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Abstract. Although the exact details are disputed, it is well established that propagating waves
of increased intracellular free Ca2+ concentration arise from a positive feedback or autocatalytic
mechanism whereby Ca2+ stimulates its own release. Most previous modeling of the propagation
of Ca2+ waves has assumed that the sites of autocatalytic Ca2+ release, the activation sites, are
homogeneously distributed through the cytoplasm. We investigate how the spacing and size of the
activation sites affect the existence and speed of propagating calcium waves. We first study the
simplest model of an excitable system to obtain analytic estimates of the critical spacing. We then
derive analytic expressions for the speed of the advancing wave front in the self-oscillatory case and
compare them to numerical results. The theoretical results are illustrated by computed solutions of
two similar models for calcium wave propagation.
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1. Introduction. Traveling waves of increased intracellular free calcium concen-
tration have been observed in a wide variety of cell types [3, 20, 21]. Since Ca2+ is an
important intracellular second messenger it is likely that a propagating calcium wave,
moving through an individual cell or across a group of cells, serves to coordinate the
response of an entire cell, or group of cells, to a local event.

There is thus a great deal of interest in the mechanisms that underlie the prop-
agation of these intracellular and intercellular Ca2+ waves, and a number of models
have been proposed [27, 28]. Although the models differ in some respects, most have
one property in common; they assume that the wave is propagating through a homo-
geneous medium. For instance, a recent model for Ca2+ wave propagation in Xenopus
oocytes [2] is based on the assumption that the wave is propagated by the diffusion of
Ca2+ between inositol 1,4,5-trisphosphate (IP3) receptors located on the endoplasmic
reticulum (ER). Agonist stimulation of the oocyte results in the production of IP3
which binds to the IP3 receptors and releases Ca2+ from the ER. However, the IP3
receptors are modulated by the cytoplasmic Ca2+ concentration in a complex man-
ner; Ca2+ activates the receptor on a fast time scale but inactivates the receptor on a
slower time scale. The interaction of the positive and negative feedback on the recep-
tor can result in Ca2+ oscillations and traveling waves. Although it is well known that
IP3 receptors are not distributed uniformly and continuously through the ER, this
fact is ignored in the model, which considers the IP3 receptors as “smeared out” in
space. In many situations this common assumption will not cause significant errors.
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If the receptors are dense compared with the size of the domain under consideration
then the continuum approximation is valid. Unfortunately, it is not so clear that this
approximation is always valid in the modeling of Ca2+ waves.

Thus, it is important to determine how the spacing of receptors (or groups of
receptors) affects the existence and speed of traveling waves. The question is compli-
cated by the existence of different types of waves, depending on the concentration of
IP3. When [IP3] is low, the resting Ca2+ concentration is low also, and Ca2+ waves
will not propagate through the cytoplasm. We call this the nonexcitable regime.
However, when [IP3] is larger, the cell enters the self-oscillatory regime, as positive
feedback mechanisms (whether via Ca2+ modulation of the IP3 receptor or by some
other mechanism) make the steady state unstable, resulting in oscillations in the Ca2+

concentration and repetitive wave activity. In the self-oscillatory regime, one can ob-
serve spiral waves, multiple target patterns, and traveling wave trains. This is typical
behavior of a system which has a stable periodic solution. Between the nonexcitable
and self-oscillatory regimes is the excitable regime. In this regime a single pulse of
Ca2+ or IP3 can initiate a single traveling wave of Ca2+. The wave activity is not
repetitive. In summary, as [IP3] is increased, the cell moves from a nonexcitable state,
to an excitable state, to a self-oscillatory state. This is behavior typical of so-called
excitable systems such as the Fitzhugh–Nagumo model or the Hodgkin–Huxley model
for the propagation of an action potential in an axon [6, 7].

Because waves in the excitable regime are rather different from waves in the self-
oscillatory regime, we present an analysis for both types of waves. The first part of
the paper studies waves in the excitable regime. We start by considering the simplest
possible model for wave propagation in an excitable system. Although of limited
biological applicability, the model lends insight into the behavior of more complex
models. We then study the behavior of isolated waves in a more general reaction-
diffusion model. The second part is concerned with waves in the self-oscillatory region.
At each stage, we apply our results to models of Ca2+ wave propagation.

Previously, Dupont and Goldbeter [5] and Mironov [15] performed numerical stud-
ies on the effects of discrete receptor spacing on wave propagation. Here, we concen-
trate on analytical results that are applicable to a wide range of models of Ca2+ wave
propagation. A number of other authors have treated the problem of wave block
in excitable systems (see, for instance, [10, 12, 18]), but mostly these have studied
wave block by a change in geometry rather than by inhomogeneities in the excitable
medium. Some analytic results for varying or periodic diffusion coefficients are given
in [9, 30].

2. Waves in the excitable regime.

2.1. The simplest model. The simplest model for wave propagation in an
excitable system is [14]

ut = Duxx + f(u),(1)

where

f(u) =
{
−u, 0 ≤ u ≤ α,
1− u, α < u ≤ 1.(2)

The variable u is usually taken as denoting the concentration of the species (U say)
that is propagating the wave. This simple model (the piecewise linear Fitzhugh–
Nagumo model) has been widely studied and it is well known that it has a traveling
wave solution of the form shown in Fig. 1 [19]. Note that the reaction term, f(u), has
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FIG. 1. Schematic diagram of the form of the traveling wave in the piecewise linear Fitzhugh–
Nagumo equation.

a discontinuity at x = α; if u > α the reaction term will drive u toward 1, while if
u < α the reaction term will drive u to 0. Thus, α acts as a threshold. Throughout
most of this paper we shall scale the space variable, x, by

√
D so that D no longer

appears explicitly.
In this model, excitability arises due to the properties of the reaction term, f , and

it is generally assumed that f is given by (2) along the entire x-axis. This is equivalent
to assuming that the reaction terms that lead to the release of U are homogeneously
distributed. However, in many biological situations this may not be the case. Regions
where f is given by (2) (active regions) may be separated by regions where there is
no release of U or the kinetics are different (passive regions, or gaps).

2.2. Wave propagation across a gap. To investigate how a wave will prop-
agate across a passive region, we set f = 0 on the interval [L,L + w], as shown in
Fig. 2. This interval where the wave is not being actively propagated shall be called
the gap. The x-axis is thus divided into three regions: region I, (−∞, L); region II,
[L,L+ w]; and region III, (L+ w,∞).

A traveling wave propagating along the x-axis from left to right will cross the
gap (and continue to +∞) if and only if, at steady state, u(L + w) > α (cf. Fig.
2). This is because α is the point of discontinuity (i.e., the threshold) of the reaction
term. As soon as u gets above α at the right edge of the gap, f(u) will be positive
there, initiating an autocatalytic release of u that will initiate wave propagation on
the right-hand side of the gap.

Let uI , uII , and uIII denote the solutions to (1) in regions I, II, and III, respec-
tively. The steady state equations are

u′′I = −(1− uI),(3)
u′′II = 0,(4)
u′′III = uIII ,(5)

and thus

uI = Aex + 1,(6)



76 JAMES SNEYD AND JONATHAN SHERRATT

x

u

Region II
passive

Region III
active

Region I
active

u'' + f(u) = 0 u'' + f(u) = 0u'' = 0

b

α

L L+w

gap

FIG. 2. Illustration of active and passive regions. An active region is where the reaction term,
f(u), is nonzero, while a passive region is where f = 0. Thus, u can move across the gap by passive
diffusion only.

uII = Cx+D,(7)
uIII = Ee−x,(8)

where we have used boundedness at ±∞ and where A, C, D, and E are constants
to be determined. Constraining the steady state solution to be continuous with a
continuous derivative at L and L+ w gives the constraint equations

AeL + 1 = CL+D,(9)
C(L+ w) +D = Ee−(L+w),(10)

AeL = C,(11)
C = −Ee−(L+w).(12)

Recalling that u(L + w) = α defines the critical gap width, we can then solve for w
to get

w =
1
α
− 2.(13)

As expected, the critical gap width is independent of L and is a decreasing function of
α, as one would intuitively expect. As α increases, (1) becomes less excitable, i.e., a
greater stimulus is needed to drive the system above threshold, and hence the critical
gap width will decrease. Note that α must be less than 0.5 in order for a traveling
wave to exist, and therefore the critical gap width is positive. Numerical simulations
of these results are shown in Fig. 3.

2.3. A more general model. Now suppose that the wave is governed by the
equation

ut = uxx + f(u),(14)
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FIG. 3. Numerical solutions to (1), with α = 0.2. The critical width is thus 3. (A) When the
gap is small enough the wave slows down at the gap, but eventually crosses it. (B) When the gap is
wider than the critical width, the wave is not able to cross the gap. The steady solution in the gap
is then just a straight line connecting the solutions on either side of the gap.

where f(u) takes the general nonlinear form shown in Fig. 4(A). Equation (14) has
two stable steady states at u = 0 and u = u1, and, as before, the saddle point at
u = α acts as a threshold.

Set up the domain as before, with a gap (i.e., f = 0) on the interval [L,L + w]
and active kinetics on (−∞, L) and (L+w,∞). At steady state u′′ = −f(u) and thus

1
2
d

dx
(u′)2 =

d

dx
G(u),(15)

where

G(u) = −
∫ u

u0

f(v) dv.(16)
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FIG. 4. (A) Nullcline (du/dt = 0) of the Li–Rinzel model for [IP3] = µ = 0.3 µM. It is an
N-shaped curve typical of excitable systems. (B) The function G(u) calculated from (16) for the
same parameter values as (A).

A sketch of G is given in Fig. 4(B). It follows that for any x0 and x1,

1
2

(u′)2|x=x1
x=x0

= G(u)|x=x1
x=x0

.(17)

Let x0 = −∞ and x1 = x < L to get

1
2

(u′)2 = G(u)−G(u1),(18)

where we have used the fact that, behind the wave front, u = u1. Note that u > α on
(−∞, L). Similarly, on (L+ w,∞) we have

1
2

(u′)2 = G(u)−G(u0) = G(u),(19)

where we use the fact that, in front of the wave, u = u0.



CALCIUM WAVES IN INHOMOGENEOUS MEDIUM 79

On the interval [L,L + w], a steady state solution for u must be a straight line,
and thus matching the slopes of u at L and L+ w gives

1
2

(
u(L)− u(L+ w)

w

)2

= G[u(L)]−G(u1) = G[u(L+ w)] .(20)

This equation has a solution for values of u(L+ w) either side of the threshold value
α. However, we expect intuitively that the steady state can only be stable when
u(L + w) < α, and this is confirmed by numerical simulation. Thus the critical gap
width above which the wave cannot propagate is given by u(L+w) = α; substituting
this into (20) and eliminating u(L) gives an equation for w with a unique solution.

2.3.1. Inclusion of degradation in the gap. In many situations the wave
variable, u, does not simply diffuse across the gap but is degraded or removed as
well. For instance, the regions of active kinetics could refer to regions where there are
many IP3 receptors, but in between these regions Ca2+ does not simply diffuse but is
pumped back into the ER. Therefore, a more realistic model could include the effect
of the removal of u in the gap.

We make the simplest assumption that the removal of u in the gap is a first-order
process, i.e.,

ut = uxx − δ2u,(21)

and, thus, in the gap

u′′ = δ2u(22)

at steady state for some constant δ. A similar analysis to the above shows that the
critical gap width, w, and u(L) are given by

α− u(L) cosh(δw) = −1
δ

sinh(δw)
√

2[G[u(L)]−G(u1)],(23)

α cosh(δw)− u(L) = −1
δ

sinh(δw)
√

2G(α).(24)

2.4. Application to calcium waves. Li and Rinzel [13] have proposed a model
for Ca2+ oscillations based on a reduction of a previous model by DeYoung and
Keizer [4]. The model includes terms that describe the Ca2+ current through the IP3
receptor, modulation of the receptor current by IP3 and Ca2+, leak of Ca2+ out of
the ER, and reuptake of Ca2+ by an ATPase pump. The model equations take the
form

du

dt
= f(u, h;µ),(25)

τh(u;µ)
dh

dt
= h∞(u;µ)− h,(26)

where u denotes [Ca2+] and µ, which denotes [IP3], is treated as a bifurcation param-
eter. The complete model equations, and the parameters we used for computations,
are given in the appendix. The nullcline f(u, h;µ = 0.3) = 0 is graphed in Fig. 4(A),
where for simplicity the steady state has been shifted to the origin. It is an N-shaped
curve typical of models of excitable systems. Assuming h to be a slow variable and
incorporation of Ca2+ diffusion in one space dimension give

ut = Dcuxx + f(u, h0;µ),(27)



80 JAMES SNEYD AND JONATHAN SHERRATT

350

300

250

200

150

100

50

cr
it

ic
al

 g
ap

 w
id

th
 (

µm
)

0.320.310.300.290.280.27

[IP3] (µM)

FIG. 5. Critical gap width as a function of [IP3] for the Li–Rinzel model [13]. As [IP3] increases,
the critical width becomes large since the threshold, α, is decreasing to zero, but the time taken for
the wave to cross the gap also tends to infinity (computations not shown).

where Dc is the diffusion coefficient of Ca2+ and h0 is the steady state of h. Note that
since h is a slow variable, h is constant over the wave front. We implicitly assume that
Ca2+ buffers may be approximated by an apparent diffusion coefficient, an assumption
which has many dangers [26, 29], but a full discussion of the complications caused by
buffers is outside the scope of this paper. G(u), defined by (16), is plotted in Fig. 4(B).
In Fig. 5 we plot the critical width as a function of µ. We used Dc = 25 µm2s−1,
a value obtained experimentally in Xenopus cytoplasm [1]. In general, since the
diffusion coefficient merely sets the length scale, it is sufficient to calculate the critical
width for the case Dc = 1 and then rescale appropriately. The critical width has
a very sensitive dependence on [IP3] and is less than 20 µm for low IP3. This is
consistent with the results of Parker and Yao [17], who observed punctate release of
Ca2+ from isolated “hot spots” in Xenopus at concentrations of IP3 that were too low
to initiate propagating waves. Nevertheless, the quantitative model predictions should
be treated with caution, as the calculation of the critical width does not take receptor
inactivation into account. Relaxing the assumption that h is a slow variable will give
more accurate predictions, but as yet we have not been able to do this analytically.

3. Waves in the self-oscillatory regime. Consider the reaction-diffusion sys-
tem

ut = uxx +M(x)f(u, v),(28)
vt = M(x)g(u, v).(29)

We assume the medium is inhomogeneous and thus the reaction terms f and g are
modulated by M(x). In order to make the problem tractable, we shall assume that
M is periodic and piecewise constant and divides the spatial domain into alternating
active and passive regions (Fig. 6). Each active region is of width L1, and each
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FIG. 6. Schematic diagram of the function M(x) which controls the spatial inhomogeneity in
(28) and (29). M divides the spatial domain into alternating active and passive regions. Usually, we
shall assume that M = 0 in the passive regions (i.e., that b1, . . . , b4 = 0), but that is not necessary
for the analysis.

passive region is of width L2. We wish to investigate how the existence and speed of
propagating waves depend on L1 and L2. Our analysis is similar to that of Shigesada,
Kawasaki, and Teramoto [25], who studied the propagation of waves in the Fisher
equation in an inhomogeneous medium. We assume that (28) and (29) have a unique,
spatially homogeneous steady state (u0, v0). We assume further that, in the absence
of diffusion, the steady state is unstable via growing oscillations and that a stable
limit cycle exists. Although this may seem unduly restrictive, it is the case in the
application of interest to us here. Typically, in models of Ca2+ wave propagation, the
space-independent model equations become unstable via a Hopf bifurcation, and the
above conditions are satisfied. The analysis in the more general case is similar to that
given here and is omitted.

3.1. Stability of the steady state. Linearizing (28) and (29) about the steady
state, which we may assume to be the origin without loss of generality, gives the linear
system

ut = uxx +M(x)(fuu+ fvv),(30)
vt = M(x)(guu+ gvv),(31)

where the partial derivatives of f and g are evaluated at (u, v) = (0, 0). Usually,
stability is determined by looking for solutions of the form exp(λt + iωx) and then
determining λ as a function of ω (the dispersion curve). However, here we have the
added complication of the spatial periodicity in addition to the periodicity of exp(iωx).
In other words, we wish to consider the stability of the spatially periodic system to
perturbations of all wave numbers. Hence, we look for solutions of the form

u = φ(x)eλt+iωx,(32)
v = θ(x)eλt+iωx,(33)

where φ and θ are periodic and λ and ω are real, which gives

φ′′+2iωφ′−
{
λ2 + λ(ω2 −Mfu −Mgv) +M2(fugv − fvgu)−Mgvω

2

(λ−Mgv)

}
φ = 0.

(34)
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Let

M(x)
(
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gu gv

)
=


(
a1 a2
a3 a4

)
, active region,(

b1 b2
b3 b4

)
, passive region,

(35)

where a1, . . . , a4 and b1, . . . , b4 are constants. Then, the condition for the existence
of a C1 periodic solution of (34) is

α2 + β2

2αβ
sinh(αL1) sinh(βL2) + cosh(αL1) cosh(βL2) = cos[ω(L1 + L2)],(36)

where

α =

√
λ2 − λ(a1 + a4) + (a1a4 − a2a3)

(λ− a4)
,(37)

β =

√
λ2 − λ(b1 + b4) + (b1b4 − b2b3)

(λ− b4)
.(38)

For a fixed L1 and L2, (36) defines λ as a function of ω. The maximum of
λ(ω) defines the fastest growing mode; if λ > 0 at this maximum, the steady state
is unstable, while if λ < 0 at the maximum, the steady state is stable. Thus, in
principle it is possible to calculate the boundary between stability and instability for
a particular model. In the application to Ca2+ waves we are most interested in the
case when L1 and L2 are small, as in general they are both considerably smaller than
the diffusion coefficient of Ca2+. So, let L1 = εL̃1, L2 = εL̃2, where ε� 1. Then, to
leading order in ε, (36) becomes

1
2

(α2 + β2)L̃1L̃2 +
1
2
α2L̃2

1 +
1
2
β2L̃2

2 = −ω
2

2
(L̃1 + L̃2)2(39)

and thus

α2L̃1 + β2L̃2 = −ω2(L̃1 + L̃2).(40)

Substituting in the expressions for α and β and assuming for convenience that b1, . . . , b4
are zero give

(L̃1+L̃2)λ2−{(a1+a4)L̃1+a4L̃2−ω2(L̃1+L̃2)}λ+L̃1(a1a4−a2a3)−ω2a4(L̃1+L̃2) = 0.
(41)
In order for the solutions to this equation to have negative real part for all ω, we must
have that

L̃1(a1 + a4) + a4L̃2 < 0(42)

and thus

L̃1 <
−a4

a1 + a4
L̃2.(43)

Since a1 + a4 > 0 (because by assumption the homogeneous steady state is unstable
via growing oscillations), this requires a4 < 0, which is the case for the models of
Ca2+ waves we discuss here.

When L2 = 0, (36) reduces to

λ2 + λ(ω2 − a1 − a4) + a1a4 − a2a3 − a4ω
2 = 0,(44)

which is the usual dispersion equation for a homogeneous domain.
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FIG. 7. The boundary between instability and stability in L1, L2 space calculated from (43) for
the Atri et al. model [2]. The boundary is shown for three different values of µ corresponding to three
different values of [IP3]. As explained in the text, the slope of the boundary line is not a monotonic
function of µ. This stability boundary has been confirmed numerically (computations not shown).

3.2. Another model for calcium waves. We shall illustrate the results on
periodic plane waves with the model of Atri et al. [2]. The model equations have the
same form as those of Li and Rinzel, but the functional forms of f and h∞ are different.
Thus, the model is easily written in the form of (28) and (29), with v replacing h and
g replacing (h∞ − h)/τh. Again, the full equations and parameters are given in the
appendix. As µ increases, the model (often but not always) exhibits oscillations
via a Hopf bifurcation, and as µ increases still further, the oscillations disappear
again via another Hopf bifurcation. In general, between the two Hopf bifurcations,
the steady state of the temporal equations is unstable via growing oscillations. In
Fig. 7 we show a number of lines of the form L1 = −a4L2/(a1 + a4) for different
values of µ (corresponding to different values of [IP3]), each line giving the boundary
between instability and stability. Note that the slope of the boundary line is not a
monotonic function of µ: since −a4/(a1 + a4) −→ ∞ at the Hopf bifurcations (i.e.,
when a1 + a4 = 0) it must have a (positive) minimum value. It thus follows that
the boundary line has a maximum slope as µ varies, and thus if L2 is large enough
and for a fixed value of L1, the steady state will be stable for all values of µ. One
surprising consequence of this is that the model predicts that the addition of further
IP3 can sometimes stabilize an unstable steady state and lead to the disappearance
of waves, even though the underlying steady state is still unstable. This is actually
consistent with experimentally observed waves, where the addition of too much IP3
can eliminate wave activity. Unfortunately, in the experimental situation it is not
easy to tell whether the underlying steady state is stable or not, and therefore this
model prediction will be difficult if not impossible to verify. Numerical solution of the
differential equations confirms this stability boundary when L1 and L2 are small.

3.2.1. Numerical methods. Numerical solutions are obtained in the following
way. First, µ is chosen so that the model has a stable limit cycle. Heaviside initial



84 JAMES SNEYD AND JONATHAN SHERRATT

conditions are used for c. Thus, at t = 0, c on the left portion of the domain (usually
the 10 leftmost spatial grid points) is raised above steady state, initiating oscillations
in the leftmost region of the domain. If stable periodic waves exist, these oscillations
gradually invade the entire domain. However, if the periodic wave is unstable, the
oscillations gradually disappear. By looking at the existence of periodic waves for
different (small) values of L1 and L2, we were able to confirm the predicted stability
boundary. The differential equations were solved using an implicit time-stepping
scheme and central space differences.

3.2.2. Periodic waves and the wave front. It is crucial to note that, in the
numerical solutions, two very different types of waves appear. We distinguish them
by the terms periodic wave and wave front. This is most easily illustrated by reference
to Fig. 12, which shows the situation a short time after t = 0 for the case L2 = 0 and
when Heaviside initial conditions for c were used, as described above. Periodic waves
exist for this value of L2 because the domain is homogeneous with oscillatory kinetics.
The periodic wave can be clearly seen as a series of white bands sloping up from left
to right. These correspond to a periodic wave moving from right to left across the
domain. However, the periodic wave is not the same as the wave front. As time
increases, each successive peak of the periodic wave is initiated from a region that is
moving slowly from left to right. This we call the wave front of the periodic wave;
its approximate position is marked by a line in Fig. 12. When t is large enough, the
wave front will have moved across the entire domain, leaving only the periodic wave
in its wake. Note that the wave front is moving from left to right with a speed that
is much less than that of the periodic wave which is moving in the opposite direction.
The analysis in the present paper is confined to studying the speed of the wave front,
not the speed of the subsequent periodic wave. It is also important to note that the
wave front, which we define as the place where c = 0.05 µM, does not move across
the domain monotonically (cf. Fig. 10). This is caused by the oscillatory nature of
the kinetics. Nevertheless, the average wave front speed may still be defined as the
slope of the best fit line through the wave front.

Extensive numerical simulations with different initial conditions and values of µ
show that the periodic wave can travel with a wide range of speeds in either direction.
In some cases, as in Fig. 12, it starts at the wave front, travels backward across the
domain, and is absorbed by the left-hand boundary. In other cases, the periodic wave
is initiated at the left-hand boundary and travels from left to right until it hits the
wave front and disappears. Sherratt [22, 24, 23] discusses this in detail for periodic
waves in λ− ω systems. A useful interpretation of the wave front speed is the speed
at which a periodic wave can “invade” a domain. However, the actual speed and
direction of the periodic wave can be very different from the speed at which that
periodic wave invades a domain.

3.3. The dispersion curve. The oscillatory nature of the kinetics means that
wave solutions of (28) and (29) are not simple transition waves, as in the excitable
case. Rather, they have the form of a moving wave front with spatiotemporal os-
cillations behind the front (as described above). We focus on the movement of the
leading wave front, which we study using the linearized equations (30) and (31). The
linear analysis will apply to the front of the nonlinear wave and will provide an ap-
proximate estimate for the nonlinear wave front speed. Numerical results confirm
the approximate accuracy of estimates from the linear theory. We first consider the
spatially homogeneous case and use this as a guide to the analysis of the spatially
heterogeneous case.
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We emphasize that in both the homogeneous and the heterogeneous cases, our
analysis is a local one only and therefore applies only to the movement of the wave
front. The speed of the periodic waves behind the wave front cannot be treated by
our methods. In fact, we have as yet been unable to determine the speed of the
periodic waves as a function of L1 and L2. This requires a nonlinear analysis which
is considerably more difficult than that presented here.

3.3.1. Spatially homogeneous case. It is helpful to consider first the slightly
different case where u and v have equal diffusion coefficients, i.e.,

ut = uxx + fuu+ fvv,(45)
vt = vxx + guu+ gvv.(46)

By a change of coordinates these equations can be written in the form

ut = uxx + αu+ ωv,(47)
vt = vxx − ωu+ αv.(48)

Define new coordinates by u = r cos θ, v = r sin θ and convert to r, θ coordinates to
get

rt = rxx − rθ2
x + αr,(49)

θt = θxx + 2
rxθx
r
− ω.(50)

Linearizing about the wave front, where r = θx = 0 [23], gives

rt = rxx + αr.(51)

Since (51) is the same form as the linearization of Fisher’s equation, we merely apply
previous results (see, for example, [8, 11, 16]) to determine the wave front speed. Let
z = x − ct, where c is the wave front speed. Then, looking for solutions of the form
r = exp(−sz) gives cs = s2 + α and thus c = s + α/s. In general, the wave speed
depends on the initial conditions. However, for Heaviside initial conditions of the type
used here the wave travels with the minimum speed. Since this type of initial condition
is the only one used experimentally and is thus the only case of physiological interest,
we do not consider any other initial conditions. Thus the observed wave speed, co, is
given by co = 2

√
α.

Unfortunately, this change of variables does not work if v and u have different
diffusion coefficients. Previous work on λ−ω systems [22, 24, 23] shows that in front
of the wave θ does not go to zero but increases (i.e., oscillates) according to θ = ωt. It
is reasonable to expect that something similar happens here also. This suggests that
the wave front is not only oscillatory in z but also oscillatory in t, which motivates
the following analysis. Let D be the diffusion coefficient of v, i.e.,

ut = uxx + αu+ ωv,(52)
vt = Dvxx − ωu+ αv,(53)

and look for solutions of the form u = Ae−szeiωt v = Be−szeiωt for some real constants
A and B and where s is complex. The solvability condition for A and B turns out to
be

(ξ − σ1)(ξ − σ2) = −ω2,(54)
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where ξ = cs, σ1 = Ds2 + α− iω, and σ2 = s2 + α− iω. Letting s = γ + iδ gives

φ1(c, δ) = 0,(55)
φ2(c, δ) = 0,(56)

where

φ1(c, δ) = (cγ −Dγ2 +Dδ2 − α)(cγ − γ2 + δ2 − α)
− (cδ − 2Dγδ + ω)(cδ − 2γδ + ω) + ω2,(57)

φ2(c, δ) = (cγ −Dγ2 +Dδ2 − α)(cδ − 2γδ + ω)
+ (cγ − γ2 + δ2 − α)(cδ − 2Dγδ + ω).(58)

For fixed γ and D, we can plot the curves φ1 = 0, φ2 = 0 to get curves in the c, δ
plane. The intersections of these curves give c and δ for that value of γ, and then
varying γ gives c and δ as (possibly multivalued) functions of γ. This is illustrated
in Fig. 8. When D = 1, there are at least three solutions for c and δ, but only the
one with δ = 0 is of interest, as it corresponds to the solutions found above. Thus, as
we vary γ, we track only that solution branch. Note that when D = 1 this solution
branch gives c = γ+α/γ, as can be obtained directly from (54). Presumably the other
branches correspond to unstable waves (or waves moving in the opposite direction),
but we have not investigated this.

Although δ increases and c decreases as D decreases from one, Fig. 8 indicates
that they do not change a great deal. Thus motivated, we let D = 1−

∑∞
n=1 ε

n and
look for solutions of the form δ = εδ1 + ε2δ2 +O(ε3), c = γ+α/γ+ εc1 + ε2c2 +O(ε3).
Note that 0 ≤ ε ≤ 0.5 if 0 ≤ D ≤ 1. Substituting into (57) and (58) and equating
coefficients of powers of ε give c1 = c2 = −γ/2, and thus

c = γ +
α

γ
− γ

2
(ε+ ε2) +O(ε3),(59)

≈ γ +
α

γ
− γ

2
(1−D)(3− 2D)

(2−D)2 ,(60)

where we have used ε = (1 − D)/(2 − D). When D = 0, c = 5γ/8 + α/γ. That
(60) is an excellent approximation can be seen from Fig. 9, where we plot the actual
and asymptotic solutions for various Ds in the Atri et al. model. Note that because
of scaling D = 1 in (60) is equivalent to D = Dc in the Atri model (see Appendix).
The curve for D = 0 is in fact a discontinuous combination of two different solu-
tion branches: it is somewhat surprising that this discontinuous combination can be
approximated so well by the theoretical prediction.

It is reasonable to assume that for the Heaviside initial conditions that we use
the observed wave fronts travel at the lowest possible speed, as in Fisher’s equation,
and thus the observed wave front speed, co, is given by

co =

√
2α
(

2− (1−D)(3− 2D)
(2−D)2

)
.(61)

This is confirmed by numerical results from the Atri et al. model, summarized in Fig.
10, where we plot the position of the wave front as a function of time. Oscillations in
the wave front (which is defined as the place where c equals some given value, 0.05
in this case) result in a nonmonotonic progression of the wave across the domain, but
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FIG. 8. Plots of φ1(c, δ) = 0 (solid curve) and φ2(c, δ) = 0 (dashed curve) calculated from
the Atri et al. model for µ = 0.7. For these computations, x was scaled by the square root of the
diffusion coefficient of Ca2+, and hence Dc = 1. Each curve is drawn for fixed values of γ and D,
and, as explained in the text, intersections of the solid and dashed curves give c and δ as multivalued
functions of γ and D. However, only one of those branches appears to correspond to an observed
solution. (A) γ = 0.2, D = 0. (B) γ = 2, D = 0. (C) γ = 0.2, D = 1. (D) γ = 2, D = 1.

the wave speed can be defined most simply as the slope of the best-fit line through
the data points. When D = Dc, co = 2.08 µm/s, compared with the predicted value
of 2.04 µm/s, whereas when D = 0, co = 1.74 µm/s, compared with the predicted
value of 1.61 µm/s.

It is important to note that although the wave front moves across the domain
at a speed given approximately by (61), the periodic waves behind the wave front
move with a different speed and direction. This has been demonstrated analytically
for λ− ω systems [24, 23] and holds true in the general case. The present analysis is
of relevance only for the wave front velocity and is not applicable to the velocity of
the periodic waves behind the wave front.

3.3.2. Spatially heterogeneous case. We shall consider only the case D = 0.
The analysis is similar for nonzero D, only rather more tedious. Motivated by the
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FIG. 9. Wave front speed c as a function of γ in the Atri et al. model, calculated from one
of the intersection branches in Fig. 8. The dotted line is the analytical approximation (60) to the
D = 0 curve. The branch of intersections corresponding to D = 0 is a discontinuous combination
of two different branches. The minimum of these curves is a good approximation to the wave front
speed obtained by numerical solution of the PDE (Fig. 10).
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FIG. 10. Position of the wave front as a function of time from the Atri et al. model when
L2 = 0. The solid curve corresponds to D = Dc, and the dotted curve corresponds to D = 0. The
wave front is defined as the place where c = 0.05 µM, and the wave front speed is defined as the slope
of the best-fit line through the points. The computed wave front speeds agree well with the analytical
predictions (Fig. 9).
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analysis of Shigesada, Kawasaki, and Teramoto [25] and the form of the solution in
the spatially homogeneous case, we look for solutions of the form u = U(z)φ(x)eiωt,
v = V (z)θ(x)eiωt, where φ and θ are periodic and U, V −→ 0 as z −→∞. The reason
for looking for solutions of such a form is not immediately clear. We argue that it is
reasonable to expect the wave front to consist of three parts; first, a profile dependent
on z that determines the overall wave shape (U and V ); second, a spatially periodic
variation caused by the underlying periodicity of the medium (φ and θ); and third,
a temporal periodicity caused by the oscillatory nature of the kinetics (eiωt). We
emphasize that such a solution will apply only to the wave front, not necessarily to
the (nonlinear) periodic waves that occur behind the wave front. Substituting into
(30) and (31) gives(

−cU
′

U
+ iω

)
φ =

(
U ′′

U
φ+

2U ′

U
φ′ + φ′′

)
+Mfuφ+M

V

U
fvθ,(62) (

−cV
′

V
+ iω

)
θ = M

U

V
guφ+Mgvθ.(63)

It follows that U ′/U , U ′′/U , and U/V must all be constant, and hence

U = Ae−sz,(64)
V = BU(65)

for some constants A, B, and s, where s is complex. Solving for φ now gives

φ′′ − 2sφ′ +
(
s2 − (cs+ iω) +Mfu +

M2fvgu
(cs+ iω)−Mgv

)
φ = 0.(66)

The condition for the existence of a periodic solution to (66) is

cosh(s(L1 + L2)) = cosh(q1L1) cosh(q2L2) +
q2
1 + q2

2

2q1q2
sinh(q1L1) sinh(q2L2),(67)

where

q1 =

√
(cs+ iω)2 − 2(cs+ iω)α+ α2 + ω2

(cs+ iω − α)
,(68)

q2 =
√
cs+ iω.(69)

This is the same equation given by Shigesada, Kawasaki, and Teramoto but with
different definitions for q1 and q2. We have implicitly assumed that b1, . . . , b4 =
0 and that in the active region (30) and (31) are written in the form of (52) and
(53). When L2 = 0, c can be determined as a function of γ from (67), giving the
same curve as in Fig. 9 (the D = 0 curve). We mentioned then that this curve is
actually a discontinuous combination of two different branches. As L2 is increased,
this discontinuity becomes more pronounced, as can be seen from Fig. 11, which shows
curves of c versus γ for two different values of L2. The solid curve corresponds to
L1 = 50 µm, L2 = 0.5 µm, while the dotted curve corresponds to the same value for
L1 but with L2 = 2.5 µm. This makes it difficult to predict the exact wave front
speed merely from consideration of the roots of (67). For instance, when L1 = 50
and L2 = 2.5, the dotted curve in Fig. 11 gives the theoretical prediction of c vs.
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FIG. 11. Wave front speed c as a function of g in the Atri et al. model, calculated from (67).
Solid curve: L1 = 50 µm, L2 = 0.5 µm. Dotted curve: L1 = 50 µm, L2 = 2.5 µm. Numerical
solution of the differential equations gives a wave front speed of 1.49 µms−1 in the former case and
1.21 µms−1 in the latter. Thus, the theoretical curves do not seem to give a good prediction of the
observed wave front speeds.

γ. However, numerical solution of the differential equations gives a wave front speed
of 1.21 µm/s, which does not seem to correspond to any particular point on the
theoretical curve.

In Figs. 12–14 we show numerical solutions of the Atri et al. model for three cases:
L1 = 50 µm, L2 = 0, 3, and 5 µm. The other parameters were the same in all the
runs and were chosen so that the model kinetics had a stable limit cycle. At time
t = 0 a square pulse of Ca2+ was introduced into the left 10% of the domain, and
the solution is plotted between 150 and 200 seconds. The advancing wave front can
be clearly seen, and behind the front are periodic plane waves that move away from
the wave front at a speed considerably greater than that of the wave front. As it
propagates across the domain the wave front does not keep a constant shape, but, as
described in Fig. 10, the position of the wave front can still be defined by means of
the best-fit line.

It is interesting to note the way in which the solution changes as L2 is increased.
Clearly, the periodic plane wave behind the wave front is broken into more complex
patterns as L2 increases, with waves in adjacent active regions moving in opposite
directions, and this complexity can result from only relatively small increases in L2.

Appendix.

Equations of the Li–Rinzel model. Details of this model may be found in
[13]. The equations are

∂c

∂t
= Dc

∂2c

∂x2 + c1(h3v1m
3
∞ + v2)(cer − c)−

v3c
2

k2
3 + c2

,
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FIG. 12. Plot of solution to the Atri et al. model for L1 = 50, L2 = 0. The wave front
advances slowly from left to right across the domain, and periodic plane waves, moving in the
opposite direction with greater speed, appear behind it. The numerical procedure is described in the
text. Briefly, at t = 0, u was raised on the 10 leftmost spatial grid points. This initiates oscillatory
waves in the left hand of the domain, and these oscillatory waves gradually spread over the entire
domain, thus creating the wave front.

m∞ =
(

[IP3]
[IP3] + d1

)(
c

c+ d5

)
,

τh
dh

dt
=

Q2

Q2 + c
− h,

Q2 =
d2([IP3] + d1)

[IP3] + d3
,

where c denotes [Ca2+] (for consistency in the text, we denote [Ca2+] by u instead of
c), cer denotes the concentration of Ca2+ in the ER and is given by c1cer + c = c0 and
where h is the fraction of receptors that have not been inactivated by Ca2+. Here,
we used the parameter values from [13], i.e., c0 = 2.0 µM, c1 = 0.185, k3 = 0.1 µM,
v1 = 6 s−1, v2 = 0.11 s−1, v3 = 0.9 µMs−1, d1 = 0.13 µM, d2 = 1.05 µM, d3 =
0.94 µM, d5 = 0.082 µM. All computations were performed with [IP3] = 0.3 µM and
Dc = 25 µm2s−1. As discussed in the text, we use only the nullcline dc/dt = 0, and
thus the details of τh do not concern us.
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FIG. 13. Plot of solution to the Atri et al. model for L1 = 50, L2 = 3. The periodic plane
waves behind the front are perturbed by the passive regions, but the underlying structure is similar
to that seen in Fig. 12.

Equations of the Atri model. Details of this model may be found in [2]. The
equations are

∂c

∂t
= Dc

∂2c

∂x2 + kfluxµh

(
b+

(1− b)
k1 + c

)
− γc

kγ + c
,

τh
dh

dt
=

k2
2

k2
2 + c2

− h,

where c denotes [Ca2+], and h is the fraction of receptors that have not been in-
activated by Ca2+. Parameter values used here are Dc = 25 µm2s−1, b = 0.111,
γ = 2.2 µMs−1, τh = 2 s, k1 = k2 = 0.7 µM, kγ = 0.17 µM, kflux = 8.1 µMs−1. In
general, µ is an increasing function of [IP3] and is treated as a bifurcation parameter;
unless otherwise stated, µ = 0.7.

Some computations were performed assuming that h was free to diffuse. In this
case the model equations are

∂c

∂t
= Dc

∂2c

∂x2 + kfluxµh

(
b+

(1− b)
k1 + c

)
− γc

kγ + c
,

∂h

∂t
= D

∂2h

∂x2 +
1
τh

(
k2

2

k2
2 + c2

− h
)
.
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FIG. 14. Plot of solution to the Atri et al. model for L1 = 50, L2 = 5. The periodic plane
waves behind the front are now broken by the passive regions, and adjacent active regions can exhibit
periodic plane waves moving in opposite directions. When viewed as a function of time only (i.e.,
as an animation) this behavior appears disordered.
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