = 1

We now turn to the case when there is a limit cycle present in the unforced model
(Fig. 11).

In Fig. 11 one immediately notices the prominence of the two year cycles (pink).
There are also large regions of one year, four year and quasi-periodic cycles. In fact,
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for the most part, the behaviour is well represented by Fig. 3a, indicating that the
multi-year cycles arising from the Arnol’d tongues are the minority behaviour.

All of the tongues shown in Fig. 3b are represented by some simulation results.
We note that on most occasions the multi-year solution has a larger basin of attraction
than the quasi-periodicity which is usually also stable at that location. In fact, often the
multi-year solution attained all 50 of the simulations. The only real exception is the 7
year cycles. Furthermore, most of the multi-year cycles occur further away from the
ε = 0 axis where the tongues are thicker (again, the 7 year cycles are an exception).
This is obviously due to the fact that the larger tongue means that one is more likely
to capture the solution through simulation results. We reiterate here the fact that the
“quasi-periodic” solutions could actually be chaotic as we do not distinguish between
these cases.

There are a large number of five year cycles near r0 = 1 which indicate that the five
year tongue might be quite large. However, we know from Fig. 3b that the tongue is
quite thin, but just happens to lie directly over the line r0 = 1, which forms part of the
parameter grid for our simulation. This emphasises the important point that simulation
results depend significantly on the parameter grid used.

6 Different values of K

It is natural to ask how the bifurcation diagrams match up as K varies and to see if the
values of K picked for each type of unforced dynamics are a good representation of
the dynamics for all K values with those dynamics. We have already investigated how
the period doubling curve PD2 changes for different values of K in Fig. 9. Of special
interest is whether Arnol’d tongues are possible in the oscillatory decay regime. For
K = 1, the largest of these fold bifurcation curves is the three year fold curve around
r0 = 3. We investigated how this curve changes as K is decreased below 1 (Fig. 12).
The curve continues to exist below K = K2 = 0.9: for K = 0.85 it lies entirely in
the ε > 1 region, and it continues to shrink as K is decreased further, disappearing
entirely by K = 0.83, well above the switch to monotonic decay (Fig. 1). Therefore,
there are Arnol’d tongues in some part of the oscillatory decay parameter regime;
however, our results suggest that such folds do not occur in the monotonic decay
regime.

Further, we consider how the Neimark–Sacker bifurcation curve, NS1, changes as
we vary K (Fig. 13). This shows that as K decreases towards 0.9, the curve moves
closer to the ε = 0 axis. From Fig. 1 it is clear that when K = 0.9 there is a Hopf
bifurcation for all values of r . Thus the Neimark–Sacker bifurcation is approaching
the Hopf bifurcation curve as we decrease K . Figures 12 and 13 show that above
K = 0.9 changes in K do not lead to drastic changes in the bifurcation diagrams
but rather the curves vary smoothly with K . Thus we believe that our bifurcation
diagram at K = 1 is a good representation of the bifurcation structure for all values of
K > 0.9.

From Figs. 9, 12, 13 we see that the 2 year period-doubling curve, the 3 year fold
curve and the Neimark–Sacker bifurcation curve have all disappeared for K < 0.6.
This confirms the bifurcation work for K = 0.35 where only annual cycles were
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Fig. 12 The three year fold curve, as seen in Fig. 3b, is drawn in ε–r0 space for different values of K . This
shows the decay in the size of the tongue as K decreases past the Hopf bifurcation value (K = 0.9). Note
that by K = 0.85 the fold curve only exists for ε > 1
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Fig. 13 The Neimark–Sacker bifurcation curve, as seen in Fig. 3a, is drawn in ε–r0 space for different
values of K . As K approaches K = 0.9 the curve smoothly approaches the ε = 0 axis

found. It would also indicate this is a good representation of the behaviour for all
values of K up to K = 0.6.

7 Discussion

In this paper we have investigated the dynamics of the predator–prey model (1) with
forcing in the prey growth rate through the combined method of bifurcation diagrams
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and simulation. This has helped to explain why cycles are occurring in different para-
meter regions, providing a good representation of key population behaviour and the
relative frequency with which different cycles occur. Through our use of simulation
that directly corresponds to the bifurcation diagrams we have provided a further tool
for understanding these diagrams.

Our choice of prey growth rate as the forced parameter has enabled us to separate the
cases of oscillatory decay and limit cycles, in contrast with forcing parameters involved
in the condition for a Hopf bifurcation in the unforced system (Rinaldi et al. 1993). This
has led to a clear understanding of the dependence of cycles on the underlying oscilla-
tory nature of the unforced model, highlighting the fact that the level of oscillation in
the unforced system has a large effect on the range of possible behaviour. Specifically
we have shown that when the unforced dynamics of the model exhibits monotonic
decay or oscillatory decay, with low amplitude oscillations, to the coexistence steady
state, the forced system will exhibit annual cycles which follow the forcing oscillation
only. When the unforced system exhibits limit cycles or a sufficient level of oscillatory
decay, multi-year cycles are induced due to seasonal forcing. However, the limit cycles
case showed a much richer range of behaviour. This includes coexisting multi-year
cycles, quasi-periodicity and chaos, particularly when the forcing strength is high. This
is in keeping with the work of Rinaldi and co-workers (Rinaldi et al. 1993; Rinaldi and
Muratori 1993; Gragnani and Rinaldi 1995). This does not rule out Arnol’d tongues
occurring for the cases where multi-year cycles are induced in the oscillatory decay
system: these do occur (Fig. 12), and they are often seen in epidemiological models,
which do not have limit cycles in the absence of forcing (Kuznetsov and Piccardi 1994;
Greenman et al. 2004; Childs and Boots 2010). However, our results highlight the par-
ticular importance of studying systems under the influence of seasonal forcing which
are intrinsically cyclic, as they may be able to exhibit a wider range of population
behaviour.

For both the limit cycle and oscillatory decay case, the range of behaviour that we
have found includes (for some parameters) coexisting multi-year cycles of different
periods. However, the limit cycle case showed this more frequently than the oscillatory
decay case, as well as having parameter regions where coexisting multi-year cycles
of the same period occurred. In general, the limit cycle case exhibited more variety
and a larger area of parameter space resulted in non-annual behaviour. We also found
(in the limit cycle case) the unintuitive phenomenon of increasing forcing leading to
more regular behaviour (Fig. 3). This occurred when a higher forcing amplitude led
to stability of the yearly cycle instead of the quasi-periodic cycle.

The onset of cycles, in terms of the forcing parameters r0 and ε, was dependent on
the unforced dynamics of the system. In the oscillatory decay case, a significant level
of forcing was required in order to produce subharmonics. In the limit cycle case,
non-annual cycles occurred for low levels of forcing, such as the parameter region
giving quasi-periodic solutions and the Arnol’d tongues which touch the ε = 0 axis
(Fig. 3b). However, in reality most of the tongues are so thin near the axis that the
solutions are hard to distinguish from quasi-periodic behaviour unless the amplitude
of forcing is increased. Also of note is that in the oscillatory decay regime, multi-year
cycles occur for higher values of r0 compared to the limit cycle case. The robustness
of this result to changes in other model parameters is a natural area for future work.

123



1762 R. A. Taylor et al.

There are many examples where multi-year cycles occur in natural populations,
especially in insect, plankton and small mammal systems (Kendall et al. 1999; Turchin
2003). Daphnia pulex and its algal prey Chlamydonomas reinhardii is one system
where the behaviour is cyclic (Nisbet et al. 1991; McCauley et al. 1999; McCauley
and Murdoch 1987) and where seasonal forcing has been implicated as an important
driver of the dynamical behaviour (Scheffer et al. 1997). Moreover, this predator–
prey interaction has been studied and parameterised in detail (Nisbet et al. 1991).
Therefore it makes a natural test system for further study with the growth rate of the
algae forced by changing light conditions in a similar manner to the fish-plankton
model of Doveri et al. (1993). Many small mammal systems also show multi-year
cycles (Turchin 2003). A number of different mechanisms have been proposed as the
cause of this cyclic behaviour, but for the well-studied case of Fennoscandian voles,
predator-exclusion experiments have shown that the multi-year cycles in the northern
areas depend fundamentally on predation (Korpimaki and Norrdahl 1998; Korpimaki
et al. 2002; Hanski et al. 2001). At these northern latitudes, which have a higher degree
of seasonality in the environment, vole abundance fluctuates with period 3–5 years
(Turchin 2003; Hanski et al. 2001). As one moves further south, there is a switch
to annual fluctuations (Hanski et al. 2001) attributed to a change in predation from
specialist predators (weasels) to generalist predators (e.g. birds, foxes) (Hanski et al.
1993; Turchin and Hanski 1997). The methods described in this manuscript could
be extended to consider the relative effects of specialist and generalist predation in
conjunction with the impact of seasonality to determine the influence of changes in
the degree of seasonality on population behaviour.

Many extensions of this work could be undertaken to enhance biological realism and
to further our understanding of the effects of seasonal forcing, including forcing more
than one parameter, in particular with different phases and forcing strengths (Rinaldi
and Muratori 1993; Greenman and Pasour 2011). Moreover, adaptations could be
made to the forcing term in order to add more realism into the model. Instead of a
sinusoidal term, step functions have been used to represent a defined breeding season
although this tends to yield similar results (Ireland et al. 2004). Other possibilities
could be to alter the sinusoidal term to consider different breeding season lengths
or to consider chaotic forcing (Greenman and Norman 2007; Colombo et al. 2008).
Furthermore, this approach could be applied to a wide range of biological systems
including tritrophic food chains (Kuznetsov et al. 2001), disease systems (Kuznetsov
and Piccardi 1994; Earn et al. 2000; Greenman et al. 2004) and invading populations
(Webb and Sherratt 2004; Greenman and Norman 2007).

These, and other population systems, highlight the importance of studying seasonal
forcing in systems with cyclic dynamics. Cyclic predator–prey systems in the real
world require careful analysis to determine the origin of those cycles, and this analysis
must recognise that these cycles could be highly dependent on the seasonality inherent
in their environment.
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