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Patterns of Sources and Sinks in the Complex Ginzburg–Landau Equation
with Zero Linear Dispersion∗
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Abstract. The complex Ginzburg–Landau equation with zero linear dispersion occurs in a wide variety of
contexts as the modulation equation near the supercritical onset of a homogeneous oscillation.
The analysis of its coherent structures is therefore of great interest. Its fundamental spatiotemporal
pattern is wavetrains, which are spatially periodic solutions moving with constant speed (also known
as periodic travelling waves and plane waves). In the past decade interfaces separating regions with
different wavetrains have been studied in detail, as they occur both in simulations and in real
experiments. The basic interface types are sources and sinks, distinguished by the signs of the
opposing group velocities of the adjacent wavetrains. In this paper we study existence conditions for
propagating patterns composed of sources and sinks. Our analysis is based on a formal asymptotic
expansion in the limit of large source-sink separation and small speed of propagation. The main
results concern the possible relative locations of sources and sinks in such a pattern. We show
that sources and sinks are to leading order coupled only to their nearest neighbors, and that the
separations of a source from its neighboring sinks, L+ and L− say, satisfy a phase locking condition,
whose leading order form is derived explicitly. Significantly this leading order phase locking condition
is independent of the propagation speed. The solutions of the condition form a discrete infinite
sequence of curves in the L+–L− plane.
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tive stability, pattern formation, λ–ω system, reaction-diffusion, partial differential equations
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1. Introduction. Wavetrains are the fundamental solutions to spatially extended oscilla-
tory systems. (Wavetrains are also referred to as plane waves and as periodic travelling waves
in the literature.) In some contexts, an entire spatial domain is filled with a single wavetrain.
However, in a number of areas of physics and chemistry, experiments reveal wavetrains arising
not as single units spanning the whole domain, but rather as series of thinner bands separated
by sharp interfaces. Most commonly these interfaces are alternating sequences of sources and
sinks, defined by the condition that the group velocities of the two wavetrains are directed
away from or towards the interface, respectively. Experimental systems in which sources and
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sinks have been observed include chemical reactions [37], electrochemical systems [39], heated
wire convection [1, 35, 36], binary fluid convection [26, 24], convection waves generated by
heating at a boundary [7], and the “printer’s instability,” in which the thin gap between two
rotating acentric cylinders is filled with oil [17, 16]. Sources and sinks are believed to play an
important role in the development of spatiotemporal chaos; for example, the repeated creation
and destruction of sources and sinks is a hallmark of “defect chaos” [57, 2, 56].

Sources and sinks have been studied theoretically in a variety of equations, including the
cubic-quintic complex Ginzburg–Landau equation [60, 10], coupled complex Ginzburg–Landau
equations [59, 31], and reaction-diffusion systems [46]. However, it is in the (cubic) complex
Ginzburg–Landau equation (cgle) that the most comprehensive work has been done (see [2]).
In this context, sources are often known as holes because they have the form of a local dip in
amplitude, while sinks are often known as shocks. Nozaki and Bekki [34] showed that the cgle
has a one-parameter family of hole solutions; the family is typically parameterized using the
hole velocity or the amplitude of one of the asymptotic wavetrains. The subsequent literature
on Nozaki–Bekki holes is extensive: for reviews, see Stiller et al. [55], Lega [29], and Aranson
and Kramer [2, section III.B]. From a strict mathematical point of view, Nozaki–Bekki holes
are isolated objects, separating two semi-infinite expanses of wavetrains. In practice, both in
numerical simulations of the cgle and in experiments, one usually sees patterns involving a
series of sources that resemble Nozaki–Bekki holes, separated by sinks. The sources and sinks
can be stationary, can move together as a coherent unit, or can move with different velocities.
Patterns of these types have been very widely reported; for a variety of examples, see Chaté [8].
However, there are almost no results on the possible forms of source-sink patterns. In this
paper, we study these patterns in detail for the case of the cgle with zero linear dispersion:

ut = uxx + (1− r2)u+ c r2v,

vt = vxx + (1− r2)v − c r2u,
(1)

where r = (u2+v2)1/2 and the parameter c > 0 is the coefficient of nonlinear dispersion. Note
that writing A = u+ iv transforms (1) into the more usual cgle form

At = Axx +A− (1 + ic)|A|2A.
These equations are a reaction-diffusion system, of a type often referred to as “λ–ω equations”
(Kopell and Howard [27]). The cgle appears in broad generality as the modulation equation
near the onset of Hopf-type instabilities [2]. The case of zero linear dispersion occurs, for
instance, at a standard supercritical Hopf bifurcation of a homogeneous equilibrium state in a
reaction-diffusion equation with equal diffusivities. We focus on this case because the resulting
mathematical simplifications make it possible to obtain analytic results.

Simulation-based studies of oscillatory reaction-diffusion equations have shown that wave-
trains often arise when initial or boundary conditions are inconsistent with spatially uniform
oscillations [15, 25, 52]. A typical scenario is a Dirichlet boundary condition at one edge of
a large bounded domain, and our work on source-sink patterns began with an investigation
of the solutions of (1) on 0 < x < L with L large, subject to u = v = 0 at x = 0 and
ux = vx = 0 at x = L. The results of this investigation have been presented previously
(Smith, Rademacher, and Sherratt [53]), and we give only a brief summary of the salient
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points. When c is sufficiently small, the long-term solution away from the boundaries consists
of a wavetrain of amplitude

(2) R∗ =
(

1
2

[
1 +

√
1 + 8

9c
2

])−1/2

.

This wavetrain is stable when c < 1.110468 [27] and absolutely stable if c < 1.576465 [53].
(Here and throughout the paper we use the term “(un)stable” to mean (un)stable spectrum
of the linearization about the wavetrain.) When c is above the absolute stability threshold,
the long-term behavior in our simulations is spatiotemporal disorder. However, for c between
the two threshold values, so that the wavetrain of amplitude R∗ is convectively unstable,
one sees bands of the wavetrain solution, separated by sources and sinks; typical examples are
illustrated in Figure 1. Note that stability of the asymptotic wavetrains is not a prerequisite for
stability of source-sink patterns. If the asymptotic wavetrains are convectively unstable, then
any unstable linear mode propagates as it grows (see, for example, Sandstede and Scheel [46]
and the references therein). Such a growing mode therefore travels to the nearest sink, where
it is absorbed; thus the solution as a whole is stable in a suitable function space. This situation
is reminiscent of the stability of pulses in reaction-diffusion systems when the two asymptotic
states are convectively stable (Sandstede and Scheel [48], Nii [33], Romeo and Jones [42]).
However, if the asymptotic wavetrain is absolutely unstable, there is a stationary unstable
linear mode, rendering a source-sink pattern pointwise unstable. We discuss the stability of
source-sink patterns in more detail in section 6.

In an extensive program of numerical simulations of the type shown in Figure 1, we were
struck by the continual repetition (for any given c) of a few relatively small values of the
separation distance between sources and neighboring sinks. Larger separation distances were
not repeated in the same way, but in section 5.2 we show that this is due to numerical inaccu-
racies. The observation of repeated separation distances motivated our study of source-sink
separations, which forms the subject of this paper. We began with a numerical investiga-
tion. Working on a domain of given size, we constructed initial conditions with the form
of a source located at an arbitrary (and controllable) location between two sinks, with the
objective of tracking any movement of the source from its initial location. This simple idea
is in fact rather difficult to implement. One important issue is boundary conditions. We
cannot use periodic boundary conditions either for u and v or for r and θ because these would
immediately impose a constraint on the possible source-sink separations. Therefore we used
instead ux = vx = 0 at both boundaries. This condition is compatible with the center of a
sink, so that we need only specify and track the location of the source in the interior of the
domain. However, ux = vx = 0 is also satisfied by the (stable) spatially uniform oscillation
u = sin(ct), v = cos(ct), and the basic difficulty with the study is that this uniform oscillation
has a very large basin of attraction. This led to the failure of our initial approach, in which we
constructed an initial condition by gluing together an isolated source (which has a known ana-
lytical form; see Newell [32], Nozaki and Bekki [34], Sherratt [51]), an isolated sink (which can
easily be calculated numerically to very high accuracy), and sections of asymptotic wavetrain.
This initial condition is, at least superficially, extremely similar to a coupled sink-source-sink
triple, but it evolves to the spatially uniform oscillation.
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Figure 1. Repeating patterns of sources and sinks predicted by (1), with boundary conditions u = v = 0
at x = 0 and ux = vx = 0 at x = 500. These conditions force a boundary source at x = 0 and a boundary
sink at the right-hand boundary x = 500. The nonlinear dispersion parameter c = 1.45 in (a)–(e), and c = 1.4
in (f) and (g). For these values, the asymptotic wavetrain of the (stationary) boundary source is convectively
unstable (i.e., unstable but absolutely stable), and patterns of sources and sinks develop in the interior of the
domain [53]. Initial conditions for u and v were drawn from uniformly distributed random numbers between
1 and 0. (a) A close-up of a source-sink solution at time t = 1000, where amplitude r = (u2 + v2)1/2. (b) The
spatiotemporal dynamics of u for the same simulation between t = 975 and t = 1000. (c), (e), and (g) The
long-term spatiotemporal dynamics of r, with darker shading indicating smaller r and 0 < r < 1. Thus sources
and sinks appear as black and white lines, respectively. (d) and (f) The solutions for r at the final time points
in (e) and (g), respectively. The simulations in (c) and (e) differ only in the seed that was used to generate
the random initial conditions. The equations were solved numerically using a semi-implicit Crank–Nicolson
method, with δx = 0.2 and δt = 0.001. For c = 1.0, say, the computed (stable) asymptotic wavetrain amplitude
is then accurate to 0.012%.

Instead, we took initial conditions from the results of our Dirichlet boundary condition
simulations. We extracted the portion of one of these solutions between two adjacent sinks.
We then relocated the intermediate source by altering the length of the regions, away from
the source and (boundary) sinks, in which the solution is approximately on the asymptotic
wavetrain. Appropriate phase shifts are required in the various parts of the solution, to ensure
continuity of u and v. When the initial change in source location was small, we found that
the source returned to its original position; however, sufficiently large translations cause the
source to move to a new location (Figure 2).
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Figure 2. Results of numerical experiments on the translation of the source in a sink-source-sink triple.
We extracted such a triple from a numerical solution of (1) subject to zero Dirichlet boundary conditions on a
large domain; solutions of this type are illustrated in Figure 1. The sink-source-sink triple that we chose had
source-sink separations of 13.8 and 86.6. We then relocated the source as described in the main text, giving
triples with source-sink separations of 13.8+n δx and 86.6−n δx, with n = −4,−3, . . . ,+9; here δx = 0.2 is the
spacing of our numerical grid. We used these triples as initial conditions in numerical solutions of (1) subject
to ux = vx = 0 at x = 0 and x = 100.4; these end conditions are compatible with sinks. (a) The time courses of
source location; (b), (c) the spatiotemporal dynamics of r for n = −4 and +4, with darker shading indicating
smaller r ( 0 < r < 1). For −4 ≤ n ≤ 3, the source returns to its original location, but for 4 ≤ n ≤ 9, it moves
to a new location with source-sink separations of 20.0 and 80.4. The equations were solved numerically using
a semi-implicit Crank–Nicolson method, with δx = 0.2 and δt = 0.001. The parameter c = 1.4.

These results suggest that the separation of sources and sinks may be restricted to a
discrete set of possible values. Our goal in the remainder of this paper is to investigate source-
sink separation in detail, and to calculate the possible separation distances. We consider
patterns in which the propagation velocity is small and the separation between each source
and sink is large. Our results apply to leading order as the velocity tends to zero and the
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separations tend to infinity (precise statements are given later). Our key findings from a
formal leading order asymptotic matching are, roughly speaking, as follows:

1. For a single source-sink pair moving with any fixed small velocity, there is a discrete
infinite sequence of possible separations with constant increments, to leading order.

2. For patterns with multiple sources and sinks moving with any fixed small velocity,
the separations L+ and L− between each source and its neighboring sinks are con-
strained to lie on one of a discrete infinite sequence of curves in the L+–L− plane.
The translation between any two consecutive curves in the sequence is the same, and
as L+ (say) → ∞, the asymptotic values of L− tend to the separations in 1.

3. In both 1 and 2, we derive formulae for the possible separations, valid to leading order.
The key feature that generates these behaviors is that, for sinks, the solution amplitude has an
oscillatory decay to its constant value in the asymptotic wavetrain. Since we are considering
small propagation velocities, this is a simple consequence of the asymptotic wavetrain having
a pair of complex spatial eigenvalues; these complex eigenvalues emerge below the onset of
convective instability and are present throughout the unstable regime. The condition that
determines the possible separations L± corresponds to phase matching for this oscillatory
decay.

Our work is distinct from the one previous paper we are aware of that addresses the
general issue of source-sink separations (Popp et al. [40]). Those authors obtain results on the
separation of sources and sinks in the cgle perturbed by a small quintic term. But crucially
their results (which are qualitatively different from ours) apply only when the coefficient of the
quintic term, though small, is large compared to the negative exponential of the separation
(multiplied by a particular scaling factor). Consequently, at large separations, their results
apply fundamentally to the cubic-quintic cgle.

2. Formulation of the problem. It is most convenient to study (1) in terms of amplitude
r and phase θ = tan−1(v/u), which satisfy

rt = rxx − rθ2x + r(1− r2),(3a)

θt = θxx +
2rxθx
r

− c r2.(3b)

The wavetrain family is r = R, θ = θ0 ± √
1−R2 x − cR2t [27]; here θ0 is an arbitrary

constant, and the amplitude R is the most natural parameter for the family, with 0 ≤ R ≤ 1.
The phase velocity of wavetrains is ±cR2/

√
1−R2, and their group velocity is ∓c√1−R2;

since these have opposite signs, wavetrains propagate towards sources and away from sinks.
Note that these directions can be reversed via the gauge invariance of the cgle.

The source-sink patterns that we consider have amplitude r and phase gradient θx changing
with constant shape and (slow) speed (see Figure 1, for example). Therefore the solution
ansatz

(4) r(x, t) = r̂(z), θx(x, t) = ψ̂(z), z = x− st,

is appropriate. Here s is the speed of source/sink movement, which can take either sign or be
zero. Then θ(x, t) =

∫ z=x−st
ψ̂(z)dz + θ̂(t) for some function θ̂(.), and substitution into (3)
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dr/dz^

ψ̂

r̂

Σu

Σ Σu

Σs

SOURCE

SINKs

Figure 3. A schematic illustration of the solution trajectory of (5) corresponding to an isolated source-sink
pair. The green dots denote the asymptotic wavetrains. Their unstable and stable manifolds (Σu and Σs),
and the corresponding flows, are shown in black. The red curve denotes the solution trajectory. Note that this
trajectory is close to a heteroclinic cycle, which is the organizing center for all source-sink patterns. This sketch
can be viewed in parallel with Figure 8 below, which shows numerically calculated profiles of r̂(z) and ψ̂(z) for
an isolated source-sink pair.

gives

d2r̂

dz2
+ s

dr̂

dz
+ r̂

(
1− r̂ 2 − ψ̂ 2

)
= 0,(5a)

dψ̂

dz
+ sψ̂ − cr̂ 2 + 2

ψ̂ dr̂/dz

r̂
=
dθ̂(t)

dt
.(5b)

It follows from (5b) that dθ̂(t)/dt is a constant, independent of z and t, and its value is
henceforth denoted by K. We require that r̂ and ψ̂ approach constant values in between the
sources and sinks: these are the amplitude and phase gradient of the asymptotic wavetrains.
Figure 3 illustrates the solution trajectory of (5) corresponding to an isolated source-sink pair.
Adopting a notational convention that will be continued throughout the paper, we denote by
R+ (respectively, R−) the amplitude of the asymptotic wavetrain to the right (respectively,

left) of a source. The corresponding values of ψ̂ are then ∓(1−R± 2)1/2, and (5) implies that

(6) ∓s (
1−R± 2

)1/2 − cR± 2 = K.

When a source is widely separated from neighboring sink(s), its form is similar to a
Nozaki–Bekki hole [34]. When additionally the propagation velocity is small, it is the (unique)
stationary hole solution that is relevant. This has a particularly simple analytical form:

(7)

(
u
v

)
= R∗ tanh

(
x/

√
2
)(

cos
sin

)[
−cR∗ 2t∓ sign(c)

√
2(1−R∗ 2) log cosh

(
x/

√
2
)]
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

890 J. A. SHERRATT, M. J. SMITH, AND J. D. M. RADEMACHER

where R∗ is given by (2) [32, 34, 51]. Our combined assumptions of large source-sink separa-
tions and slow propagation speed mean that R+ and R− will both be close to R∗. It is the
small size of R±−R∗ that constitutes the formal basis for the perturbation theory calculation
that we will present in section 3. We write

s = εs1 + ε2s2 + · · · ,(8a)

K = K0 + εK1 + ε2K2 + · · · ,(8b)

R± = R∗ + εR±
1 + ε2R±

2 + · · · ,(8c)

where ε � 1. In order for the R±
i ’s to be specified uniquely, a normalization condition is

required, and we set

(9) ε = cR∗ 2
(
2− R+ +R−

R∗

)
,

which gives some algebraic simplification in the subsequent calculations. Then R+
1 + R−

1 =
−1/(cR∗), and R+

i +R−
i = 0 for i ≥ 2. Note that ε can take either sign. The basic objective of

section 3 is to derive the leading order relationship between ε and the source-sink separation.
To leading order, (6) and (8) imply

(10) K0 = −cR∗ 2.

Moreover, (6) has one real root for each of R± when ε is sufficiently small. Substituting (9)
into (6) and equating coefficients of ε implies that K1 = 1 and

(11) s1 = cR∗(R−
1 −R+

1 )/
√

1−R∗ 2.

This proportionality between the propagation speed and the difference in asymptotic wave-
train amplitudes is well known (e.g., Alvarez, van Hecke, and van Saarloos [1], Sherratt [51],
Sandstede and Scheel [46, sections 6.2–6.3]). We emphasize that there is a 1–1 correspondence
between (ε, s1) and (R+

1 , R
−
1 ): inverting (9) and (11) implies

(12) R±
1 = − ε

2 cR∗ ∓ s1
√
1−R∗ 2

2 cR∗ 2 .

3. Analytical investigation of sink-source-sink patterns. Having established the under-
lying parameterization of the problem, we can proceed with our calculation, in which we
regard (5) as a perturbation theory problem in the small parameter ε, treating the source-sink
separations as functions of ε. Throughout, we use ε and s1 as parameters, rather than R±

1 .
Also, we use R∗ rather than c as the physical parameter; the two are equivalent via (2), which
inverts to give

(13) c = 3
√

1−R∗ 2 / (√
2R∗ 2

)
(using our assumption that c > 0). We write

r̂ = r̂0(z) + εr̂1(z) + ε2r̂2(z) + · · · ,(14a)

ψ̂ = ψ̂0(z) + εψ̂1(z) + ε2ψ̂2(z) + · · · .(14b)
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Figure 4. A schematic illustration of the problem set-up. The rescaled coordinate y is related to z = x− st
via y = z/

√
2.

Substituting these expansions into (5); using (6), (8), and (10); and equating terms indepen-
dent of ε gives

d2r̂0
dz2

+ r̂0

(
1− r̂ 20 − ψ̂ 2

0

)
= 0,(15a)

dψ̂0

dz
+ 2

ψ̂0 dr̂0/dz

r̂0
+

(
3√
2

)(
1−R∗ 2)1/2 (

1− r̂ 20
R∗ 2

)
= 0.(15b)

We will consider the behavior on the two sides of a source centered at z = 0, with
neighboring sinks centered at z = ξLξ(ε). Here ξ = ±1 and Lξ > 0 with Lξ(ε) → ∞ as
ε → 0; recall that the asymptotic wavetrain amplitudes are R+ for z > 0 and R− for z < 0.
The problem set-up is illustrated schematically in Figure 4. In the stationary case (s1 = 0),
the solution is the same for ξ = +1 and ξ = −1, but for the moving case (s1 	= 0), this
formulation avoids separate calculations for the cases of a source upstream or downstream of
a sink. To formally specify the location of the origin of z, we impose the condition that r̂ has
a local minimum at z = 0. To leading order, the wavetrain band in between the source and
sink (specifically at 1 � z � Lξ(ε)) has r̂ = R∗ and ψ̂ = −ξ√1−R∗ 2. (Recall that ψ̂ < 0 for
a wavetrain moving in the negative x direction—and thus with positive group velocity—and
vice versa.) Linearizing (15) about this wavetrain solution gives a third order linear ODE
system whose characteristic values are calculated as −ξ√2 and +ξ

(
1± i

√
11− 12R∗ 2)

/
√
2;

note that we are concerned only with values of c for which the (leading order) wavetrain is
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unstable, i.e., c > 1.110468 ⇒ R∗ < 0.903914 (using (2)), so that 11 − 12R∗ 2 > 0. Therefore
the leading order source solution (centered at z = 0) decays towards the asymptotic wavetrain
at a rate that is twice that for the sink (centered at z = ξLξ(ε)). Crucially, this implies that
the dominant interaction between the source and sink is via the effect of the sink solution on
the source, with the reverse interaction being of lower order. Therefore in the remainder of
the calculation we focus on the first order correction to the source, and its matching to the
leading order sink solution.

3.1. Perturbing the source. A detailed study is possible because there is an exact solution
for the leading order (isolated) source (see (7)), namely

r̂0 = ξR∗ tanh y,(16a)

ψ̂0 = −
√

1−R∗ 2 tanh y,(16b)

where R∗ is defined in (2) [32, 34, 51]. Here and henceforth we write y = z/
√
2 for notational

simplicity; note that y takes positive values when ξ = +1 and negative values when ξ = −1.
With these formulae, substituting (14) into (5) (rewritten in terms of y rather than z) and
equating coefficients of ε gives

d2r̂1/dy
2 + ξs1R

∗√2 sech2 y + 2 r̂1
[
1− (1 + 2R∗ 2) tanh2 y

]
+ 4 ξR∗√1−R∗ 2 tanh2 y ψ̂1 = 0,(17a)

R∗ tanh y dψ̂1/dy + 2R∗ sech2 y ψ̂1 − 2 ξ
√

1−R∗ 2 tanh y dr̂1/dy

+ 2 ξ
√

1−R∗ 2(1− 4 tanh2 y)r̂1 − s1
√
2R∗√1−R∗ 2 tanh2 y = R∗√2 tanh y.(17b)

Differentiating (17a) with respect to y enables elimination of ψ̂1, giving a third order ODE
for r̂1:

d3r̂1/dy
3 + 2(dr̂1/dy)

[
1− 3

(
2R∗ 2 − 1

)
tanh2 y

]
− 12r̂1

[
tanh y sech2 y − 2

(
1−R∗ 2) tanh3 y] = g(y),(18a)

where

(18b) g(y) = 2
√
2 ξR∗ tanh y

[
s1

{
1 + (2R∗ 2 − 3) tanh2 y

} − 2
√

(1−R∗ 2) tanh y
]
.

This equation can be solved exactly via a substitution that reduces the corresponding ho-
mogeneous equation to a hypergeometric equation. This approach was used previously by
Sherratt [50] and Smith, Sherratt, and Armstrong [54], who derived asymptotic expansions
for solutions satisfying boundary conditions close to a one-dimensional zero Dirichlet condi-
tion. We omit details of the solution method for brevity, referring the reader to either of these
previous papers for details. The result is the following general solution of (18):
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r̂1(y) =
sech2 y

W

[∫ y1=y

y1=0
Y −(y1)

∫ y2=ξ∞

y2=y1

Y +(y2)g(y2)

cosh4 y2
dy2 dy1

−
∫ y1=y

y1=0
Y +(y1)

∫ y2=ξ∞

y2=y1

Y −(y2)g(y2)
cosh4 y2

dy2 dy1

]
+ Cξ

1 sech
2 y

∫ y1=y

y1=0
Y +(y1) dy1 + Cξ

2 sech
2 y

∫ y1=y

y1=0
Y −(y1) dy1

+ Cξ
3 sech

2 y,(19a)

where

Y ±(y) = Re

[
sech−3+iδ y F

(
α, β, γ,

1± tanh y

2

)]
,(19b)

α, β =
1

2
+ i

(
δ ±

√
δ2 +

3

4

)
,(19c)

γ = 1 + iδ,(19d)

δ =
√

11− 12R∗ 2,(19e)

W = 4πRe

[
Γ(αβ)

Γ(1+α
2 )Γ(1+β

2 )

]
·Re

[
Γ(αβ)

Γ(α2 )Γ(
β
2 )

]
.(19f)

Here F is the hypergeometric function, and Cξ
j (j = 1, 2, 3) are constants of integration.

This solution contains seven undetermined constants: C±
1 , C

±
2 , C±

3 , and s1; for convenience
we write ξ = ± instead of ξ = ±1 in sub- or superscripts. These are constrained by continuity
and smoothness conditions at y = 0 (the center of the source) and by matching with the
leading order forms of the adjacent sinks. We first consider the conditions at y = 0. Although
the leading order (isolated) source solution (16) is continuous at y = 0, it is not smooth.
Therefore direct matching of the solutions for ξ = ±1 at y = 0 is not possible. Rather, a
transition layer is required, for which the appropriate rescalings are

r̃ = r̂/ε, ψ̃ = εψ̂, η = y/ε = z/(ε
√
2 ).

Substituting these rescalings together with (6), (8), and (10) into (5) gives

d2r̃/dη2 − 2r̃ψ̃2 = O(ε2),(20a)

dψ̃/dη + 2(ψ̃/r̃)dr̃/dη = O(ε2).(20b)

Writing r̃ = r̃0(y)+ εr̃1(y)+ ε
2r̃2(y)+ · · · and ψ̃ = ψ̃0(y)+ εψ̃1(y)+ ε

2ψ̃2(y)+ · · · and equating
coefficients of ε0 and ε1 gives simple ODEs for the leading- and first order terms, with solutions

r̃0 =
(
A2

0 + 2B2
0η

2
)1/2

,(21a)

ψ̃0 = A0B0

/ (
A2

0 + 2B2
0η

2
)
,(21b)

r̃1 =
(
A0A1 + 2B0B1η

2
) / (

A2
0 + 2B2

0η
2
)1/2

,(21c)

ψ̃1 =
[(
A3

0B1 −A2
0B0A1

)
+ 2

(
B3

0A1 −A0B
2
0B1

)
η2

] / [
A2

0 + 2B2
0η

2
]2
.(21d)
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Here A0, B0, A1, and B1 are constants of integration; we take B0 > 0 for uniqueness. The two
additional constants of integration correspond to O(ε) and O(ε2) translations in η, and these
are determined by our requirement that r̂ have a local minimum at z = 0, which implies that
dr̃0/dη = dr̃1/dη = 0 at η = 0. Note that ψ̃0 has a local maximum at η = 0, implying that ψ
has a spike of width O(ε) and height B0/(εA0) at the centers of the sources. In section 5.1,
we present numerical solutions that corroborate this feature of the solutions.

The behavior of (21) as η → ±∞ is

r̃0 =
√
2B0|η|+O(1/η),(22a)

ψ̃0 = A0/(2B0η
2) +O(1/η4),(22b)

r̃1 =
√
2B1|η|+O(1/η),(22c)

ψ̃1 = O(1/η2).(22d)

These behaviors must match with those of r̂0(y) + εr̂1(y) and ψ̂0(y) + εψ̂1(y) as y → 0. The
expansions

r̂0 = ξR∗y +O(y3) and ψ̂0 = −
√

1−R∗ 2y +O(y3)

follow immediately from (16). Explicit differentiation of (19) implies that

(23) r̂1(y) = Cξ
3 +Re

[
F

(
α, β, γ; 12

)] (
Cξ
1 + Cξ

2 − ξH1

)
y +O

(
y2

)
as ξy → 0+; a formula for the constant H1 as a function of R∗ (or, equivalently, of c) is
given in Appendix A. Initial calculation of the expansion (23) gives an additional term
−Re

[
F

(
α, β, γ; 12

)]
s1H2, where H2 is a combination of integrals involving the hypergeomet-

ric function, which is given explicitly in Appendix A. However, careful investigation (see
Appendix A) shows that H2 is in fact identically zero.

For ψ̂1, expanding the various terms in (17a) in power series and simplifying using (18)
and (19) gives
(24)

ψ̂1 =
−

[
I1 + ξs1I2 + Cξ

1 − Cξ
2

]
Re

[
F ′(α, β, γ; 1

2)
] − 2s1ξR

∗√2

8 ξR∗√1−R∗ 2 y−2 − ξ Cξ
3

√
1−R∗ 2

R∗ +O(y)

as ξy → 0+; formulae for the constants I1 and I2 as functions of R∗ (or, equivalently, of c) are
given in Appendix A.

With these expansions, matching of the transition layer and “outer” solutions is straight-
forward. Using the intermediate variable yν = y/ν(ε) = ηε/ν(ε) with 1 � ν � ε, we require
that as ε→ 0 with yν fixed,

r̂0(νyν) + εr̂1(νyν) = εr̃0(νyν/ε) + ε2r̃1(νyν/ε) +O(ε3),

εψ̂0(νyν) + ε2ψ̂1(νyν) = ψ̃0(νyν/ε) + εψ̃1(νyν/ε) +O(ε3).
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These give the conditions

Cξ
3 = 0,(25)

B0 =
R∗
√
2
,(26)

B1 = Re

[
F

(
α, β, γ;

1

2

)]
Cξ
1 + Cξ

2 − ξH1

ξ
√
2

,(27)

A0 = −2B0

⎛⎝
[
I1 + ξs1I2 + Cξ

1 − Cξ
2

]
Re

[
F ′(α, β, γ; 12)

]
+ 2s1ξR

∗√2

8 ξR∗√1−R∗ 2

⎞⎠ .(28)

Note that the leading order term in ψ̂0 is not determined by matching at this order; rather

it will match with an Os(η) term in ψ̃2(η). Here we use the notation Os in the usual way:
δ1 = Os(δ2) ⇔ δ1 = O(δ2) and δ1 	= o(δ2). Conditions (26)–(28) determine A0, B0, and B1 in
terms of the seven undetermined constants in (19); A1 is determined by higher order matching.
However, more significantly, (25) determines C+

3 and C−
3 (both zero), while the right-hand

sides of (27) and (28) must be invariant under ξ → −ξ since the left-hand sides are independent
of ξ. Therefore,

−C−
1 − C−

2 = C+
1 + C+

2 ,(29a)

−I1 − C−
1 + C−

2 = I1 + C+
1 − C+

2 .(29b)

We now consider matching the perturbed source solution to the leading order sink solution,
which will give four further conditions to be satisfied by the constants and by the source-sink
separation Lξ(ε). Standard asymptotic behavior of the hypergeometric function can be used
to derive the leading order behavior of (19) as y → ξ∞; details of this are given in appendices
of both [50] and [54]. This implies that

(30) r̂1(y) = Cξ
1 e

ξy Re
[
Qξ e

iδξy
]
− Cξ

2 e
ξy Re

[
Q−ξ e

iδξy
]
+O(1)

as y → ξ∞; formulae for the constants Q± as functions of R∗ (or, equivalently, of c) are given
in Appendix A.

3.2. Decay of the sink to the asymptotic wavetrain. In contrast to the source, we do not
have an explicit form for the leading order (isolated) sink solution. Indeed to our knowledge,
the existence of such a solution has not been proved, except when c � 1 (Doelman [14], Ka-
pitula [21]). Counting stable and unstable manifold dimensions of the wavetrains as equilibria
suggests that, generically, one should expect a two-parameter family of sink solutions of (1)
(van Saarloos and Hohenberg [60]); typical parameters would be the amplitudes of the two
asymptotic wavetrains. Numerical evidence suggests that this generic behavior does occur
(e.g., Bohr, Huber, and Ott [3]). Therefore, we assume that there is exactly one (stationary)
sink solution for which both asymptotic wavetrains have amplitude R∗; we have performed a
detailed numerical confirmation of this (see Appendix B). The eigenvalue structure of (15)
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at r̂0 = R∗, ψ̂0 = −ξ√1−R∗ 2 implies that the amplitude of this sink solution, rsink(y) say,
must satisfy

(31) rsink(y)−R∗ = Re
[
S exp

(
−

(
1/
√
2 + iδ/

√
2
)
zsink

)]
+ o

(
e−zsink/

√
2
)

as zsink → ∞. Here the coordinate zsink > 0 is measured from the center of the sink, so
that zsink = Lξ(ε)− ξy

√
2. S is a complex valued constant that is known in principle, but an

explicit form for its dependence on R∗ (or equivalently on c) is not available without an exact
isolated sink solution. However, S can be estimated very accurately via numerical solutions
of (5); details of this are given in Appendix B. Note that because the isolated sink solution is
necessarily symmetric in r (and antisymmetric in ψ), S is the same for ξ = −1 and ξ = +1.

3.3. Matching source and sinks. Matching requires that

r̂0(y) + εr̂1(y) = rsink(y) + o(ε)

when 1 � y � Lξ(ε)/
√
2 as ε→ 0, i.e.,

R∗ + εCξ
1 e

ξy Re
[
Qξ e

iδξy
]
− εCξ

2 e
ξy Re

[
Q−ξ e

iδξy
]
+ o

(
εeξy

)
= R∗ + eξy Re

[
S exp

(
iξδy − (1 + iδ)Lξ(ε)/

√
2
)]

+ o
(
eξy−Lξ(ε)/

√
2
)
+ o(ε).

Since this equation must hold for a range of y values, it requires that

(32) εCξ
1 Qξ − εCξ

2 Q−ξ = S exp
(
−(1 + iδ)Lξ(ε)/

√
2
)
+ o

(
e−Lξ(ε)/

√
2
)
+ o(ε).

Equation (32) is complex valued and must hold for ξ = +1 and ξ = −1; therefore it constitutes
four additional conditions.

There are two distinct classes of solution to (32). One possibility is

e−Lξ(ε)/
√
2 = o(ε)(33a)

and Cξ
1 = Cξ

2 = 0;(33b)

the second of these follows from the first becauseQ± are linearly independent complex numbers
for all R∗ ∈ (0, 1). The alternative possibility is

e−Lξ(ε)/
√
2 = κξ|ε|(34a)

and Cξ
1 Qξ −Cξ

2 Q−ξ = κξ sign(ε)S exp {iδ (log |ε|+ log κξ)}+ o(1)(34b)

as ε → 0 for some κξ > 0 that is Os(1). Now fix a sign ζ ∈ {±1} (using ζ = ±, −ζ = ∓ in
sub- and superscripts). If (33) holds for ξ = ζ, then (29) implies that

C−ζ
1 +C−ζ

2 = 0,(35a)

C−ζ
1 −C−ζ

2 = −2I1.(35b)
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The formula for I1 given in Appendix A implies that it is nonzero for all R∗ ∈ (0, 1), so that
(35) is incompatible with (33b) for ξ = −ζ for any value of s1. Hence, (33) cannot hold for
both ξ = ζ and ξ = −ζ. Thus if (33) holds for ξ = ζ, condition (34b) would then have to hold

for ξ = −ζ, with C−ζ
1 and C−ζ

2 determined by (35), which requires

κ−ζ exp(+iδ log κ−ζ) = Υ ≡ Υ̃ sign(ε) exp(−iδ log |ε|),(36a)

where Υ̃ = −I1 (Q+ +Q−) /S.(36b)

This holds for some κ−ζ > 0 if and only if

(37) (δ log |Υ| − argΥ) /2π ∈ Z.

In conclusion, except in the special case of (37) being satisfied, condition (34) must hold
for ξ = +1 and ξ = −1, implying that to leading order the source-sink separation is given by
−√

2 log |ε|. We can then solve (34b) for the leading order forms of Cξ
1 and Cξ

2 ; these are given
in Appendix A. Substituting these back into (29), we obtain two conditions on κ+ and κ−.
These can be expressed as linear equations for the real and imaginary parts of (κ1−iδ

+ −κ1−iδ
− ),

whose solution yields the single complex condition

(38) κ− exp(+iδ log κ−)−Υ/2 = −κ+ exp(+iδ log κ+) + Υ/2

to leading order, with a correction that is o(1) as ε → 0; Υ is defined in (36). The left-
(right-) hand sides of (38) trace out logarithmic spirals in the complex plane as κ− (κ+) varies
between 0 and +∞. We will refer to these spirals as S±; they are point reflections of one
another through the origin, with centers at ±Υ/2 and with the same orientation. Solutions
for κ− and κ+ occur when S± intersect.

Condition (34) requires that κ± > 0; however, we allow κ± = 0 in (38); this corresponds
to (37), and thus (38) incorporates both matching conditions, with L± ∼ −√

2 log |ε| as ε → 0
if κ± 	= 0, and L± � −√

2 log |ε| if κ± = 0. In the latter case there is an O(ε) contribution to
the solution for ∓y > 0, but for ±y > 0 the correction to the leading order (isolated) source
solution is o(ε). Investigation of the source-sink separation in this case would require higher
order matching, which we have not attempted.

If (37) holds, then S+ has its center point on S− (and vice versa), so that the two spirals
intersect an infinite number of times. In Appendix D we show that, otherwise, the number
of intersections is finite and can be zero. A simple change of variables (given in (D.1)) shows
that the number of intersections depends on Υ via the real quantity

δ log |Υ| − argΥ

2π
=
δ log |ε|
2π

+
1

4
(sign(ε)− 1) +

δ log |Υ̃| − arg Υ̃

2π
;

recall that Υ̃, which is defined in (36), is independent of ε. Moreover, the number of intersec-
tions has a self-similarity: if (κ∗−, κ∗+) is a solution for Υ = Υ∗, then (κ∗−e2nπ/δ , κ∗+e2nπ/δ) is a
solution for Υ = Υ∗e2nπ/δ for any integer n. Therefore, for a given value of R∗ (or, equiva-
lently, of c) and for either value of sign(ε), the set S+ ∩ S− is periodic in log |ε|, with period
2π/δ. In addition, it is the same for ε = ε∗ > 0 and ε = −ε∗eπ/δ. As discussed in section 2, the
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Figure 5. An illustration of the number of possible intersections of the spirals S±1, as a function of ε and
c. Each intersection corresponds to a family of patterns in which the speed coefficient s1 is an unconstrained
parameter. (a) The values of ε for which there is at least one pair of intersections. We plot log |ε| on the
horizontal axis, and indicate regions (shaded) in which there are patterns. Dark/light shading indicates a
pattern with ε positive/negative. (b) A more detailed plot on a small region of the log |ε| axis, for c = 1.4,
showing the number of intersections. These are all for ε > 0. The number of intersections has a sharp peak
centered around the value of ε for which (37) is satisfied (indicated by a thin vertical line). There it is infinite,
and the center of each spiral lies on the other. By symmetry, the number of intersections is even except at
values of ε for which there is a root of (38) with κ+ = κ−. This occurs once in each shaded band in (a), when
[δ log(|Υ|/2)−arg Υ]/2π ∈ Z; in (b), there is exactly one intersection when log |ε| = −4.1377. Numerical values
of Υ are required for these plots. Formulae for H1, I1, and Q± are given in Appendix A; MAPLE code that
evaluates these formulae numerically is given in 78096 01.zip [82.2KB]. Numerical calculation of S is described
in Appendix B. In (a), the range of c on the vertical axis corresponds to the wavetrain of amplitude R∗ being
unstable but absolutely stable.

wavetrain of amplitude R∗ is unstable but absolutely stable when 1.110468 < c < 1.576465.
For c in this range, the number of intersections of the two spirals is zero for a sequence of
nontrivial intervals of ε values, separated by intervals in which there are one or more pairs
of intersections (illustrated in Figure 5). This implies that, although some values of ε allow
patterns with multiple source-sink separations (even an infinite number, if (37) is satisfied),
for many other values of ε there are no possible patterns.

4. Families of source-sink patterns. Condition (38) for κ± completes the leading order
matching. Note that at this order, the regions between two neighboring sinks are completely
decoupled from one another, although we expect there to be coupling at lower order. Our
calculations suggest that there is a three-parameter family of patterns of sources and sinks.
One parameter is ε; recall that this corresponds to the difference between R∗ and the average
of the asymptotic wavetrain amplitudes on the two sides of a source or sink. The value of
ε is constrained to be such that (38) has at least one pair of solutions for κ±, which occurs

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78096_01.zip
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in nontrivial intervals (see Figure 5). A second parameter is the constant of proportionality
s1 between the speed of movement and ε. This is totally absent in the majority of the
above calculation and has essentially no effect on the solution structure—in particular, any
dependence of the source-sink separations on s1 is o(1) as ε → 0. Recall from (12) that
specifying ε and s1 is equivalent to specifying the asymptotic wavetrain amplitudes on the
two sides of the source. These first two parameters of the family are continuous, but the third
is discrete and comes from the possible multiplicity of solutions for κ± that is implied by (38).
Recall that κ− and κ+ determine the Os(1) part of the separation between a source and a
neighboring sink on its right and left, respectively, with the separations being

L± = −
√
2 log |ε| −

√
2 log κ± + o(1)

as ε→ 0.
Interpretation of this solution family is somewhat easier if one reformulates the problem

as follows: given distances L±, is there a source-sink pattern with separations L± between a
source and the neighboring sinks? Our calculation answers this question for L± → ∞ with
L+ − L− = Os(1).

1 Multiplying (38) by |ε| and using (34a) gives

(39) exp
(
−L−(1 + iδ)/

√
2
)
+ exp

(
−L+(1 + iδ)/

√
2
)
= εΥ̃ + o(ε)

as ε → 0, where Υ̃ is defined in (36). This constitutes two (real) equations in the three
unknowns L± and ε, and we expect curves of solutions in (L−, L+, ε)-space. Indeed, a sink-
source-sink pattern is a heteroclinic connection of the same type as a sink, which is (generi-
cally) robust. Note that Υ̃ is independent of ε; it is a function of R∗ (or, equivalently, of c).
Thus geometrically, in the complex plane, the right-hand side forms a line through the origin
parameterized by ε, and for fixed L−, say, the left-hand side is a logarithmic spiral param-
eterized by L+. The formula is valid near the origin, corresponding to L+ and L− being
sufficiently large. Analytically, a pattern exists if L± satisfy

(40) arg
[
exp

(
−L−(1 + iδ)/

√
2
)
+ exp

(
−L+(1 + iδ)/

√
2
)]

= arg
[
sign(ε)Υ̃

]
+ o(1)

as ε → 0 or, equivalently, as L± → ∞ with L+ − L− = Os(1). Equation (40) is a “locking
condition,” which ensures appropriate phase matching of the oscillatory decay of the sinks
to their asymptotic wavetrains. Similar conditions apply for interacting pulses in reaction-
diffusion equations (see, for example, Sandstede and Scheel [47]). That situation is analogous
to the case L+ = ∞ or L− = ∞, and the locking condition arises as a condition for stability
only. In contrast, in our case (40) must hold for the solution to even exist. Given any solution
pair L∗± of (40), L∗± + 2

√
2nπ/δ is also a solution for any n ∈ Z, with the same sign for ε.

Therefore (40) defines a sequence of curves in the (L−, L+)-plane (Figure 6(a)). Each curve
approaches a limiting value of L± as L∓1 → ∞. In this limit, (37) is satisfied, and (40) implies
that the limiting source-sink separations L are

(41) L = (
√
2/δ) ·

[
nπ − arg(Υ̃)

]
(n ∈ Z, n > arg(Υ̃)/π).

1Our calculation also applies for L± → ∞ with L∓1 = ∞, which corresponds to (37) being satisfied.
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Figure 6. An illustration of the phase locking condition (40) that must be satisfied by L± for a sink-source-
sink pattern to exist, for c = 1.4. The condition implies a sequence of curves in the L+-L− plane, which are
shown in (a). The corresponding values of ε have a fixed sign along each curve, which alternates through the
sequence as indicated. (b) shows a different visualization, plotting one of the separation distances against their
sum, which is the separation of adjacent sinks. The approach of each solution curve to its limiting value as L+

or L− → ∞ is oscillatory, and we illustrate this in (c). Finally, in (d) we plot the variation of ε along one
of the curves (the same one as used in (c)); the value of ε is given as a function of L± by (42), with sign(ε)
chosen as in (40).

The approach to these limiting values is oscillatory (Figure 6(b)), corresponding to the spirals
S±1 winding in towards their centers. The limiting values (41) are the separations that are
possible in a solution consisting a single source-sink pair; their variation with c is illustrated
in Figure 7.

If (40) is satisfied, then ε is uniquely determined via

(42) |ε| =
∣∣∣exp(

−L−(1 + iδ)/
√
2
)
+ exp

(
−L+(1 + iδ)/

√
2
)∣∣∣/ ∣∣∣Υ̃∣∣∣ ,
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Figure 7. An illustration of the dependence on c of the possible separations between the source and sink
in an isolated source-sink pair. This corresponds to the phase locking condition (40) being satisfied with one of
L± being infinite. These separations are given by the formula (41).

with sign(ε) being the same as in (40). Each of the solution curves shown in Figure 6(a) traces
out one of the ε intervals shown in Figure 5(a), in which the spirals S+1 and S−1 intersect.
In Figure 6(c) we show the variation of ε along one of the solution curves. The limiting value
of ε, corresponding to the separation (41), is

(43) ε = (−1)ne−L/
√
2
/ |Υ̃|.

The value of ε determines the average of the amplitudes of the asymptotic wavetrains on either
side of the source. The difference between these amplitudes, or equivalently the propagation
speed of the source-sink pattern, is arbitrary, except that for our calculation to be valid it
must be O(e−L±) as L± → ∞.

These considerations specify the possible solutions between two successive sinks (with a
source in between them). Finally, we comment that there can be multiple distinct pairs L±
satisfying (40) and giving the same value of ε (see Figures 5(b) and 6(d)). Since at first order
each sink-sink block is decoupled, it is possible that they can be glued together to give a
rich variety of composite patterns. Investigation of this would require higher order matching,
which we have not attempted.

5. Numerical verification.

5.1. ODE simulations. In section 5.2, we will present results from numerical solutions of
the PDEs (1) demonstrating the discreteness of the possible separation distances in source-sink



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

902 J. A. SHERRATT, M. J. SMITH, AND J. D. M. RADEMACHER

patterns. However, the numerical accuracy of our PDE simulations is not sufficient to enable
a detailed quantitative test of the analytical results derived in section 2. For that, we used in-
stead numerical solutions of the travelling wave ODEs (5), with dθ̂(t)/dt = K0+ε and c = εs1;
K0 is given in (10). Using these equations, we calculate numerically, using 16-byte precision,
solutions consisting of one source and one sink in an unbounded domain, which corresponds to
L+ (say) being infinite; a typical example is shown in Figure 8. As |z| → ∞, a solution of this
type decays to the asymptotic wavetrain with ψ̂ < 0. Recall from section 3 that linearizing (5)
about this wavetrain shows that it has one real eigenvalue and a complex conjugate pair; these
and the corresponding eigenvectors can easily be calculated numerically. The approach to the
asymptotic wavetrain is oscillatory as z → −∞ and monotonic as z → +∞. Therefore to
construct numerical solutions, we solve (5) in the negative z direction, starting with r̂, dr̂/dz,
and ψ̂ on the eigenvector corresponding to the real (negative) eigenvalue. This reduces the
problem to one of shooting in the single unknown parameter ε, which must be chosen so that
the solution traces out a source followed by a sink, and then decays again to the asymptotic
wavetrain. Although it is simple in concept, this procedure is complicated in practice by the
extreme sensitivity of the solutions of (5) to changes in ε. For example, the solution shown
in Figure 8 has ε ≈ −2 × 10−8 (see the legend for the precise value) and uses a domain of
length 53. If ε is increased by more than 6 × 10−11, or decreased by more than 10−14, the
solution for r̂ increases through 1 before reaching the end of the domain, after which it rapidly
increases towards infinity. For this reason, it is not feasible to attempt a purely numerical
study of source-sink separations: the analytical results are an essential prerequisite to provide
the appropriate values of ε.

Table 1 compares six successive stationary source-sink pair solutions, calculated numeri-
cally in this way, against the analytical approximations derived in section 2. The comparison
is extremely good. There is numerical error in both the simulations and the predictions; the
latter is due to error in the numerical calculation of the constant S. In Appendix C we present
a detailed discussion of these errors and conclude that we have a high level of confidence in
the first 10 decimal places of the separations and the first 10 significant figures of the values of
ε, in both the simulations and the predictions. For each of the cases presented in Table 1, the
difference between the simulated and predicted separations is much greater than 10−10 and
is therefore an accurate measure of the higher order corrections to our perturbation theory
expansions. These corrections decrease with ε, as predicted by the theory. Moreover, the
entries in column 3 differ between parts (a) and (b) of Table 1, suggesting that the corrections
do depend on s1. This would imply that the speed of propagation of the sources and sinks
does affect the possible separations, but with this dependence being o(1) as ε→ 0.

The ODE solutions contain a sharp spike in ψ centered at the source (see Figure 8), as
predicted by the theory. Our analysis predicts that this spike has height B0/(εA0) +O(1) as
ε→ 0, with B0 and A0 given in (26) and (28), respectively. For a single source-sink pair,

(44) B0/(εA0) = −4R∗√1−R∗ 2
/ (

ε(I1 + s1I2)Re
[
F ′(α, β, γ; 12)

]
+ 2

√
2 s1R

∗
)
.

In column 5 of Table 1 we give the heights implied by (44) and compare them with the
heights of the spikes in our numerical solutions. The comparison is extremely good, and the
difference between the predictions and simulations is roughly constant as ε varies (see column 6
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Figure 8. A numerical simulation of an isolated stationary source-sink pair, calculated using 16-byte
precision. The insets show details of the solution near the center of the source. For ψ, we show this over
two different ranges of z: the left-hand inset shows the behavior near the base of the spike, while the right-
hand inset shows the spike in full. Note the very narrow ranges on the z-axis in the latter case and in the
inset on the r graph. The solution was obtained using (5) with dθ̂(t)/dt = K0 + ε; K0 is given in (10). We
integrated these equations backwards in z using the routine DLSODAR (Hindmarsh [18], Petzold [38]), which
is part of the ODEPACK collection, and is freely available at http://www.netlib.org. The solver automatically
switches between an Adams predictor-corrector method and a Gear backward differentiation formula method.
We set both the absolute and relative error tolerances in the routine to 
 = 10−24. We used initial conditions
lying on the (unique) real eigenvector of the asymptotic wavetrain, normalized so that r was

√

 below its

asymptotic wavetrain value. (Note that the amplitude of the asymptotic wavetrain is different from R∗, since
ε �= 0.) We discuss the reason for this choice of normalization, and the size of the resulting numerical errors,
in Appendix B. Prior to plotting, we made a translation in z so that the source was centered at z = 0,
since this is the formulation that we have adopted in our perturbation theory calculation. The parameters are
ε = −1.98921217 × 10−8, c = 1.4, and s1 = 0; in the main text we comment on the extreme sensitivity of
the numerical solutions to ε. We determined the value of ε by numerical shooting. The appropriate shooting
condition is that (r̂, dr̂/dz, ψ̂)−(

R∗, 0,−(1−R∗ 2)1/2
)
lies in the plane spanned by the real and imaginary parts

of the eigenvector corresponding to the complex conjugate pair of eigenvalues at the asymptotic wavetrain. In
practice it is convenient to perform a primitive continuation in ε, gradually increasing the domain length from
about 42 to 45 using the alternative shooting condition r̂ = R∗, before finally applying the correct condition.
The routine DLSODAR automatically stops integration when specified algebraic conditions are satisfied, and
this enables precise identification of the centers of the source and sink.

of Table 1), as predicted by the theory. It is important to emphasize that although the source-
sink separations have only a o(1) dependence on ε as this tends to zero, other aspects of the
patterns vary with ε to leading order. This is highlighted by comparing column 5 of parts (a)

http://www.netlib.org
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Table 1
A comparison of the predictions of our perturbation theory calculation and numerical simulations, performed

using 16-byte precision, for a single stationary source-sink pair. Column 1 shows six successive predicted
separations, given by solving (40) with one of L+ and L− set to infinity, and column 2 shows the corresponding
values of ε, given by (42), with the sign of ε as in (40). Columns 3 and 4 show the differences between these
predictions and the results from numerical solutions of (5), performed as discussed in the main text and in the
legend to Figure 8. Accurate computation of the source-sink separations in these solutions is straightforward
because of the root-finding capability of our ODE solver (see the legend to Figure 8). Column 5 shows the
predicted height of the spike in ψ, given by (44), and column 6 shows the difference between this and the results
from numerical simulations. The parameters are c = 1.4 and (a) s1 = 0; (b) s1 = 1. Only the first few
significant figures are shown in each column, but we have a high level of confidence in the first 10 decimal
places of the separations, and the first 10 significant figures of the values of ε, for both the predictions and the
simulations (see Appendix C). For the height of the spike in ψ, the estimated numerical error in simulations is
at most 10−5 (see Appendix C), while the predicted values are free of numerical error, being independent of S.

Separation ε Prediction Prediction Height of Predn

(predn) (prediction) − simn − simn spike in − simn

(separation) (ε) ψ (predn) (height)

(a) c = 1.4, s1 = 0

10.624 −1.560 × 10−4 2.449 × 10−3 5.517 × 10−7 3.862 × 103 0.498
13.795 1.658 × 10−5 −3.222 × 10−4 7.396 × 10−9 −3.620 × 104 0.498
16.965 −1.762 × 10−6 4.091 × 10−5 9.626 × 10−11 3.408 × 105 0.498
20.136 1.872 × 10−7 −5.056 × 10−6 1.232 × 10−12 −3.207 × 106 0.500
23.306 −1.989 × 10−8 6.120 × 10−7 1.555 × 10−14 3.018 × 107 0.479
26.476 2.114 × 10−9 −7.352 × 10−8 1.925 × 10−16 −2.840 × 108 0.677

(b) c = 1.4, s1 = 1

10.624 −1.560 × 10−4 1.990 × 10−3 2.152 × 10−7 2.456 × 103 0.574
13.795 1.658 × 10−5 −2.536 × 10−4 2.468 × 10−9 −2.307 × 104 0.574
16.965 −1.762 × 10−6 3.159 × 10−5 2.831 × 10−11 2.171 × 105 0.574
20.136 1.872 × 10−7 −3.849 × 10−6 3.244 × 10−13 −2.043 × 106 0.576
23.306 −1.989 × 10−8 4.608 × 10−7 3.733 × 10−15 1.923 × 107 0.554
26.476 2.114 × 10−9 −5.501 × 10−8 4.118 × 10−17 −1.810 × 108 0.761

and (b) of Table 1. For each of the possible separations, the heights of the spikes in ψ differ
by a factor of about 1.6.

We conclude this subsection by commenting on the potential use of standard numerical
continuation software to compute source-sink patterns. In principle this is a natural approach:
for instance, one could track the patterns and the associated separation distances as c varies
(see Figure 7). However, we had great difficulties when attempting to perform such contin-
uations for (5) using the software package AUTO (Doedel [12, 11], Doedel et al. [13]). One
problem is the extreme sensitivity of the solutions of (5) to the parameter ε, which necessi-
tates extremely small continuation steps. But the second and more significant difficulty is the
extremely sharp spike in ψ̂: for example, in Figure 8, ψ̂ increases by seven orders of magni-
tude over a z-interval of width about 10−7. Such spikes are a fundamental part of source-sink
pattern solutions and pose enormous difficulties for continuation software: for instance, in
AUTO, a very large number of collocation points would be required for accurate solutions.

5.2. PDE simulations. The basic prediction of our analytical theory is the discreteness of
the possible separation distances in source-sink patterns. In section 1 we reported numerical
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evidence of this phenomenon in simulations of the PDEs (1), which motivated our analytical
work. In this subsection we describe more detailed and systematic numerical tests. The
numerical solutions of the travelling wave ODEs (5) described in the previous subsection have
a very high level of accuracy. However, our PDE simulations are generally much less accurate.
This can be assessed via the Dirichlet boundary condition simulations described in section 1,
in which we solved (1) on a large spatial domain with u = v = 0 imposed at one boundary and
ux = vx = 0 at the other. Provided that c is sufficiently small that the asymptotic wavetrain
is stable, the long-term solution has the form of a stationary Nozaki–Bekki hole away from
the latter boundary [51, 53]. A convenient measure of accuracy is provided by the amplitude
of the asymptotic wavetrain, given by (2). For all of the computations in this subsection, and
also for Figure 1, we used a semi-implicit Crank–Nicolson method, with a uniform grid spacing
δx = 0.2 and a time step δt = 10−3; for c = 1.0, say, the computed asymptotic wavetrain
amplitude is then accurate to 0.012%. The implications of this for the computation of source-
sink patterns follows from a consideration of the solution form in between the source and sink,
where the two structures interact. The eigenvalues of (5) imply that the difference between

the source (respectively, sink) solution and the asymptotic wavetrain is proportional to e−z
√
2

(respectively, e−(L−z)/
√
2), where L is the separation distance and z = 0 is the center of the

source. These quantities are the same size when z ≈ L/3, with that size being about e−L
√
2/3.

Therefore we expect our PDE simulations to be able to reproduce source-sink patterns with
reasonable accuracy, provided that L is less than about −(3/

√
2) log(1.2× 10−4) ≈ 19.5.

With this restriction in mind, we began by attempting to reproduce in PDE simulations
the stationary source-sink pairs corresponding to the various rows of Table 1(a); their typical
form is illustrated in Figure 8. We used a relatively large spatial domain (chosen arbitrarily as
0 < x < 100), with boundary conditions ux = vx = 0 at both ends. As discussed in section 1,
this condition is compatible with the center of a stationary sink, but it is also satisfied by
the (stable) spatially uniform oscillation u = − sin(ct), v = cos(ct), which we found to have
a very large basin of attraction. Therefore care is required in the choice of initial solution,
and we based our initial conditions on our ODE computations of source-sink pairs, described
in section 5.1. On the left-hand part of the domain, we used the ODE solution (such as that
illustrated in Figure 8), starting from the center of the sink. On the right-hand part of the
domain, we again used the ODE solution starting from the center of the sink, but with z
decreasing in this case. Finally, in the central part of the domain, we used the asymptotic
wavetrain. Continuity of phase, θ, is of course required; we obtained the θ profile for the
source-sink pair by numerically solving dθ/dz = ψ̂ in parallel with (5), and we then made
appropriate uniform shifts in θ in the central and right-hand parts of the solution, in order
to give continuity. We then converted from r and θ to u and v, prior to solving (1). The
form of the resulting initial conditions is as in Figure 9(a). Our procedure results in small
discontinuities between the three segments, but these disappear after a short time in the
simulations.

The significance of the domain being relatively large is that the source is much too far from
the sink at the right-hand boundary for there to be any interaction in the PDE simulations
with our accuracy level. Thus, up to the cut-off at x = 0, we are effectively simulating a single,
isolated, stationary source-sink pair. Figure 9(b) shows the results of our simulations. We
plot the distance L− between the sink at x = 0 and the source (see Figure 9(a)) as a function
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Figure 9. Results of PDE simulations of (1) with c = 1.4 and boundary conditions ux = vx = 0 at both
boundaries (left boundary at x = 0 in all simulations, right boundary at x = 100 in (a)–(c) and at x = 32
in (d)–(f)). The initial conditions were always a source-sink pair, modified using the methods described in
section 5.2. (a), (d) Solutions at time t = 10000, with source-sink spacing as in our theoretical predictions.
(b), (e) Time series of the sink to source distance. (c), (f) The initial sink to source spacing against the final
sink to source spacing at the final simulation time (t = 40000 in (a)–(c) and t = 10000 in (d)–(f)). In (c)
the crosses on the diagonal correspond to cases in which the interactions between the source and the boundary
sinks are both dominated by numerical error, as discussed in section 5.2. The equations were solved numerically
using a semi-implicit Crank–Nicolson method, with δx = 0.2 and δt = 0.001.
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of time, for each of the initial spacings listed in the first column of Table 1(a). In two cases
(initial L− = 13.795 and 20.136), the spacing stays approximately constant (L− = 13.785 and
20.113 at t = 104); we attribute the small changes to numerical error. In two other cases
(initial L− = 10.624 and 16.965) the spacing changes, converging to about 13.8 and 20.1,
respectively. This suggests that the source-sink pairs with these spacings are unstable, with
the long time scale on the horizontal axis in Figure 9(b) indicating that the corresponding
eigenvalue is very small. Finally, the two largest spacings (initial L− = 23.306 and 26.476)
remain almost constant; there are in fact very slow changes, which are not visible at the
scale used in Figure 9(b). In these cases the source-sink separation is large enough that the
interaction between the source and sink occurs via variations in the solution amplitude that
are below the accuracy of our numerical scheme. To confirm this, we reran a small number of
the simulations at higher numerical accuracy (δx = 0.1, δt = 10−4). For initial L− = 23.306,
the separation then converges to about 26.5.2

These results show that our boundary and initial conditions are suitable for the simulation
of source-sink pairs, providing a foundation from which we can investigate the discreteness of
the spacings. For this, we made small changes to the location of the source, keeping the overall
domain size constant. For each of the initial spacings used in Figure 9(b), we changed L− by
±1, ±2, ±3, and ±4, with a corresponding decrease or increase in L+. We achieved this by
altering the length of the “flat” regions of r and θx, in which the solution is approximately on
the asymptotic wavetrain. Appropriate phase shifts are required in the various parts of the
solution in order to retain continuity of phase, prior to conversion from r and θ to u and v.
Figure 9(c) shows that in all cases the source-sink spacing converged to either 13.8 or 20.1
(approximately), provided that the initial spacing was sufficiently small to prevent the source-
sink interaction from being dominated by numerical error; we found that the threshold for
this is L− ≈ 23 for our numerical scheme. These results provide specific evidence for the
discreteness of possible separations in source-sink pairs.

To study the case of sink-source-sink triples, it was necessary to reduce the domain length
considerably, so that the source was close enough to both boundaries for the interactions
to be significant within the context of our numerical scheme. We fixed the domain length
at 32, for which (40) predicts source-sink separations of L± = 10.625 and 13.839, plus their
complements.3 We generated initial conditions with a variety of different initial spacings,
using our numerical solutions of the travelling wave ODEs (5) for source-sink pairs, following
the procedure described above. Figure 9(f) shows that all of these solutions converged to the
same spacing of about L− = 13.75 (or its complement of 18.25); the difference between this
and the theoretical prediction can be attributed to numerical error. The temporal evolution
of the separation is shown in Figure 9(e) for a few cases. These results provide evidence that
the discreteness of possible separations extends beyond the case of single source-sink pairs to
patterns with multiple sources and sinks.

While our PDE tests successfully support our prediction of the discreteness of possible

2Readers considering reproducing this result should be aware that the separation changes very slowly: a
solution time of about 2× 105 is required to see the convergence.

3Equation (40) also has three smaller solutions of about 1.1, 4.3, and 7.5. However, the significance of these
is doubtful since the theory underlying (40) assumes large separation distances. We have not seen any of these
smaller spacings in our PDE simulations.
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separation distances in source-sink patterns, they also highlight that the patterns that emerge
in simulations such as those in Figure 1 are the result of a complicated interplay between true
source-sink interactions and numerical artifacts arising from insufficient numerical accuracy.
For example, Figure 1(g) shows the movement of four source-sink pairs with equal spacings
over long simulation times. Our numerical tests in this subsection suggest that the observed
distance between each source and the sink on its left (≈ 14) is the result of a real source-sink
interaction. However, the distance between the sources and the sinks on their right, which
has a range of different values, significantly exceeds the threshold of about 23 in each case,
implying that the interactions between the sources and sinks are dominated by numerical
error. Further investigation into the determinants of the long-term dynamics of source-sink
patterns is a natural (and challenging) area for further investigation. However, a prerequisite
for such studies is a numerical scheme that is accurate enough to generate quantitatively
correct source-sink solutions for a wide range of parameter values and source-sink spacings.

6. Discussion. Patterns of sources and sinks are a common feature of numerical simula-
tions of the cgle and have been observed in a variety of corresponding experimental systems.
The main results of this paper concern the possible relative locations of sources and sinks that
form a coherent pattern moving with constant small speed. Using a formal asymptotic ex-
pansion, we showed that the separations L+ and L− between each source and its neighboring
sinks are constrained to satisfy a phase locking condition which requires them to lie on one of a
discrete infinite sequence of curves in the L+–L− plane. Moreover, we have derived exact for-
mulae for the leading order terms in asymptotic expansion of these curves. Our asymptotics
are based on two assumptions: large source-sink separations and slow propagation speed.
Mathematically, the first assumption ensures that the source resembles a Nozaki–Bekki hole,
while the second implies that it is the stationary hole that is relevant. One aspect of our
results that is of particular interest is that although the possible separations do depend on the
speed at which the sources and sinks move, this dependence tends to zero as the separations
tend to infinity. Moreover, our detailed numerical investigation suggests that the dependence
of the separations on propagation speed is so small that it is significantly less than the errors
inherent in most numerical methods in use for the cgle (see column 3 of Table 1).

Many readers will be familiar with the “modulated amplitude wave” (Brusch and co-
workers [6, 5, 4], Lan, Garnier, and Cvitanović [28]) and “homoclinic hole” (homoclons)
(van Hecke [57], van Hecke and Howard [58], Howard and van Hecke [19]) solutions of the
cgle. We now briefly compare these solutions with the source-sink patterns that we have
studied. All of these solution types are “coherent structures” satisfying the solution ansatz (4)
and the ODEs (5). Briefly, the equilibria of these ODEs, which are wavetrains, can undergo
Hopf bifurcation (Janiaud et al. [20]). The branches of periodic solutions (in r̂, dr̂/dz, and ψ̂)
emanating from such bifurcations constitute the modulated amplitude waves. In some cases,
the solution branch terminates at another Hopf bifurcation; otherwise the period is unbounded
along the branch, and the terminating homoclinic orbit is known as a homoclinic hole. The
case of a single source-sink pair that we have studied is superficially similar to a homoclinic
hole: both are localized disturbances to an otherwise uniform wavetrain solution. However,
homoclinic holes do not contain a band of an oppositely moving wavetrain. Moreover, homo-
clinic holes are connected to a Hopf bifurcation of an equilibrium of (5) (a wavetrain), while
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source-sink pairs are not—rather, their organizing center is a heteroclinic cycle. Similarly,
modulated amplitude waves are quite distinct from repeating patterns of sources and sinks.

The focus of this paper has been the existence of source-sink patterns. An important
follow-up question is the stability of these patterns. As discussed in section 2, patterns of
sources and sinks provide a classic illustration of the difference between convective and absolute
stability. When the asymptotic wavetrains are only convectively unstable, all unstable linear
modes propagate as they grow, travelling towards the nearest sink, where they are absorbed.
In contrast, when one of the asymptotic wavetrains is absolutely unstable, there are stationary
unstable modes. Therefore, one expects intuitively that in the limit of large separations, the
stability of a solution consisting of a doubly infinite sequence of sources and sinks will depend
crucially on the absolute stability of the asymptotic wavetrain but not on its stability. This
expectation is consistent with the significant body of work on the highly analogous problem
of pulse stability (Sandstede and Scheel [48], Nii [33], Romeo and Jones [42]). These various
papers consider pulse wave solutions of reaction-diffusion equations, with a stable uniform
equilibrium behind and ahead of the wave, and a long intermediate plateau in which the
solution is close to a second equilibrium. In particular, [48] showed that a solution of this type
is stable in the limit of large plateau lengths if and only if two conditions are satisfied: (i) the
plateau equilibrium is absolutely stable, and (ii) a finite set of point eigenvalues associated
with the front and back of the pulse are all stable. The intuition behind (i) is exactly as
discussed above: provided that the plateau equilibrium is absolutely stable, any unstable
linear mode will propagate as it grows, eventually reaching the front or back of the pulse,
where it will be absorbed.

Condition (ii) reflects the fact that the front and back of the pulse may themselves be in-
trinsically unstable, through point spectra. Sandstede and Scheel [48] showed that such point
spectra are inherited by the pulse, with a correction that is exponentially small in the separa-
tion distance. For the source-sink patterns that we are considering, the corresponding issue is
point spectra associated with the sources and sinks. For sinks, the only detailed studies that
we are aware of are restricted to either c � 1 (Kapitula [21]), or to “weak shocks,” in which
the wavenumbers of the two asymptotic wavetrains are very similar (Kapitula [22]). Neither
of these cases is relevant to the present study, but a large body of PDE simulations suggests
that the point spectra associated with sinks are always stable. However, this is certainly not
the case for sources, and the stability of Nozaki–Bekki holes has been studied in considerable
detail (Sakaguchi [43], Chaté and Manneville [9], Sasa and Iwamoto [49], Popp et al. [40], Ka-
pitula and Rubin [23]; a concise review of this work can be found in [29]; see also Sandstede
and Scheel [45]). In particular, the stability of stationary Nozaki–Bekki holes changes due
to discrete eigenvalues as parameters cross the “core stability curve” in the parameter plane
of the cgle. By analogy with the results of Sandstede and Scheel [48], we hypothesize that
these discrete eigenvalues will be inherited by the source-sink patterns, modulo a correction
that is exponentially small in the source-sink separation. The core stability curve crosses the
zero linear dispersion axis at c = ccore ≈ 1.12, slightly above the threshold for the stability
of the asymptotic wavetrains (c = cstab ≈ 1.11).4 Therefore we hypothesize that patterns

4The difference between these two critical values of c is somewhat ambiguous in the literature, and we are
grateful to Professor Shin-ichi Sasa (University of Tokyo) for confirming it in personal correspondence.
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consisting of a doubly infinite sequence of sources and sinks can be stable, in the limit of large
separations, only if c lies between ccore ≈ 1.12 and cabs ≈ 1.57. Since rigorous results already
exist for the reaction-diffusion pulse problem, a proof of this hypothesis seems within reach
and is a natural area for future study.

In the range ccore < c < cabs, we expect that stability depends on eigenvalues near the
origin. By analogy with multipulse solutions (Sandstede [44]), each source and sink is expected
to contribute one such eigenvalue. These are associated with the neutral translation modes of
the individual sources and sinks, but only one will be pinned at the origin as the translation
mode of the entire pattern. This situation differs from that of pulse waves discussed above;
in that case the plateau and background states have different stabilities, and as a result only
the “back” of the pulse generates an eigenvalue associated with its neutral translation mode
(see Lemma 3 of [48]).

As a final remark on stability, we comment that the above discussion concerns only a
doubly infinite sequence of sources and sinks. It is unchanged for a source-sink pattern on a
finite domain with either periodic or appropriate separated boundary conditions. It is also
unchanged for a finite or singly infinite sequence of sources and sinks on an unbounded domain,
when the sequence is terminated by sink(s). However, in the case of a terminal source, even
propagating unstable modes can grow without bound, since the group velocity is then directed
away from the source, into an unbounded part of the domain containing no sinks. Therefore it
is the stability of the asymptotic wavetrain, rather than its absolute stability, that is relevant
in this case.

In addition to issues connected to the stability of source-sink patterns, our results raise
four main questions that are natural targets for future work:

1. In our perturbation theory calculation, we considered only the leading order difference
between a source-sink pattern and the corresponding isolated sources and sinks. This
was sufficient to provide a detailed account of the separation between a source and its
neighboring sink(s). However, neighboring sinks are decoupled at this order, and thus
our calculation provides no information on the nature or even existence of constraints
on sink-sink separations. Investigation of this via higher order asymptotics is an
important objective for subsequent work.

2. Our results apply only to the case of zero linear dispersion, and an obvious question
is the extent to which our results apply when the linear dispersion parameter in the
cgle is nonzero. The cornerstone of our calculation was the exact solution for the
stationary isolated source. The work of Nozaki and Bekki [34] provides corresponding
exact solutions for nonzero linear dispersion, so that a directly analogous calculation
would be possible, with the only barrier being the increased algebraic complexity.

3. Generically, sources occur as isolated solutions in reaction-diffusion–type equations
(van Saarloos and Hohenberg [60], Sandstede and Scheel [46]). However, the cgle is
nongeneric and has a continuous family of sources, the Nozaki–Bekki holes. The “hid-
den symmetry” that is responsible for this has been discussed extensively (van Saarloos
and Hohenberg [60], Doelman [14], Lega [29]). We have focussed entirely on the case of
slowly moving source-sink patterns with large separation distances, so that the sources
are close to the stationary Nozaki–Bekki hole solution. It seems likely that there are
also more rapidly moving source-sink patterns, in which the sources are close to the
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corresponding nonstationary Nozaki–Bekki holes. Such patterns could also be studied
using our perturbation theory approach, although the greater algebraic complexity of
the moving Nozaki–Bekki hole solutions would make the calculation extremely chal-
lenging. We emphasize that the existence of such patterns would be nongeneric and
would again be a consequence of the hidden symmetry of the cgle. Moreover, all
nonstationary Nozaki–Bekki holes are structurally unstable; in particular, they do
not persist when the equation is perturbed by the addition of a small quintic term
(Doelman [14], Popp and coworkers [41, 40]). We speculate that this property will be
shared by moving source-sink patterns, including the solutions that we have studied
with s1 	= 0.

4. We have shown that there is a family of source-sink patterns, with a discrete set
of possible source-sink separations and a continuum of possible propagation speeds.
Whenever a source-sink pattern arises in a solution of the cgle, a particular member
of this family is selected by the initial and boundary conditions. This pattern selection
problem is completely open.

Appendix A. In this appendix, we give details of the various constants arising in the per-
turbation theory calculation for which we have exact formulae. All depend on the amplitude
R∗ of the isolated source, which is equivalent to a dependence on the parameter c, via (13).

H1 = 4
√
2

(
R∗

W

)√
1−R∗ 2 Re

∫ 1

0

[
F

(
α, β, γ;

1 + t

2

)
− F

(
α, β, γ;

1− t

2

)]
t2(1− t2)(−1+iδ)/2 dt,

H2 = 2
√
2

(
R∗

W

)
Re

{∫ 1

0
F

(
α, β, γ;

1 + t

2

)
· [(3− 2R∗ 2)t3 − t

]
(1− t2)(−1+iδ)/2 dt

−
∫ 1

0
F

(
α, β, γ;

1− t

2

)
· [(3− 2R∗ 2)t3 − t

]
(1− t2)(−1+iδ)/2 dt

}
,(A.1)

I1 = 4
√
2

(
R∗

W

)√
1−R∗ 2 Re

∫ 1

0

[
F

(
α, β, γ;

1 + t

2

)
+ F

(
α, β, γ;

1− t

2

)]
t2(1− t2)(−1+iδ)/2 dt,

I2 = 2
√
2

(
R∗

W

)
Re

∫ 1

0

[
F

(
α, β, γ;

1 + t

2

)
+ F

(
α, β, γ;

1− t

2

)]
· [(3− 2R∗ 2)t3 − t

]
(1− t2)(−1+iδ)/2 dt,

Q+ =
iδ

3 + iδ

[
2−1+iδ Γ(iδ)2

Γ
(
1
2 + iδ + i{δ2 + 3

4}1/2
)
Γ

(
1
2 + iδ − i{δ2 + 3

4}1/2
)

− 2−1−iδ |Γ(iδ)|2∣∣Γ (
1
2 + i{δ2 + 3

4}1/2
)∣∣2

]
,

Q− =
−2−1−iδ

3 + iδ
,

Cξ
1 = κξ sign(ε) Im

[
Q−ξS exp {−iδ (log |ε|+ log κξ)}

] /
Im

[
QξQ−ξ

]
+ o(1),(A.2)

Cξ
2 = κξ sign(ε) Im

[
QξS exp {−iδ (log |ε|+ log κξ)}

] /
Im

[
QξQ−ξ

]
+ o(1).(A.3)

When evaluating these various expressions numerically, we used the software package MAPLE
(Monagan et al. [30]); our code is listed in 78096 01.zip [82.2KB].

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78096_01.zip
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Proof that H2 = 0. Substituting ξ = (1+ t)/2 into the first of the integrals in (A.1) and
ξ = (1− t)/2 into the second gives

H2 = 2(5/2)+iδ (R∗/W )Re
[(
4R∗ 2 − 6

)
h1 +

(
1−R∗ 2)h−1

]
,

where hn =

∫ 1

0

(
ξ − ξ2

)(n+iδ)/2
(2ξ − 1)F (α, β, γ; ξ) dξ.

Now F (.) satisfies the hypergeometric equation F (α, β, γ; ξ) = (ξ − ξ2) · (d2F/dξ2)/(1 + iδ)−
(2ξ − 1) · (dF/dξ). Therefore

h1 =
1

1 + iδ

∫ 1

0

(
ξ − ξ2

)(3+iδ)/2
(2ξ − 1)

d2F

dξ2
dξ −

∫ 1

0

(
ξ − ξ2

)(1+iδ)/2
(2ξ − 1)2

dF

dξ
dξ.

Evaluating the first of these integrals by parts implies

h1 =

∫ 1

0

{
(1− iδ)2

2(1 + δ2)

(
ξ − ξ2

)(1+iδ)/2
(2ξ − 1)2 − 2(1− iδ)

1 + δ2
(
ξ − ξ2

)(3+iδ)/2
(2ξ − 1)

}
dF

dξ
dξ.

Evaluating by parts again and simplifying gives (28 + 4δ2)h1 = (1 + δ2)h−1. Using δ2 =
11− 12R∗ 2, this implies that H2 = 0.

Appendix B. The lack of an exact solution for sinks means that we do not have a formula
for the constant S, which must therefore be calculated numerically. An isolated stationary
sink is a solution of the ODEs (5), with s = 0 and dθ̂(t)/dt = K0, defined in (10). As z → −∞
(say), such a sink solution must approach the steady state r̂ = R∗, ψ̂ = −√

1−R∗ 2 on the
two-dimensional manifold corresponding to the complex conjugate eigenvalues (1 ± iδ)/

√
2.

Therefore calculation of the sink solution can be reduced to a shooting problem. We solve (5),
with s = 0 and dθ̂(t)/dt = K0, forwards in z from initial conditions

(B.1) (r̂, dr̂/dz, ψ̂) =
(
R∗, 0, −

√
1−R∗ 2

)
+ ρRe

(
E eiσ

)
at z = 0 (say). Here E is the eigenvector corresponding to the eigenvalue (1 + iδ)/

√
2, nor-

malized so that E1 = 1. The quantities ρ (small) and σ ∈ [0, 2π) are the polar coordinates
of the starting point on the unstable eigenspace, which is used as an approximation of the
unstable manifold. Our shooting parameter is σ, and the choice of ρ is discussed below. We
integrate forwards in z, detecting zeros of dr̂/dz and ψ̂ as the integration proceeds. For the
numerical solution, we used the routine DLSODAR (Hindmarsh [18], Petzold [38]), which
is part of the ODEPACK collection. This solver automatically switches between an Adams
predictor-corrector method and a Gear backward differentiation formula method, and auto-
matically stops integration when specified algebraic conditions are satisfied. This root-finding
capability enables accurate detection of the zeros of dr̂/dz and ψ̂. The numerical code is freely
available at http://www.netlib.org.

A sink occurs when dr̂/dz and ψ̂ are simultaneously zero; this is then the center of the sink,
about which the sink solution is symmetric. For all values of c that we have considered, this
occurs for exactly one value of σ. This is in line with the generic expectation of exactly one sink
solution for any given pair of asymptotic wavetrain amplitudes [60]. However, we emphasize

http://www.netlib.org
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that a proof of this is currently lacking, to the best of our knowledge. The critical value σcrit
can be calculated using a nonlinear algebraic equation solver in which the “equation” is the
(signed) distance between the relevant zeros of dr̂/dz and ψ̂; we denote by zcrit the coordinate
of the common zero. Having found σcrit and zcrit, we can deduce the value of S, which is
defined by (31). Comparison with (B.1) shows that we require

ρRe
[
eiσcrit

]
= Re

[
S e−zcrit(1+iδ)/

√
2
]
,

which implies that |S| = ρ ezcrit/
√
2 and arg(S) = δzcrit/

√
2 ± σcrit. The choice of ±σcrit is

specified by the additional requirement of correspondence in dr/dz between (31) and (B.1),
which implies that arg(S) = δzcrit/

√
2 + σcrit.

The above algorithm requires a particular value for the (small) parameter ρ. In the
numerical ODE solver DLSODAR, errors are controlled locally, and we denote the local error
tolerance by �. In all our implementations of this solver, we set numerical parameters so that
the local error test during the solution is met if either the absolute or relative error is less
than �, for each solution component. Then after a few numerical integration steps, the initial
conditions (B.1) evolve to

(r, dr/dz, ψ) =
(
R∗, 0, −

√
1−R∗ 2

)
+ ρRe

(
Eeiσe(1+iδ)z/

√
2
)
+ �L(z) + ρ2R

for some small positive value of z; L and R are O(1) as � and ρ → 0. The O(ρ2) term arises
from the nonlinear terms in the ODEs. The deviation of this point from the eigenvector is
given by

ρRe
(
Emeiσe(1+iδ)z/

√
2
)
+ �Lm(z) + ρ2 Rm

ρRe
(
Eneiσe(1+iδ)z/

√
2
)
+ �Ln(z) + ρ2Rn

− Re(Emeiσ)

Re(Eneiσ)

(m,n ∈ {1, 2, 3}, m 	= n), which is O(ρ + �/ρ) as �, ρ → 0. The optimal choice for ρ in this
setting is that which minimizes this deviation, namely that ρ is proportional to

√
�. With

this choice, the deviation from the eigenvector is O(
√
�) as � → 0. Since the third eigenvalue

at the steady state is (real and) negative, the solution returns to the required trajectory as
z increases. However, the deviation from the eigenvector at the start of the integration leads
to an O(

√
�) error in the value of z corresponding to a particular point (r, dr/dz, ψ) on this

trajectory. Since the governing equations are autonomous, this O(
√
�) translational error

approaches a constant, independent of the point on the solution trajectory.
In 78096 01.zip [82.2KB], we describe a test problem that corroborates this argument. It

follows that the numerical error in zcrit will be O(
√
�). To consider the numerical error in

σcrit, we compared the convergence of zcrit and σcrit as � is decreased; we fix ρ rather than
setting ρ =

√
�, since the value of σcrit (and of zcrit) depends on ρ. This comparison suggests

that zcrit and σcrit converge in parallel, suggesting that the error in both quantities, and hence
in both the modulus and argument of S, will be O(

√
�). We take � = 10−24, using 16-byte

precision, which gives about 34 significant digits. We then expect the error in S to be about
10−12, giving us a high level of confidence in the first 10 or 11 decimal places of our computed
values of S. A table of S values as a function of c, to 10 decimal places, is given in 78096 01.zip
[82.2KB].

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78096_01.zip
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78096_01.zip
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Appendix C. In this appendix we discuss the numerical errors in the entries in Table 1.
Since the constant S must be calculated numerically, there are numerical errors in the predicted
values listed in the table, as well as in the simulated values. Hence the predictions are the
sum of the true values, numerical error, and corrections due to higher order terms in the
asymptotic expansions. Here we justify our assertion that in all three cases (separation, ε, and
spike height), the numerical errors in both predicted and simulated values are significantly less
than the difference between the two values. It follows from this that the differences (which
are listed in columns 3, 4, and 6 of Table 1) are an accurate measure of the higher order
corrections.

We denote by Eq the numerical error in a quantity q. Then our algorithm for calculating
S (see Appendix B) implies that to leading order for small errors, E|S| = |S|Ezcrit/

√
2 and

Earg(S) = (δ/
√
2)Ezcrit + Eσcrit . The results in Table 1 are for an isolated source-sink pair, for

which our perturbation theory calculation implies that the source-sink separation L is one
of the values given by (41), with the corresponding value of ε given by (43). The numerical
errors in our evaluations of these predictions enter via Υ̃, which depends on S. Straightforward
expansions show that

EL = Ezcrit + (
√
2/δ)Eσcrit ,

Eε = (
√
2/δ)|ε|Eσcrit .

Crucially, the errors in zcrit and σcrit translate into absolute errors in L, but only relative
errors in ε. As discussed in Appendix B, our choice of local error tolerance (� = 10−24) implies
that Ezcrit and Eσcrit are both about 10−12. Therefore we are confident in our evaluations of
the first 10 or 11 decimal places of L, and the first 10 or 11 significant figures of ε. Hence the
numerical errors are significantly less than the differences between the predicted and simulated
values in all rows of Table 1, as required. Note, however, that for the next separation in the
sequence (L ≈ 29.6), the higher order terms in the asymptotic expansion for L would be only
about 100 times larger than the numerical error in the computation.

The predicted height of the spike in ψ̂ is given by (44); it is independent of S and hence
free from numerical error. In numerical solutions of (5), the error in the height depends on
� and ε. Recall that we set numerical parameters in DLSODAR so that the local error test
during ODE solution is met if either the absolute or relative error is less than � for each
solution component. Since the spike in ψ has height O(1/ε), the absolute local error near
its peak is O(�/ε). Moreover, one expects the number of solution steps required to reach the
top of the spike to be O(1/ε), suggesting a global error estimate of O(�/ε2). A test problem
corroborating this is described in 78096 01.zip [82.2KB]. Note that this rather large global
error does not persist as integration of (5) continues beyond the spike. This is due to the
structure of the transition layer equations (20) which determine the spike. The exact solution
(21a), (21b) of (20) shows that numerical errors in ψ propagate forward only as relative rather
than absolute error, so that the residual global error is only O(�/ε).

It remains to consider the numerical errors in the values of ε and source-sink separation
that we have determined by numerical solution of the ODEs (5). These are difficult to estimate
because they involve a complex mixture of different numerical errors, and there is no natural
analogous problem with an exact solution. Moreover, the steep spike in ψ (see Figure 8)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/78096_01.zip
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makes an adaptive ODE solver essential, and this makes convergence acceleration techniques
for error estimation inappropriate, because of potentially nonlinear changes in step sizes as the
local error is decreased. To give a rough indication of the errors, we calculated the variation in
the computed values as the local error tolerance � was changed over five orders of magnitude
(10−21–10−25) spanning our reference value (10−24), for each of the rows in Table 1. At
worst, the source-sink separation and the value of ε change in only the 12th and 20th decimal
places, respectively. This suggests that the numerical errors in these computed values are
comparable with those in our evaluations of the analytical predictions, and significantly less
than the differences between the computed and predicted values.

As a final check, we repeated all the calculations in Table 1 (for both the predicted and
computed values) at a 100-fold larger local error tolerance (� = 10−22). The entries were all
unchanged.

Appendix D. In this appendix we prove that the spirals S±, which are defined as the two
sides of (38), have only a finite number of intersections, unless the centers of the spirals lie on
one another. Specifically, we prove the following claim.

Proposition. For fixed ε, (38) has a finite number of positive solutions for κ± unless Υ
satisfies (37).

In our proof, we make use of the following lemma.
Lemma. If κ± ≥ 0 solves (38) for some ε, then κ± ≤ κm = |Υ|/(1 − e−π/2δ).
We comment that |Υ| and thus κm are independent of ε.
Proof of the proposition. Eliminating κ− (say) from (38) yields, to leading order,

g(κ+) := arg
(
Υ− κ+e

iδ log κ+

)
− δ log

∣∣∣Υ− κ+e
iδ log κ+

∣∣∣ = 0.

The lemma implies that κ+ is bounded, so that an infinite number of solutions would accu-
mulate at some κ0. We will show that this is not possible.

The case Υ = κ0e
iδ log κ0 , which is equivalent to (37), is excluded by assumption. Hence, κ0

is such that g(κ) is analytic in a neighborhood of κ0 (on the covering space of arg). Therefore,
accumulation of roots at κ0 implies g(κ) ≡ 0 in a neighborhood of κ0. By analytic continuation
this holds globally for κ > 0, which would imply that the spirals coincide. However, by the
lemma, the spirals are disjoint for large κ±.

Proof of the lemma. For notational simplicity, we write

(D.1) κ̂+ =
κ+

e(arg Υ)/δ
, κ̂− =

κ−
e(arg Υ)/δ

, A =
|Υ|

e(arg Υ)/δ
,

which reduces (38) to

(D.2) κ̂+e
iδ log κ̂+ + κ̂−eiδ log κ̂− = A.

Since the statement is trivial for κ+ = 0 or κ− = 0, we assume that κ̂+ ≥ κ̂− > 0. Now
suppose κ+ > κm, which is equivalent to κ̂+ > A/(1 − e−π/2δ). Then

κ̂− =
∣∣∣A− κ̂+e

iδ log κ̂+

∣∣∣ ≥ κ̂+ −A

⇒ 1 ≥ κ̂−/κ̂+ ≥ 1−A/κ̂+ ≥ e−π/2δ

⇒ 1 ≥ cos [δ log(κ̂−/κ̂+)] ≥ 0.(D.3)
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Now considering (D.2), we have∣∣∣κ̂+eiδ log κ̂+ + κ̂−eiδ log κ̂−
∣∣∣ = ∣∣∣κ̂+ + κ̂−eiδ log(κ̂−/κ̂+)

∣∣∣
≥ |κ̂+ + κ̂− cos [iδ log(κ̂−/κ̂+)]|
= κ̂+ + κ̂− cos [iδ log(κ̂−/κ̂+)] using (D.3)

≥ κ̂+ > A.

This is a contradiction of (D.2).
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