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Abstract. The lambda-omega class of reaction-diffusion equations has received considerable attention because
they are more amenable to mathematical investigation than other oscillatory reaction-diffusion sys-
tems and include the normal form of any reaction-diffusion system with scalar diffusion close to a
standard supercritical Hopf bifurcation. Despite this, detailed studies of the dynamics predicted
by numerical simulations have mostly been restricted to regions of parameter space in which stable
wavetrains (periodic traveling waves) are selected by the initial or boundary conditions; we use the
term “stability” to denote spectral stability on the real line. Here we consider the emergent spa-
tiotemporal dynamics on large bounded domains, with Dirichlet conditions at one boundary and
Neumann conditions at the other. Previous studies have established a parameter threshold below
which stable wavetrains are generated by the Dirichlet boundary condition. We use numerical con-
tinuation techniques to analyze the spectral stability of wavetrain solutions, and we identify a second
stability threshold, above which the selected wavetrain is absolutely unstable. In addition, we prove
that the onset of absolute stability always occurs through a complex conjugate pair of branch points
in the absolute spectrum, which greatly simplifies the detection of this threshold. In the parame-
ter region in which the spectra of the selected waves indicate instability but absolute stability, our
numerical simulations predict so-called “source-sink” dynamics: bands of visibly regular periodic
traveling waves that are separated by localized defects. Beyond the absolute stability threshold our
simulations predict irregular spatiotemporal behavior.

Key words. AUTO, parabolic partial differential equations, complex Ginzburg–Landau equation, absolute
spectrum, plane waves
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1. Introduction. A wide range of physical and natural systems exhibit dynamics that
are the result of local interactions between their components and of diffusive dispersal. The
dynamics of such systems are often studied mathematically using reaction-diffusion equations.
An important subset of such equations are those in which the local interactions between the
components of the system lead to cyclic dynamics, so that the reaction kinetics have a stable
limit cycle. Such oscillatory reaction-diffusion systems have been used effectively as models
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ABSOLUTE STABILITY OF WAVETRAINS 1137

for many phenomena (see [26] for a review). Oscillatory reaction-diffusion equations can
generate a wide range of spatiotemporal dynamics, including target patterns, spiral and scroll
waves, localized breathers, and spatiotemporal irregularities (see [14, 58, 35] for reviews of
these phenomena). From an applied perspective, studies of such equations center around
understanding the predicted dynamics and interpreting their implications for the physical,
chemical, or biological systems concerned. A key issue for this is the stability of spatiotemporal
solutions. The building block for all such solutions is one-dimensional wavetrains, and their
spectral stability on unbounded and large bounded domains (see [35] for a review) is the focus
of this paper.

Over the last decade, significant new mathematical insights have been gained into the
stability of solutions of reaction-diffusion equations. In particular, it is now clear that the
understanding of spatiotemporal behavior is helped by considering various different types of
(in)stability and by distinguishing stability on the real line and on large periodic domains
from stability on large bounded domains with separated boundary conditions (see [38] for a
more detailed discussion than that given here). These distinctions are made on the level of the
spectrum of the equations when linearized about a solution, and we call a solution (spectrally)
stable if, on the whole real line, all modes (except the neutral translation mode) decay on the
real line. Classifications of instability distinguish between different spatiotemporal dynamics
of the growing perturbations. On the real line, for “convectively unstable” solutions, pertur-
bations grow while traveling away from the site of the perturbation but decay at the site of
perturbation itself; by contrast, for “absolutely unstable” solutions, perturbations grow at all
points in space, including the site of perturbation. The most widespread application of these
different types of stability has been to problems in fluid dynamics (reviewed by [21, 13]) and
spiral wave break-up (e.g., [2, 39, 59]).

In this paper we study the stability of wavetrain solutions for a particular system of
oscillatory reaction-diffusion equations in one space dimension:

ut = uxx + (1 − r2)u − (ω0 − ω1r
2)v,(1a)

vt = vxx + (1 − r2)v + (ω0 − ω1r
2)u.(1b)

Here u and v are the variables of the system, subscripts t and x denote partial derivatives with
respect to time and space, r = (u2 + v2)1/2, and ω0 and ω1 are constants. For mathematical
simplicity, we will assume that ω0 > ω1 > 0, which ensures that ω0−ω1r

2 �= 0 for any r ∈ [0, 1],
which is an invariant region [6]. Equations (1) are a special case of the complex Ginzburg–
Landau equation (see [1] for a review) and have a wide relevance for oscillatory systems, being
the normal form of an oscillatory reaction-diffusion system with equal diffusivities, when the
kinetics are close to a standard supercritical Hopf bifurcation. They belong to the “lambda-
omega” class of reaction-diffusion equations, introduced by Kopell and Howard [22]. These
authors showed that such equations are much more amenable to mathematical analysis than
most oscillatory reaction-diffusion equations. In particular, they showed that (1) has a one-
parameter family of wavetrain solutions, of the form

u = R cos
[
θ0 ± x

√
1 − R2 +

(
ω0 − ω1R

2
)
t
]
,(2a)

v = R sin
[
θ0 ± x

√
1 − R2 +

(
ω0 − ω1R

2
)
t
]
,(2b)
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where amplitude R (0 ≤ R ≤ 1) parameterizes the family and θ0 is an arbitrary constant.
Moreover, they calculated an exact condition for the stability of the waves, namely,

(3) R > ress =
{

2 + 2ω2
1

3 + 2ω2
1

}1/2

.

Simulation-based studies of oscillatory reaction-diffusion equations have shown that wave-
trains often arise when initial or boundary conditions are inconsistent with spatially uniform
oscillations. Further, the relative simplicity of (1) has enabled such “wave selection” prob-
lems to be studied analytically [44, 42, 18, 41, 50]. One important conclusion in these papers
is that for some parameters, the selected wave is in fact unstable. In such cases, numeri-
cal simulations often show spatiotemporal irregularity as the long-term behavior. However,
no detailed characterization of this behavior has previously been undertaken. Our objective
in this paper is to obtain a deeper understanding of the spatiotemporal behavior arising in
simulations of (1) in the regions of parameter space in which unstable waves are selected.
We will principally focus on wave selection in (1) by Dirichlet boundary conditions at one
edge of a large bounded domain. We have used this wave selection scenario in the past to
investigate the occurrence of wavetrains in ecological systems, where the Dirichlet boundary
condition is analogous to an inhospitable environment at the edge of a habitat (see [47] for
a recent review), and it has also been used to investigate the generation of traveling waves
in oscillatory chemical reactions [3]. Our study here is intended to benefit future research in
these areas by illustrating how the variety of dynamics observed in numerical simulations can
be explained by analyzing the spectral stability of the selected wavetrains. In the discussion
(section 6) we also briefly consider the generation of wavetrains when the spatially uniform
(unstable) steady state u = v = 0 receives a small localized perturbation. This “invasion” sce-
nario has been studied extensively in the context of physical, chemical, and ecological systems
[31, 57, 19, 47, 48].

In our study here we will determine which of the unstable waves are absolutely unstable,
using the numerical continuation approach developed by [33]. We will show that this spectral
information alone gives valuable insights into the spatiotemporal dynamics resulting from so-
lutions of the partial differential equations. We begin (section 2) by describing the results of
numerical simulations of wavetrain generation. We then (section 3) outline the general theory
of absolute stability and prove a new result on the relationship between the original “pinch-
ing condition” for absolute stability [12] and the more recent approach using the absolute
spectrum [38]. We also prove that for the particular case of the lambda-omega system (1),
absolute stability is determined by specific points in the absolute spectrum, known as “branch
points” [38]. In section 4 we develop a systematic approach for the numerical calculation
of the absolute spectrum. This provides an efficient way of identifying parameter thresholds
for absolute stability, and the supplementary online material [49] contains a detailed tutorial
guide and sample code to facilitate the implementation and adaptation of this approach by
others. In section 5 we discuss details of the “source-sink” dynamics that we observe for pa-
rameters such that the boundary condition selects a convectively unstable wavetrain. Finally,
in section 6 we draw conclusions and briefly discuss the dynamics that arise from wavetrain
generation behind invasion fronts.
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Figure 1. Example spatiotemporal dynamics for the reaction-diffusion system (1) with Dirichlet boundary
conditions u = v = 0 at x = 0, and ux = vx = 0 at the right-hand boundary x = 512. In all cases ω0 = 3.0, and
we plot u and the solution amplitude r =

√
u2 + v2. For clarity of presentation, we plot the long-term solution

for r as a function of space x at one time point in (b), and show space-time plots in (a) and (c)–(f). In (a),(b)
we demonstrate the selection of a stable wave (ω1 = 1.0); the inset in (b) shows the behavior close to the x = 0
boundary, with the dotted line indicating the analytically derived solution amplitude rdir given by (4). In (c),(d)
and (e),(f) we show the spatiotemporal dynamics for larger values of ω1 (ω1 = 1.4 and ω1 = 1.8, respectively),
which imply selection of a wavetrain that is unstable in both cases, but convectively unstable in (c),(d) and
absolutely unstable in (e),(f). The equations were solved numerically using a semi-implicit finite difference
method, with the grid spacing set by dividing the domain into 2101 points, and with time step δt = 0.001. Note
that in (c),(d) the exact location of the right-most source and sink can be sensitive to the domain length.

2. Wavetrain generation by a Dirichlet boundary condition. When (1) is solved on
0 < x < L with L large, subject to u = v = 0 at x = 0 and ux = vx = 0 at x = L and with ω1

such that criterion (3) is satisfied, the long-term solution away from the boundaries consists
of a wavetrain (illustrated in Figure 1(a),(b)). (By “long-term” we mean that sufficient time
has elapsed for the initial transient dynamics to have disappeared.) Our requirement that
ω0 > ω1 > 0 implies that these waves travel in the positive x direction; waves moving towards
the boundary do occur for other parameters (see [41] for examples). Sherratt [41] showed that
the amplitude of these waves is

(4) rdir ≡
{

1
2

[
1 +

√
1 +

8
9
ω2

1

]}−1/2

.
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Close to the x = 0 boundary, the solution amplitude drops from this value to zero; specifically
the long-term solution away from x = L is (see [41])

(5) r = rdir tanh
(
x/

√
2
)

.

In the language of the complex Ginzburg–Landau equation, this solution form is a stationary
Nozaki–Bekki hole [27, 29, 4]. One simple application of (4) is to assess the accuracy of
numerical solutions, and throughout this study we will use a numerical discretization that
gives a wave amplitude differing (in stable cases) from (4) by about 0.1%. Note that the space
and (especially) time step required for this depend strongly on ω0 (see Appendix C of [50] for
details).

The criterion (3) of Kopell and Howard [22] implies that the wavetrain with amplitude
rdir is stable (on the real line or in the limit of large L for periodic boundary conditions) if and
only if ω1 < 1.110468. A key focus of our work is to calculate the corresponding condition for
absolute stability, which we will show to be ω1 < 1.576465. In Figure 1(c)–(f), we show typical
numerical simulations for one value of ω1 below this threshold (but above 1.110468) and one
above it. Corresponding movies, which are very helpful in understanding the dynamics, can
be viewed at http://research.microsoft.com/en-us/projects/loptw/, or can be generated by
running the “Lambda-Omega Equations Solver” (which is freely available from the same Web
page).

When a convectively unstable wave is selected, the long-term behavior consists of bands of
periodic waves traveling in opposite directions and separated by apparently stationary defects
(Figure 1(c),(d)). We will discuss this solution form in detail in section 5, showing that the
defects do in fact move over very long time scales. In contrast, for ω1 > 1.576465, so that
an absolutely unstable wave is selected, the solution is irregular in space and time (Figure
1(e),(f)).

3. Absolute stability of wavetrains. To calculate spectral stability of a wavetrain solution
of a reaction-diffusion system we linearize the equations about this solution. In general,
the coefficients of the resulting linear equations are periodic functions of the traveling wave
coordinate. However, lambda-omega equations such as (1) can be converted into amplitude-
phase form, and linearizing about a wavetrain then gives a system with constant coefficients.
From the viewpoint of numerical continuation methods for determining stability, this is a
major simplification (see [33] for a detailed discussion). Substituting u = r cos θ and v = r sin θ
into (1) gives

rt = rxx + r(1 − r2) − rθ2
x,(6a)

θt = θxx + (ω0 − ω1r
2) +

2rxθx

r
,(6b)

with the wavetrain solution (2) being r = R and θ = (ω0 − ω1R
2)t ± x

√
1 − R2 (0 ≤ R ≤ 1).

To leading order, small perturbations r̃(x, t) and θ̃(x, t) of this solution satisfy

r̃t = r̃xx − 2R2r̃ − 2Rθ̃x

√
1 − R2,(7a)

θ̃t = θ̃xx − 2ω1Rr̃ +
2r̃x

√
1 − R2

R
.(7b)

http://research.microsoft.com/en-us/projects/loptw/
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In the standard way, we look for solutions of the form (r̃, θ̃) = (r̄, θ̄)eλt+νx, where r̄ and θ̄ are
constants, giving

λr̄ = ν2r̄ − 2R2r̄ − 2νRθ̄
√

1 − R2,(8a)

λθ̄ = ν2θ̄ − 2ω1Rr̄ +
2νr̄

√
1 − R2

R
.(8b)

This implies the dispersion relation

0 = A(λ, ν) ≡ λ2 − 2λ(ν2 − R2) + ν2(ν2 + 4 − 6R2) − 4ω1νR2
√

1 − R2(9)

= ν4 + 2ν2(2 − 3R2 − λ) − 4ω1νR2
√

1 − R2 + λ(λ + 2R2)

as the condition for nontrivial solutions. Note that A(0, 0) = 0 for all R, reflecting the neutral
stability of the waves to translation. Note also there is no cubic term for ν in this equation,
which is a simplifying feature for the analysis below.

For stability (on the whole real line) we must consider values of λ satisfying A(λ, ν) = 0,
with ν pure imaginary; the set of such λ’s is known as the “essential spectrum,” denoted by
Σess. The condition for stability is that Re(λ) < 0 for all λ in the essential spectrum, except
λ = 0. Kopell and Howard [22] showed that this condition reduces to R > ress (defined in (3)).

To address the distinction between absolute and convective instability, we introduce the
so-called absolute spectrum. To describe this, we return to the dispersion relation A(λ, ν) = 0.
For each λ, this has four roots for ν, which we denote by νi(λ) (i = 1, 2, 3, 4), labeled so that

Re(ν1) ≥ Re(ν2) ≥ Re(ν3) ≥ Re(ν4).

We refer to the label i of νi(λ) in this ordering as the index of the root. The “generalized
absolute spectrum” is the set of λ such that Re(νi) = Re(νi+1) for some i = 1, 2, or 3. The
“absolute spectrum” Σabs is a subset of the generalized absolute spectrum, and for a system
of two coupled reaction-diffusion equations it is the set of λ for which Re(ν2) = Re(ν3) (for
details, see [38] and Corollary 3 below). The complement of the absolute spectrum in the
generalized absolute spectrum, where the index of the repeated roots for ν in our equations
is either 1 or 3, has no direct relevance for the stability of selected wavetrains in numerical
simulations or for the spectrum of the operator. We refer to the proofs in [38] for further
details on this part of the generalized absolute spectrum. We calculate the full generalized
absolute spectrum in this paper because it allows us to systematically compute the absolute
spectrum.

Despite its name, the absolute spectrum is not a spectrum in the sense of solutions to an
eigenvalue problem. However, its relevance for the spectrum on large bounded domains is as
follows. Consider the spectrum ΣL of the linearization of (1) in a (near) wavetrain solution
posed on the domain (−L,L). Then for generic separated linear boundary conditions, Σabs

is the set of accumulation points of ΣL as L → ∞. In particular, instability of the abso-
lute spectrum implies an instability on all sufficiently large domains. Note that for periodic
boundary conditions, the set of accumulation points of ΣL as L → ∞ is the essential spectrum.
Sandstede and Scheel [38] give a full discussion of these ideas.
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Im(λ)

Gabs

Re(λ)

Gess

Re(λ)

Im(λ)

Λ

λ0

(a) (b)

Figure 2. (a) A fictional set Gabs ⊂ C (shaded region). The solid curves are the absolute spectrum Σabs,
the bullets are branch points in ∂Gabs, and the square a branch point in Gabs \∂Gabs. (b) A fictional set Gess ⊂ C

(shaded region) consistent with Gabs in (a). The thick solid curves are the essential spectrum Σess, the thin
solid lines Σabs, and the bullets and square are as in (a). We plot in addition a possible point λ0 and curve Λ
(dotted) for the proof of Lemma 1.

The notions of absolute and convective instabilities were first developed for the whole
real line [12], and in this case only simultaneous roots of A and ∂νA, referred to as branch
points, are meaningful; trivially, these are contained in the generalized absolute spectrum. As
mentioned, an absolute instability means that perturbations lead to pointwise growth, and
this occurs when a branch point of the dispersion relation, with positive real part, satisfies
the so-called pinching condition [12, 11, 9, 8], which is explained below.

We now prove a lemma that makes a connection between the pinching condition and the
absolute spectrum; the result may be well known, but we are not aware of a reference. We
do not attempt to explore the connection in full generality here. Rather, we focus on the
lambda-omega system (1), for which the combination of the lemma and Corollary 3 below
implies that absolute stability is determined by branch points in the absolute spectrum that
satisfy the pinching condition. Let (λ∗, ν∗) be a branch point, with ν±(λ) continuous curves
of solutions to A = 0 with ν±(λ∗) = ν∗. The “pinching” or “collision” condition is satisfied at
(λ∗, ν∗) if, for suitable choices of ν±, it holds that sgn(Re ν±(λ)) = ±1 as Re(λ) → +∞. This
is satisfied if the sign condition holds for values of λ with sufficiently large real part along any
curve of λ values emanating from λ∗. In fact, the real parts of all ν are unbounded, as the real
part of λ tends to infinity (see, for example, Lemma 3.3 in [32]). As defined above, we refer
to solutions with unstable essential spectrum, but stable absolute spectrum, as convectively
unstable; we use the term “absolutely unstable” if the absolute spectrum is unstable.

In preparation, denote by Gabs the connected component of C \ Σabs that contains an
unbounded part of the real axis, and by Gess the connected component of C\Σess that contains
an unbounded part of the real axis (illustrated schematically in Figure 2); these sets are well
defined [38, 39].

Lemma 1.
1. All branch points (λ∗, ν∗) for which λ∗ lies on the boundary ∂Gabs satisfy the pinching
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condition.
2. At all branch points (λ∗, ν∗) satisfying the pinching condition, λ∗ lies in C \ Gabs, so

that Re(λ∗) ≤ maxRe Σabs.
Proof. It is well known that for a system of two coupled reaction-diffusion equations such

as (1) the Morse index i(λ) := #{ν(λ) : Re(ν(λ)) ≥ 0} of any λ ∈ Gess is i(λ) = 2, and that
Gess∩Σabs = ∅ (see, for example, [37]). The idea underlying our proof is to look for changes in
the ordering of the real parts of ν(λ) along a curve Λ in the complex λ plane connecting the
branch point λ∗ to a point λ0 ∈ Gess; see Figure 2(b) for an illustration. From the definition
of Gess, the Morse index i(λ0) is the same for all λ0 in this region. In the following we label
curves with indices denoting the ordering at λ∗: we denote by ν̃j(λ) the continuation of νj(λ∗)
along Λ; i.e., ν̃j is continuous and ν̃j(λ∗) = νj(λ∗). Note that since λ∗ ∈ Σabs and is a branch
point, ν2(λ∗) = ν3(λ∗).

Item 1. Since λ∗ ∈ ∂Gabs we can choose Λ so that Λ∩Σabs = {λ∗}. The pinching condition
fails if and only if sgn(Re(ν̃2(λ0))) = sgn(Re(ν̃3(λ0))), and we suppose this to be the case.
Since i(λ0) = 2 it follows that either Re(ν̃1(λ)) or Re(ν̃4(λ)) has to change sign along Λ, and
we next show that this implies the contradiction Λ ∩ Σabs �= {λ∗}.

Suppose that sgn(Re(ν̃2,3(λ0))) = sgn(Re(ν∗)) = −1. Since i(λ0) = 2 and ν∗ = ν2(λ∗), it
follows that Re(ν̃1(λ0)) > 0. Therefore the νj’s reorder along Λ in a way that gives ν̃1(λ0) =
νj(λ0) for j = 2 or j = 3. Hence there are points λ� ∈ Λ (� = 2, 3) different from λ∗ at which
Re(ν̃1(λ�)) = Re(ν�). Since the ordering changes in increments of one (or simultaneously), one
of these points lies in Σabs, which contradicts Λ ∩ Σabs = {λ∗}. Hence, sgn(Re(ν̃2,3(λ0))) =
sgn(Re(ν∗)) = −1 cannot hold true.

The same argument, now applied to ν̃3(λ), shows that sgn(Re(ν̃2,3(λ0))) = sgn(Re(ν∗)) =
+1 also contradicts the assumption. In the cases sgn(Re(ν2,3(λ0))) = − sgn(Re(ν∗)) the same
argument applies again, with ν̃1(λ) if sgn(Re(ν∗)) = +1 and ν̃3(λ) otherwise.

In conclusion, Re(ν̃2,3(λ0)) must have opposite signs, which is the pinching condition.
Note that λ0 can be chosen so that Re(ν̃2,3(λ0)) �= 0.

Item 2. Note that λ∗ /∈ Gess since all points in Gess have the same Morse index, whereas
the pinching condition requires a change. We choose a curve Λ connecting λ∗ to an arbitrary
point λ0 ∈ Gess and will show that Λ ∩ Σabs �= ∅.

We assume the nontrivial case λ∗ /∈ Σabs so that ν∗ = ν�(λ∗) = ν�+1(λ∗) for � = 1 or � = 3.
The pinching condition implies Re(ν̃�(λ0)) < 0 < Re(ν̃�+1(λ0)) so that either Re(ν̃�(λ)) or
Re(ν̃�+1(λ)) changes sign along Λ. Since i(λ0) = 2 another sign change must also occur; i.e.,
sgn(Re(ν̃k(λ∗))) �= sgn(Re(ν̃k(λ0))) for either k ≡ � + 2 mod 4 or k ≡ � + 3 mod 4. The real
parts of the sign-changing solutions must be the same at least once along Λ. As in item 1, if
there is one crossing, then there is (also) one in Σabs.

3.1. The most unstable points of the absolute spectrum. The dynamics after the onset
of instability of the absolute spectrum depend on the way in which it becomes unstable.
Concerning the distinction between the absolute spectrum and the pinching condition, the
question is whether the absolute spectrum becomes unstable via a branch point. If not, one
has a so-called remnant instability. In such a case, all linear modes decay in a stationary
frame of reference, but there are unstable modes that grow while traveling to either the left
or the right, enabling a perturbation to grow at its original site via repeated reflections off
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the boundaries. We are aware of only one example in which this has been demonstrated
numerically (see Figure 10 of [33]). On the other hand, there do not seem to be any rigorous
results showing that the onset of absolute instability occurs via branch points, except in
trivial cases. The main difficulty lies in the algebraic complications that arise even for rather
simple dispersion relations. In the following we overcome these difficulties for a certain class
of dispersion relations and deduce that the most unstable points in the absolute spectrum for
A are branch points. Specifically, we consider a generalization of A given by d : C

2 → C of
the form

(10) d(λ, ν) = λ2 − 2λ(ν2 − A) + ν4 + Bν2 + Cν

with constants A,B,C ∈ R. The roots λ(ν) of d(λ, ν) = 0 come in the two functions

λ± = ν2 − A ±
√

−ν2(2A + B) − Cν + A2.

Theorem 2. If the absolute spectrum Σabs of d(λ, ν) as in (10) with 2A + B > 0 contains
a branch point (λ∗, ν∗), where Im(λ∗) �= 0, then the following hold:

1. λ∗ is one of the two unique complex conjugate points that have maximal real part within
Σabs.

2. λ∗ ∈ ∂Gabs, and (λ∗, ν∗) satisfies the pinching condition.
3. If additionally C �= 0, then a branch point at the origin cannot lie in the absolute

spectrum but instead has to be in the generalized absolute spectrum with index 1 or 3.
Before proving this result, we point out its significance for our purposes.
Corollary 3. If the absolute spectrum Σabs of a wavetrain (2) of the lambda-omega sys-

tem (1) for 0 < R < 1 and ω1 > 0 contains a branch point (λ∗, ν∗) with Im(λ∗) �= 0, then λ∗
is one of the two unique complex conjugate points that have maximal real part within Σabs.
Such a branch point lies in ∂Gabs and satisfies the pinching condition. Moreover, a branch
point at the origin cannot lie in the absolute spectrum.

Proof. For the dispersion relation of wavetrains in the lambda-omega system (1) we have
A = R2 > 0, B = 4−6R2 so that 2A+B = 4(1−R2) > 0, and C = −4ω1R

2
√

1 − R2 < 0.
The proof of Theorem 2 is based on the following observation.
Lemma 4. For any fixed η ∈ R the real parts of λ±(η + ik) are even functions of k, and

the imaginary parts are odd functions. If 2A + B > 0, then the following hold:
1. Re(λ−(η +ik))+Re(λ+(η +ik)) and Re(λ−(η +ik))−Re(λ+(η +ik)) are both strictly

decreasing in k ≥ 0.
2. For k > 0 it holds that Re(λ−(η+ik)) is strictly decreasing in k, and that Re(λ+(η+ik))

either is strictly decreasing or is strictly increasing on 0 < k < k∗ and strictly decreas-
ing on k > k∗, for some k∗ > 0.

Proof. Since the coefficients of d are real, the real and imaginary parts are respectively
even and odd functions of k. To facilitate a more detailed study, we write D = 2A + B,
z = −ν2D − Cν + A2, and ν = η + ik, giving

L±(k) := Re(λ±(η + ik)) = η2 − k2 − A ±
√

|z| + Re(z)
2

.
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We readily compute

Re(z) = Dk2 − Dη2 − ηC + A2,

Im(z) = −(2ηD + C)k,

and with F = 2η2D2 + 2ηDC + 2DA2 + C2, G = −Dη2 − ηC + A2, we obtain

(11) |z|2 = Re(z)2 + Im(z)2 = D2k4 + Fk2 + G2.

Item 1. F = 2(ηD + C/2)2 + 2DA2 + C2/2 ≥ 0. Hence, for all η we have that |z|2 is
an even function of k and monotone increasing in k ≥ 0, so that |z| has the same properties.
Since Re(z) also has these properties, so does |z| + Re(z) ≥ 0. Finally, since |z| + Re(z) ≥ 0,√

|z| + Re(z) also has these properties.
Item 2. It follows that Re(λ−(η+ik)) is the sum of two even functions of k that are mono-

tone decreasing in k ≥ 0, and therefore it has these properties itself. However, Re(λ+(η +ik))
is the sum of an increasing and a decreasing function, and therefore it requires more careful
investigation. Writing K = k2,

(12)
∂

∂k
L+(k) = 2k

(
−1 +

1
2
√

2
∂|z|/∂K + ∂ Re(z)/∂K√

|z| + Re(z)

)
.

Differentiating again shows that if ∂L+(k)/∂k = 0 at k = k∗ > 0, then

∂2

∂k2
L+(k)

∣∣∣∣
k=k∗

=
k√

2(|z| + Re(z))

[
∂2|z|
∂K2

− 4
]

,

and differentiation of (11) shows that

∂2|z|
∂K2

=
4D2G2 − F 2

4(D4K2 + FK + G2)3/2
.

Moreover, 4D2G2 − F 2 = −(2Dη + C)2(4DA2 + C2) ≤ 0. Therefore at any point k∗ > 0
at which ∂L+/∂k = 0, ∂2L+/∂k2 is strictly negative. Finally, we note that L+ → −∞ as
k → ∞. Therefore L+(k) must have one of the two forms given in item 2.

Proof of Theorem 2. In the following we use the notation of the proof of Lemma 4.
Item 1. We begin by applying Lemma 4 with η = Re(ν∗); due to complex conjugation sym-

metry, we can assume without loss of generality that k ≥ 0. Since the branch point is a double
root of d with respect to ν, either λ∗ = λ+(ν∗) and ∂λ+/∂ν(ν∗) = 0 (⇒ ∂λ+/∂k(ν∗) = 0) or
λ∗ = λ−(ν∗) and ∂λ−/∂ν(ν∗) = 0 (⇒ ∂λ−/∂k(ν∗) = 0). Referring to item 2 of Lemma 4, the
only case that is consistent with this is λ∗ = λ+(ν∗), with λ∗ being nonmonotonic in k, and
with Im(ν∗) = k∗. Since L− − L+ is negative at k = 0 and decays monotonically for k ≥ 0
(item 1 of Lemma 4), we have that Re(λ∗) > max{L−(k) : k ∈ R}.

In conclusion, the branch point lies at the maximal real part of the roots of d(λ, η + ik)
(k ∈ R). We now note that these roots define the essential spectrum in an exponentially
weighted space with weight η. Lemma 3.3, Lemma 4.1, and Remark 1 of [32] together show
that for a wavetrain solution of any reaction-diffusion system in one space dimension, the most
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unstable point of a weighted essential spectrum is at least as unstable as the most unstable
point of the absolute spectrum. Therefore in the present case, the weighted essential spectrum
and the absolute spectrum must coincide at (λ∗, ν∗), which is the most unstable point of each
spectrum.

Item 2. λ∗ ∈ ∂Gabs follows immediately from the proof of item 1. Lemma 1 then implies
that the branch point satisfies the pinching condition.

Item 3. If the origin is a branch point, then

d(0, ν) = ν(ν3 + Bν + C) = 0,

whose solutions are ν = 0 and the three roots of a cubic polynomial. Since this cubic does
not have a quadratic term, the sum of its roots vanishes. Therefore if C �= 0, so that none
of these three roots is zero, the roots must be ν0, ν0, and −2ν0 for some ν0 �= 0. Therefore a
branch point must have index equal to either 1 (ν0 > 0) or 3 (ν0 < 0): its index cannot be 2,
and thus it cannot be part of the absolute spectrum.

4. Numerical calculation of the absolute spectrum.

4.1. Numerical methodology. Rademacher, Sandstede, and Scheel [33] give a detailed
account of the use of numerical continuation to calculate the absolute spectrum; here we
give a summary for the specific case of the lambda-omega equations (1), with further details
provided in the supplementary online material [49]. Alternative approaches to the numerical
calculation of absolute stability (on the real line) are given in [11, 10, 7, 54, 52, 51, 53]. For
any given λ, (8) can be written in matrix form as

D(λ, νk)Uk = 0,(13a)

where D(λ, ν) = Idν2 + Cν + F − λ, Uk =
(

r̄k

θ̄k

)
,(13b)

C =
(

0 −2R
√

1 − R2

2
√

1 − R2/R 0

)
, F =

(
−2R2 0
−2ω1R 0

)
,(13c)

and Id is the 2 × 2 identity matrix. Here ν1, . . . , ν4 are the four roots of the dispersion
relation (9). Taking real and imaginary parts of (13) gives 16 equations to be solved simul-
taneously. Following [33], we perform numerical continuations of solutions of these equations
using the software package auto [16, 15, 17]. Specifically, we continue in λ from known solu-
tion values and monitor the resulting changes in νk. We ensure that the continuations remain
on the generalized absolute spectrum by adding the constraint that two of the values of νk

must have the same real part. Thus, instead of representing the real parts of the two ν values
separately, we use a single auto parameter for their common real part.

Starting solutions are necessary to begin the continuations. To obtain these we utilize
Corollary 3 and the general finding of [33] that for constant coefficient problems all curves of
the generalized absolute spectrum emanate from branch points, with the absolute spectrum
being a connected subset.

Concerning branch points of A, note that ∂νA = 0 means that

(14) λ = ν2 + 2 − 3R2 − ω1R
2
√

1 − R2

ν
.
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To calculate the position of the branch points, we first substitute (14) into the dispersion
relation (9). This gives a fourth order polynomial in ν (which we omit for brevity), zeros of
which give four ν values that are double roots of A.

We then calculate the four λ values associated with these double roots by substituting the
ν values back into (14). (In the supplementary online material [49] we give MATLAB [25]
code that calculates these values numerically.) We can also substitute the λ values associated
with each branch point into (9) and solve for ν to give the other two ν values at any given
branch point. This allows us to classify the nature of the branch points in terms of the index
of the repeated root for ν.

This procedure reveals that for wavetrain solutions of the lambda-omega equations (1),
the branch points are either four real λ values or two real λ’s plus a complex conjugate pair.
Note that Theorem 2 excludes the possibility of two complex conjugate pairs of branch points.
Figure 3 shows these λ’s for the wavetrain selected by the zero Dirichlet boundary condition,
as a function of ω1. As ω1 is increased from zero there are initially four real λ values at the
branch points, and at ω1 ≈ 0.8 two of these become a complex conjugate pair.

Using branch points as starting solutions for the continuations raises a technical difficulty:
auto cannot distinguish the two equal values of νk when performing the first continuation
step from the branch point. Rademacher, Sandstede, and Scheel [33] developed a “desingu-
larization” procedure to overcome this complication. For a branch point at which νj = νj+1,
this involves replacing (13) for k = j + 1 with

(15) [Id(2νj + iη) + C](Uj + iηV) + D(λ, νj)V = 0,

where V is an appropriate vector such that (15) is satisfied, i is the imaginary unit, and
initially η = 0. Continuation can then proceed by starting at the branch point and solving (13)
for the three νk with k �= j + 1 (12 equations) together with (15) (4 equations). We obtain
nontrivial initial values for Uk (k �= j+1) by substituting the appropriate values of νk, λ, ω1, R

into (8a) to give an equation of the form akr̄k + bkθ̄k = 0; we take r̄k = −bk/
√

a2
k + b2

k and
θ̄k = ak/

√
a2

k + b2
k. We do not initially define nontrivial solutions for V; rather, we choose

this vector arbitrarily and leave auto to find appropriate values in the initial continuation
steps. Continuation in λ from initial values at the branch points therefore involves three
stages. The first stage is to perform a continuation in a dummy parameter for a low number
of iterations, while tracking all the other solution parameters, to identify appropriate values
for V. The second stage involves a continuation in η, from η = 0, using the desingularized
equations (15), to obtain the four separate values of νk, two of which will have equal real
parts. This continuation stage can be run for as long as is desired or possible; however, it is
generally more convenient to switch to (13) for longer continuations and continue in Re(λ). In
the supplementary online material [49] we give more details of all these continuation stages,
plus example code and output; we refer the reader to those for more details.

Example output from this procedure is shown in Figure 4. For the case ω1 = 1 used in
Figure 4 (corresponding to the simulations shown in Figure 1(a),(b)), two of the four branch
points are on the real line. Continuations starting from the branch point at Re(λ) ≈ 6 towards
Re(λ) = +∞ show two pairs of νk values with equal real parts (index = 1). This is also true
for continuations from the branch point at Re(λ) ≈ −2 towards Re(λ) = −∞. The other two
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Figure 3. The relationship between ω1 and the real and imaginary parts of λ at the four branch points
associated with the wave selected by zero Dirichlet boundary conditions in (1). Bold lines denote λ values for
which the condition Re(ν2) = Re(ν3) is satisfied, indicating that they are part of the absolute spectrum. At two
of the four branch points, the values of λ are real for all values of ω1 shown here. At the other two branch
points, λ is real for ω1 less than about 0.8 and complex otherwise.

branch points (again for ω1 = 1) are complex conjugate pairs in λ (with Re(λ) ≈ −0.1), and
a continuation towards Re(λ) = −∞ starting from one of these branch points is shown in
Figure 4(b). The four νk values for this continuation split into a pair with equal Re(ν) and
two others with different Re(ν). During the course of the continuation from the branch point,
the Re(νk) values change relative order such that the pair with equal real part has index 2
initially, and this changes to index 3 before changing back again to index 2. As mentioned,
for a constant coefficient case such as this, the absolute spectrum (index 2) is connected [33];
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Figure 4. Example continuation results for three values of ω1. In each graph we plot the real parts of the
four ν values for varying λ. Thick lines indicate two ν values with the same real part, and thin lines are ν values
whose real part is not repeated. The vertical dashed lines indicate the branch points at which continuations were
started; “branch points” are the λ values at which there is a repeated root for ν, and are given by (9) and (14).
Parts (a), (c), and (e) show continuations starting from either of the real λ values at the branch points (λ is
real throughout these continuations), while (b), (d), and (f) show one continuation starting from one of the
complex λ branch points (the imaginary part of λ varies in these continuations).

therefore there must be another part of the spectrum with index 2 associated with the Re(λ)
values in Figure 4(b) that have index 3.

The term “triple point” denotes a point at which three of the values of Re(νk) are equal;
thus the points at which the lines in Figures 4(a) and 4(b) cross are triple points. Rademacher,
Sandstede, and Scheel [33] show that such points are the location of bifurcations of the gen-
eralized absolute spectrum. In the region between the triple points shown in both Figures
4(a) and 4(b), there are three lines of generalized absolute spectrum in the complex λ plane,
one with index 2 for the pair of νk values with equal real part, which lies on the real line
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Figure 5. Essential and absolute spectra for wavetrain solutions selected by zero Dirichlet boundary con-
ditions, with amplitudes given by (4), for different values of ω1. ω1 = 1.0 generates stable waves, ω1 = 1.4
generates essentially unstable but absolutely stable waves, and ω1 = 1.8 generates absolutely unstable waves.
The numerical simulations corresponding to these solutions are shown in Figure 1. The essential spectrum
(green line) was calculated using (9), assuming ν = iγ (γ ∈ R). The absolute spectrum (black line) and gen-
eralized absolute spectra (red and blue lines) were calculated using the techniques described in section 4. The
colors indicate the index of the values of ν with equal real parts (blue = 1, black = 2, red = 3). We also plot
the locations of all four branch points (dots), which we use as starting points for the continuations. For clarity
we use a separate panel on the right of each of the larger panels to indicate the location of the branch point with
the largest Re(λ). This branch point is not in the absolute spectrum and thus has no relevance for determining
the stability of the wavetrain solutions.

(Figure 4(a)), and two others with index 3, of which one is shown in Figure 4(b). Technical
details of how we switched continuation branches at triple points are given in the supplemen-
tary online material [49]. Figures 4(c)–(f) show similar continuations, starting at the branch
points, for two other values of ω1.

4.2. Essential and absolute spectra of selected wavetrains. The data in Figure 4, in
addition to data from the continuations starting at the complex conjugate branch points not
shown in Figure 4, were used to construct the generalized absolute spectra and absolute spectra
shown in Figure 5. We have also added the essential spectrum to these figures. Figure 5 shows
that for all three values of ω1 there are four branch points, two with real λ and two whose λ
values are a complex conjugate pair. For ω1 = 1.0 both the absolute spectrum (black lines
in Figure 5) and the essential spectrum (green lines in Figure 5) are fully contained in the
left-hand complex plane, indicating that the wavetrain is stable. For ω1 = 1.4 the essential
spectrum extends into the right-hand complex plane, but the absolute spectrum does not,
indicating that the wavetrain solution is convectively unstable. Comparison of Figures 5(a)
and 5(b) illustrates that the onset of instability (on the whole real line) occurs through an
“Eckhaus” or “sideband” instability. For ω1 = 1.8 both spectra extend into the right-hand
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half of the complex plane, indicating that the wavetrain is absolutely unstable and that the
onset of absolute instability (again on the whole real line) occurs through a complex conjugate
pair of branch points, as predicted by Corollary 3. We remark that this suggests that on large
domains with separated boundary conditions the onset of instability is of Hopf type, provided
that the boundary conditions give stable “boundary spectrum” [38].

The results shown in Figure 5 are typical for all combinations of ω1 and R that we have
looked at, except that all four λ values associated with the four different branch points are
real in some cases (see Figure 3). Trivially, the absolute spectrum has a maximum real
part for λ and extends to infinity in the left-hand half of the complex plane. Moreover,
as mentioned above, in a constant coefficient case such as this, the absolute spectrum is
connected, and “isolas” cannot exist. It is possible, in general, that part of the absolute
spectrum that is connected to a branch point with Re(λ) < 0 nevertheless crosses into the
right-hand half of the complex plane before curving back across the imaginary axis, leading
to a “remnant” instability on large bounded domains with separated boundary conditions
(see [38] for details and Figure 10 of [33] for an example). Corollary 3 shows that this cannot
occur for (1).

Crucially, the presence of the absolute spectrum in the right-hand half of the complex
plane is always associated with a branch point with Re(λ) > 0. Hence as parameter values are
varied so that the selected wavetrain changes its absolute stability, this occurs via a branch
point crossing the imaginary axis in λ. One simple consequence of this is that numerical
calculation of the full absolute spectrum is not necessary to determine whether or not a given
wavetrain is absolutely stable. Instead, one can simply calculate the positions of the four
branch points in the complex λ plane, and the associated values of ν.

4.3. Thresholds for absolute stability. We calculated the wavetrain amplitude, R, asso-
ciated with a complex conjugate pair of branch points lying on the imaginary axis, for varying
ω1, using continuation in auto. This method gives the general wavetrain amplitude threshold
(R) for the absolute stability of wavetrain solutions to (1) as a function of ω1. To do this we
implemented the numerical methodology described in section 4.1. We used a solution to equa-
tions (13) from a known complex conjugate branch point as a starting point, and performed
a continuation in R (with ω1 constant), labeling the solution at which Re(λ) = 0. We then
performed a second continuation from this labeled solution, fixing Re(λ) = 0 and varying ω1

while tracking R. The resulting absolute stability line is plotted in Figure 6 (the thick solid
line). As ω1 is increased from zero, the critical amplitude at which absolute stability changes
declines initially before then increasing monotonically. This contrasts with the convective sta-
bility threshold (derived from (3)), which increases monotonically as ω1 increases from zero
(the dotted line in Figure 6).

The two general stability thresholds (“Abs” and “Ess”) in Figure 6 allow us to determine
the absolute stability and stability, respectively, for all wavetrain solutions (2) to the lambda-
omega equations. In Figure 6 we overlay plots for the amplitude selected by zero Dirichlet
boundary conditions (“Dirichlet”) using (4) and another wave selection scenario that will be
described in the discussion (“Invasion”). This shows that the stability of wavetrain solutions
selected by each boundary condition changes at critical values of ω1, although the critical
values are different for the two different wave selection scenarios (other than when ω1 = 0).
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Figure 6. The relationship between ω1 and the critical amplitudes of wavetrain solutions to (1), above which
waves are essentially or absolutely unstable (dotted and thick solid lines labeled “Ess” and “Abs,” respectively).
The critical amplitude for essential stability was determined using (9), and that for absolute stability was deter-
mined using numerical continuation, as described in section 4. We also overlay the amplitudes of wavetrains
selected by zero Dirichlet boundary conditions (given by (4) and indicated by a thin solid line labeled “Dirichlet”)
and invasion (the dashed line labeled “Invasion”); the latter is simply a different wavetrain selection scenario
(with selected wavetrain amplitude given by (16)) and is discussed in section 6. The crosses indicate the values
of ω1 used in Figure 1.

Figure 6 also shows that at ω1 = 0 wavetrains cannot be convectively unstable; rather, an
instability is always absolute (due to the additional symmetry).

We used continuation in auto to obtain an accurate estimate for the absolute stability
parameter threshold for waves selected by zero Dirichlet boundary conditions, i.e., R = rdir,
where rdir is given by (4). This is the point at which the thick solid line labeled “Abs” crosses
the thin solid line labeled “Dirichlet” in Figure 6. To obtain our estimate we performed the
same continuations as before but restricting the wavetrain amplitude, R, to be a solution
to (4). We again used one of the complex conjugate branch points as a starting point, but
this time we performed the continuation in ω1, getting auto to indicate the precise value of
ω1 at which Re(λ) = 0. This gave the absolute stability threshold as ω1 < 1.576465, which
corresponds to rdir = 0.846456.

5. Source-sink solutions. When the value of the parameter ω1 implies that zero Dirichlet
boundary conditions select a convectively unstable wave, the solution has the form of bands
of wavetrains with alternating directions of propagation (Figure 1(c),(d)). These bands are
separated by localized defects known as sources and sinks, with the asymptotic wavetrains
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propagating away from sources and towards sinks.1 Sources and sinks have been studied
extensively in the complex Ginzburg–Landau equation; for reviews, see [56, 1, 55]. For a
discussion in the context of general oscillatory reaction-diffusion systems, see [37].

The occurrence of the alternating direction wavetrain bands for values of ω1 for which the
underlying wavetrain is convectively unstable (and thus absolutely stable) provides a clear
illustration of the difference between convective and absolute stability. When the wavetrain is
convectively unstable, perturbations of an appropriate form grow with time, moving through
space as they grow. For the lambda-omega system (1), the perturbations are moving in the
same direction as wave propagation (when ω0 > ω1 > 0). For an infinite (or sufficiently large
finite) expanse of the wavetrain, the perturbation can move and grow without constraint,
destabilizing the solution. However, in the context of a source-sink pattern, the perturbation
is convected as far as the nearest downstream sink, where it is completely absorbed (illustrated
in Figure 7). In contrast, if the wavetrain were absolutely unstable, the perturbation would
grow at the site of initial application, unchecked by any surrounding sources and sinks. The
stability of solution structures composed of finite segments of convectively unstable solutions
has been established in a number of other contexts; see, for example, the work of [40, 28, 34]
on pulses in reaction-diffusion systems. Very recently, Sandstede and Scheel [36] have proved
that, for the type of solution we are describing, stability depends precisely on the absolute
stability of the underlying wavetrain.

Results of Sandstede and Scheel [37, section 6.8] enable a detailed characterization of
the repeating source-sink pattern seen in Figure 1(c),(d). Provided that the width of each
wavetrain band is large (relative to the half life of the decay of the sources and sinks to their
asymptotic wavetrains), the solution form differs only slightly from a repeating pattern of
stationary sources and sinks. Specifically, the difference is O(e−δL) for some δ > 0 as the
source-sink separation L → ∞. The exponentially small differences between the solutions
in simulations such as Figure 1(c),(d) and stationary sources/sinks have one particularly
important implication: the sources and sinks in our solutions move, though at an extremely
slow speed (illustrated in Figure 8).

6. Discussion. Our main focus in this study has been to derive the spectra of wavetrains
in a reaction-diffusion system of “lambda-omega” type, and to assess their utility in predicting
the dynamics emerging in partial differential equation simulations on large bounded domains
with a zero Dirichlet condition at one boundary. Our results indicate that it is possible to
predict the dynamics that emerge in numerical simulations, using the wave selection formula
of [41] in combination with numerical calculation of the stability spectra of the selected wave-
train. This leads us to identify three regions of parameter space with qualitatively different
dynamics: stable wave selection, which has been explained in detail elsewhere; convectively

1The distinction between sources and sinks is actually based on group velocity rather than phase velocity.
These are usually defined in terms of the wavenumber k and temporal frequency Ω(k) of a wavetrain family,
so that the solution is a function of kx − Ω(k)t. Then the phase velocity is Ω(k)/k, while the group velocity
is dΩ(k)/dk. For the lambda-omega system (1), the wavetrain solution (u, v) = R(sin θ, cos θ) with θ ={
(ω0 − ω1R

2)t ± (1 − R2)1/2x
}

therefore has phase velocity ∓(ω0 − ω1R
2)/(1 − R2)1/2 and group velocity

∓2ω1(1−R2)1/2. Hence our assumptions ω0 > ω1 > 0 imply that the phase and group velocities have the same
sign, since R2 ≤ 1. Note, however, that if one were to take ω0 negative with −ω0 > ω1 > 0, the signs would be
opposite, so that waves would propagate towards sinks and away from sources.
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Figure 7. An illustration of the spatiotemporal evolution of a localized perturbation in the case of source-
sink dynamics. We solved (1) on 0 < x < 512 subject to u = v = 0 at x = 0 and ux = vx = 0 at x = 512, up to
time t = 3900. The parameter ω1 = 1.4, so that the resulting wavetrain is convectively unstable, and a pattern
of sources and sinks develops (see Figure 1(c),(d), which use the same parameter values). We then made a
perturbation at one space point, increasing u and v by 0.1 at x = 194.82, and then resumed the simulation up
to t = 4300. The perturbation is convected in the positive x direction as far as the nearest sink, where it is
completely absorbed.

unstable wave selection, in which we obtain bands of wavetrains separated by localized sources
and sinks; and absolutely unstable wave selection, in which we observe irregular spatiotem-
poral dynamics.

Our subdivision of parameter space has important potential applications for predicting the
spatiotemporal dynamics that will be observed in numerical simulations of other oscillatory
reaction-diffusion systems, and in nature. For instance, a topical question for oscillatory
ecological systems is whether or not they exhibit periodic traveling waves [5, 47]. Our results
here suggest that the absolute stability threshold, rather than the stability threshold, may
be more useful in predicting whether periodic traveling waves will be observed in the field.
This is because the relevant ecological data is rarely, if ever, collected at sufficient spatial and
temporal resolution to identify fine details of spatiotemporal dynamics such as source/sink
defects. Furthermore, the usual size of habitats from which data is collected is far smaller
than the domains considered here—a few spatial periods of the wavetrain would be typical.
Our numerical simulations suggest that for such short domains there may be no qualitative
difference between stable and convectively unstable wavetrains.
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Figure 8. An illustration of the very slow spatial movement of the sources and sinks that occurs when the
selected wavetrain is convectively unstable. We plot solution amplitude r using a color scale. The parameter
values and initial and boundary conditions are identical to those used in Figure 1(c),(d). Note the very long
time scale of the plot (compare with the time scales in Figure 1(c)). Readers considering reproducing this figure
should be aware that as a result of this long time scale, the simulation is very expensive in computer time: this
run took 28 days on a Sun V 20z computer with a 2.2Ghz AMD Opteron processor.

On the mathematical side, we have shown rigorously that for (1), an instability of the
absolute spectrum is always due to the crossing of a complex conjugate pair of branch points.
In fact, we have proved this for a broader class of systems, and our approach may be extendable
even further. In addition, we have shown that these branch points are exactly those determined
by the pinching condition. We provide MATLAB code in the supplementary online material
[49] to facilitate others in calculating stability thresholds via these critical branch points.

Our study has been aided by having an exact formula for the amplitude of selected waves
for these particular boundary conditions. It would be interesting to compare these results
with other wave selection scenarios, since one expects that different wave stabilities might
be selected for the same values of ω1. The spatiotemporal dynamics of one other scenario,
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invasion, has been studied in detail [29, 57, 42]. In this case, the boundary conditions are
zero Neumann (ux = vx = 0) at both boundaries, with initial conditions consisting of a small
localized perturbation to the unstable steady state u = v = 0, adjacent to one boundary.
Sherratt [44, 42, 43] showed that such a perturbation induces a propagating invasion front,
which for (1) always has a speed of 2 [57]. A fixed invasion speed is convenient for the purpose
of simulations, as it makes it straightforward to calculate the solution time and domain size
required to generate a given number of wavelengths.

The propagating invasion front selects the member of the periodic traveling wave family (2)
with amplitude

(16) rinv =
{

2
ω2

1

[√
1 + ω2

1 − 1
]}1/2

(see [29, 57, 42]); this is slightly smaller than that selected by a zero Dirichlet boundary
condition. The properties of the spatiotemporal dynamics that emerge behind the invasion
front again depend on the stability of this wavetrain, which can be determined from Figure 6.
The wave is stable for ω1 < 1.0714 and absolutely stable for ω1 < 1.5127.

In Figure 9 we show the spatiotemporal dynamics arising from invasion for three different
values of ω1. In all of our invasion simulations we assume that ux = vx = 0 at both boundaries
of the simulated domain and make an initial perturbation of u = v = 0.1 on 0 ≤ x < 10, with
u = v = 0 elsewhere.

As shown in [42], a wavetrain emerges behind the invasion front when ω1 is such that a
stable member of the wavetrain family is selected by invasion (Figure 9(a),(b)). In this case
the wavetrain travels in the opposite direction from the invasion front. When an unstable
wavetrain is selected, we again see the wavetrain in a band behind the invasion front. However,
this breaks up at a certain distance from the invasion front (Figure 9(c)–(f)). The existence of a
propagating band of unstable waves behind an invasion front has been documented previously
in numerical simulations of models for cyclic predator-prey systems [45, 46, 31, 30, 23, 19, 20,
24]. The wavetrain band becomes narrower as ω1 is increased, and persists as one crosses the
threshold for absolute instability of the wavetrain; the behavior behind the band then changes
from source-sink type (Figure 9(c),(d)) to more disordered dynamics (Figure 9(e),(f)). In a
recent publication we present a method for calculating the dependence of the width of the
wavetrain band on ω1 [48]. However, a more detailed investigation of the way in which the
overall solution changes with ω1 is a natural area for future work.
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Figure 9. Example spatiotemporal dynamics for the lambda-omega equations (1) under an invasion sce-
nario. Simulations started with u = v = 0 throughout the domain except u = v = 0.1 at 0 < x < 10.
We fix ux = vx = 0 at both domain edges throughout the simulations. In all cases we show space-time plots
for u and the solution amplitude r = (u2 + v2)1/2. In (a),(b) we demonstrate the selection of a stable wave
(ω1 = 1.0). Parts (c)–(f) show the spatiotemporal dynamics when the selected wave is convectively unstable
( (c),(d): ω1 = 1.4) and absolutely unstable ( (e),(f): ω1 = 1.8), respectively. In all cases ω0 = 3.0, and we plot
u and the solution amplitude r =

√
u2 + v2. For clarity, we plot the long-term solution for r as a function of

space x at one time point in (b), and show space-time plots in (a) and (c)–(f). We plot the solution across the
whole domain in (a), (b), (d), and (f), but for only part of the domain in (c),(e).
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