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a b s t r a c t

TheWeierstrass elliptic functions can be parameterised using either lattice generators or invariants. Most
presentations adopt the former approach. In this paper the authors give formulae that enable conversion
between the two representations. Using these, they obtain differential equations satisfied by the mean
values of ℘ over its periods; these mean values are considered as functions of the invariants. They show
how to construct exact solutions for the means in terms of both hypergeometric functions and Legendre
functions. These solutions are valid for both real and complex values of the invariants. For the case of real
invariants, the authors prove various monotonicity results for the means with respect to the invariants.
They also discuss the numerical computation of the means, and show a number of plots of the means
against both real and complex valued invariants. Finally, they consider an application of their results to
vegetation patterning in semi-arid landscapes.
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1. Introduction

The Weierstrass elliptic function ℘ : C → C is defined by

℘(z) = z−2
+


w∈L\{0}


(z − w2)−1

− w−2
where the lattice L = {2mω1 + 2nω3|m, n ∈ Z} with Im(ω3/ω1)
> 0.1 ℘ is therefore doubly periodic, with 2ω1 and 2ω3 both being
periods; note that our use of the suffixes 1 and 3 follows conven-
tion. An important property of ℘ is that it satisfies the differential
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E-mail addresses: j.a.sherratt@hw.ac.uk, jas@ma.hw.ac.uk (J.A. Sherratt),

brezhnev@mail.ru (Y.V. Brezhnev).
1 Many presentations of the Weierstrass elliptic functions require only the

condition Im(ω3/ω1) ≠ 0. Our assumption follows [1]. It does not result in any loss
of generality, and is necessary for our discussion of modular inversion (Sections 3
and 8.2): Klein’s function J(.), defined in (32) below, only exists for values of the
argument in the upper half of the complex plane.
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equation

(d℘/dz)2 = 4℘3
− g2℘ − g3 (1)

where g2, g3 ∈ C are the Weierstrass invariants, defined by

g2 = 60


w∈L\{0}

w−4 g3 = 140


w∈L\{0}

w−6. (2)

For further general background on the Weierstrass elliptic func-
tion, see for example the books by Whittaker and Watson
[2, Ch. 20], Akhiezer [3, Ch. 3], Walker [4] and Armitage and Eber-
lein [5].

Most treatments of theWeierstrassian functions consider them
to be parameterised by the half-lattice generators ω1 and ω3. This
is convenient for the development of mathematical theory, and
also for many mathematical and some physical applications. The
choice of variables has no formal restrictions, so instead of ω1 and
ω3 one may take an arbitrary pair of quantities depending (non-
degenerately) on them. For example, some authors use ω = ω1
and τ = ω3/ω1 as parameters; these have a natural geometri-
cal interpretation, specifying respectively the size and shape of the
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‘‘fundamental parallelogram’’ [6, Section 18.1]. However, in some
contexts the invariants g2 and g3 are the natural parameters be-
cause they correspond directly with physical quantities; usually
g2, g3 ∈ R in such cases. Examples from Newtonian dynamics
include the spherical pendulum, in which the invariants are func-
tions of the radius of the sphere and the initial position and veloc-
ity of the bob [7, Section 7.3], and the motion of a gyroscope, for
which the invariants depend on the mass, the moments of inertia,
and various constants of the motion [7, Section 7.4]. In a recent ap-
plication to general relativity, Gibbons and Vyska [8] showed that
the equation obeyed by a null geodesic in the Schwarzschildmetric
can be reduced to (1), with g3 depending on the energy of the light,
the angular momentum, and the mass of the black hole. A quite
different example comes from themodelling of banded patterns of
vegetation in semi-arid environments [9–11],where g3 determines
themigration speed of the patterns; this examplewill be discussed
in more detail in Section 9.

With these considerations in mind, this paper concerns the
variation in ℘ and related functions and quantities with the
invariants g2 and g3. Wewill focus in particular on themean values
of ℘ over the lattice generators, which are important quantities in
some applications, but which have received almost no discussion
in the literature. To study the means, we will use the Weierstrass
zeta function, which is defined by

ζ (z) = z−1
+


w∈L\{0}


(z − w)−1

+ w−1
+ zw−2

and which satisfies dζ/dz = −℘. We will also use theWeierstrass
eta functions ηj = ζ (ωj) (j = 1, 3).

Some remarks about our notation are in order. All the
Weierstrassian functions are functions of three variables; therefore
we use the notation ℘(z|ω1, ω3) = ℘(z; g2, g3) (and analogously
for ζ and ℘ ′) when explicit dependence on parameter pairs
(ω1, ω3) or (g2, g3) is important.

2. Key mathematical formulae

The Weierstrass elliptic functions can be parameterised either
by the half-lattice generators ω1 and ω3, or by the invariants
g2 and g3. Despite the many accounts of the Weierstrass elliptic
functions in textbooks and monographs, conversion between
(ω1, ω3) and (g2, g3) is hardlymentioned. For example, in number-
theoretic considerations computation of the invariants g2 and
g3 (as functions of the ωj’s) uses Jacobi’s theta-functions or the
famous Eisenstein series E4, E6 in eπ iτ multiplied by ω−4 and ω−6

respectively [6, Section 18.10]; however this does not furnish a
practical means of conversion. Since the standard approach is to
regard ω1 and ω3 as the key parameters, this poses a significant
barrier to using the Weierstrassian theory for cases in which the
natural parameterisation is via the invariants. Such a situation
occurs whenever (1) arises as an important differential equation
in a physical application.

We are aware of 3 references discussing conversion between
(ω1, ω3) and (g2, g3), all from the 19th Century: the paper of
Frobenius and Stickelberger [12, p. 313–316] and the books of
Halphen [13, p. 302–307, 319–320] and Forsyth [14, p. 263–265].
The key result is

ω1
∂F
∂ω1

+ ω3
∂F
∂ω3

= −4g2
∂F
∂g2

− 6g3
∂F
∂g3

= ω
∂F
∂ω
,

η1
∂F
∂ω1

+ η3
∂F
∂ω3

= −6g3
∂F
∂g2

−
1
3
g2
2
∂F
∂g3

= η1
∂F
∂ω

−
π i
2ω2

∂F
∂τ
,

(3)
where F(ω1, ω3) = F(ω, τ) =F(g2, g3) is any quantity depending
on ω1 and ω3, or equivalently on ω and τ , or on g2 and g3. In
view of the obscurity of the references, we give a derivation of (3)
in Appendix A. The relationship between derivatives with respect
to (ω1, ω3) and (ω, τ) follows from Legendre’s identity ω3η1 −

ω1η3 =
1
2π i [1, Section 23.2.14].

Substituting F(ω1, ω3) = ωj (j = 1, 3) in (3) gives

∆
∂ωj

∂g2
= −

1
4
g2
2ωj +

9
2
g3ηj ∆

∂ωj

∂g3
=

9
2
g3ωj − 3g2ηj (4)

where the discriminant ∆ = g3
2 − 27g2

3 . Substituting F = ℘ and
F = ζ into (3) and using the expressions in [15, Thm. 10.1] for
∂℘/∂ωj and ∂ζ/∂ωj gives formulae for ∂℘/∂gi and ∂ζ/∂gi (i =

2, 3); these are already available in [6, Sections 18.6.19–18.6.22].
Our focus in this paper is on the mean values

µj =
1

2ωj

 z=z0+2ωj

z=z0
℘(z) dz. (5)

Here z0 can be any point except a lattice point, at each of which ℘
has a non-integrable singularity, and the integration is along any
path that does not pass through one of the lattice points. Since
dζ (z)/dz = −℘(z),

µj =

ζ (z0)− ζ (z0 + 2ωj)


/(2ωj) = −ηj/ωj,

independent of z0 [1, Section 23.2.11]. Note that for a given lattice,
the lattice generators 2ω1 and 2ω3 are not unique: 2l11ω1 +2l13ω3
and 2l31ω1 + 2l33ω3 are also generators for any integers lij such
that l11l33 − l13l31 = 1 [1, Section 23.2(i)]. The invariants g2 and
g3 are determined by the lattice only, not the choice of generators
[1, Section 23.3(i)]; howeverµ1 andµ3 do depend on the choice of
generators.

The µj ≡ µj(g2, g3) are potentially important quantities in
applications wherein g2 and g3 are the physically meaningful pa-
rameters. For instance, in the application to vegetation pattern-
ing discussed in Section 9, µ1 corresponds to the average plant
biomass, which is a key variable from environmental, conserva-
tion and land management perspectives. However, to the best of
our knowledge there is no discussion in the literature of the µj’s,
with the slight exception of a brief comment on page 315 of the
1886 edition of Halphen’s book [13].

The formulae for ∂ζ/∂gi (i = 2, 3), obtained as discussed above,
yield

∆
∂ηj

∂g2
=

1
4
g2
2ηj −

3
8
g2g3ωj ∆

∂ηj

∂g3
= −

9
2
g3ηj +

1
4
g2
2ωj. (6)

Combining (4) and (6) gives the system of non-autonomous differ-
ential equations

∆
∂µj

∂g2
=

3
8
g2g3 +

1
2
g2
2µj +

9
2
g3µ2

j

∆
∂µj

∂g3
= −9g3µj − 3g2µ2

j −
1
4
g2
2 .

(7)

A remarkable property of Eqs. (7) is that they are self-contained,
and do not involve ηj or ωj; this contrasts with the equations for
the ηj’s and ωj’s alone. By construction, the differential equations
(7) are compatible, i.e., ∂g2(∂g3µj) = ∂g3(∂g2µj). In Section 5 we
will show that (7) is exactly solvable.

It is important to comment that the Weierstrassian theory can
be reduced to dependence on a single parameter by renormalisa-
tion. In particular, Section 18.2.13 and Section 18.2.14 of [6] yield

µj(t2g2, t3g3) = tµj(g2, g3)
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which holds for any t ∈ C. Substituting t = g−1/2
2 and t = g−1/3

3
gives

µj (g2, g3) = g1/2
2 µj


1, g−3/2

2 g3


= g1/3
3 µj


g−2/3
3 g2, 1


(8)

(j = 1, 3). In applications it can be convenient to retain pairs of
parameters, and therefore we will continue with this description.
However wewill exploit the reduction to a single parameter in our
derivation of exact solutions, in Section 5.

The outline of the paper is as follows. In Section 3 we make
some comments on the relationship between the calculation of
the µj’s and the elliptic modular inversion problem. In Section 4
we introduce the two types of lattice (rectangular and rhombic)
that arise when g2, g3 ∈ R. In Section 5 we derive exact solutions
for the µj’s for these two lattice types, and in Section 6 we
derive various monotonicity results for the µj’s as functions of the
invariants, again when the latter are real. In Section 7 we discuss
numerical calculation of the µj’s for real g2 and g3. In Section 8 we
consider g2, g3 ∈ C, extending our analytical results to this case
and discussing numerical calculation of theµj’s. Finally in Section 9
we consider an application of our results to vegetation patterning
in semi-deserts.

3. Remarks concerning modular inversions

The pairs (g2, g3) and (ω1, ω3) are mutually dependent. Given
ω1 and ω3, the values of g2 and g3 are implied by (2); the opposite
conversion is known as the elliptic modular inversion problem
[2, Section 21.73], [16]. Tables of solutions are available (e.g.
[6, Table 18.1]) but standard analytical solutions only apply when
the Weierstrass elliptic equation y2 = 4x3 − g2x − g3 has been
converted to Jacobian normal form Y 2

= (1 − X2)(1 − k2X2). The
principal parameter of the theory, the ratio τ = ω3/ω1, is given for
this case by the famous Jacobi formula τ = iK

√
1 − k2


/K (k),

where K is Legendre’s complete integral of the first kind [17],
[1, Section 19.2.8]. For the Weierstrassian form all the parameters
of the theory can, of course, be computed [18, Eqs. 27 and 28],
although standard formulae for the solution are not as elegant as
in Legendre’s case [19, Section 14.6.2], [13, p. 341–348]. However,
more compact analytical formulae were obtained recently by
Brezhnev [15].

Eq. (1) implies that modular inversion centres around the
calculation of the complete elliptic holomorphic integrals

± ωj =

 ej

∞

dz
4z3 − g2z − g3

(9)

where e1, e2 and e3 are the ‘‘lattice roots’’, i.e. the roots of y2 =

4x3 − g2x− g3. In comparison we are concerned with an extension
of standard modular inversion, in the sense that inversion of (9) is
supplemented by an inversion of the meromorphic (second kind
elliptic) integral

± µj(ω1, ω3) =
1

2ωj

 ej

∞

z dz
4z3 − g2z − g3

. (10)

As well as being a very classical subject, this circle of questions
attracts much attention in connection with a spread of the theory
beyond elliptic curves. For higher genus algebraic dependences,
periods of second kind integrals also satisfy differential relations
and are related to the theories of integrable systems and theta-
constants [20, Section 4: hyperelliptic dependences]. The point
here is that choices of dependent/independent variables among
transcendental periods and coefficients of algebraic relations allow
much freedom. The differential relations above becomedifferential
equations and this leads to numerous applications. Extension of
these theories to an arbitrary (non-hyperelliptic) case is far from
complete and is a subject of intense recent studies [21]. It may
be also mentioned here that results that follow in this work can
be directly and effectively applied to some particular cases of
[20,21] when abelian integrals are reduced to the elliptic ones. In
these cases normalised periods of the second kind abelian integrals
are expressed through a set of the elliptic µ’s whose theory is
expounded below. As is known [22], the complete set of periods of
both the holomorphic and meromorphic integrals plays a central
role in these theories.

4. Lattices for g2, g3 ∈ R

The case of g2, g3 ∈ R is particularly well studied; indeed
Abramowitz & Stegun [6] restrict attention to this case. Lattices
then fall into one of two categories: ‘‘rectangular’’ and ‘‘rhombic’’,
meaning that the ‘‘fundamental parallelogram’’ with vertices at 0,
2ω1, 2ω3 and 2ω1 + 2ω3 has these shapes. Note that g2, g3 ∈ R
is a necessary and sufficient condition for the lattice to be either
rectangular or rhombic [23, Thms. 3.16.2 and 3.16.4].

‘‘Rectangular lattices’’ occur when g2, g3 ∈ R and ∆ > 0.
They can always be constructed using half-lattice generators that
satisfyω1, ω3/i ∈ R+ [23, Section 3.16], [1, Section 23.5(i), (ii)] and
throughout this paper our use of the phrase ‘‘rectangular lattice’’
will imply this choice of generators. An important special case is
the ‘‘lemniscatic’’ lattice, ω1 ∈ R and ω3 = iω1. Then g3 = 0 and
Section 23.5(iii) of [1] implies that

µ1(g2, 0) = −µ3(g2, 0) = −4π2g1/2
2 /Γ (1/4)4 (g2 > 0). (11)

‘‘Rhombic lattices’’ occur when g2, g3 ∈ R and ∆ < 0.
These can always be constructed using half-lattice generators that
satisfy ω1 ∈ R+, Re ω3 =

1
2ω1, Imω3 > 0 [23, Section 3.16],

[1, Section 23.5(i), (ii)] and again our use of the phrase ‘‘rhombic
lattice’’ will always imply this choice of generators. There are two
important special cases. The ‘‘pseudo-lemniscatic’’ lattice hasω1 ∈

R+ and ω3 =
1
2 (1 + i)ω1; then g2 < 0, g3 = 0 and

µ1(g2, 0) = iµ3(g2, 0) = −4π2(−g2)1/2/Γ (1/4)4 (g2 < 0) (12)

using Section 18.15 of [6] and (8). The ‘‘equianharmonic’’ lattice has
ω1 ∈ R+ and ω3 = eπ i/3ω1; then g2 = 0, g3 > 0 and

µ1(0, g3) = e2π i/3µ3(0, g3)

= −8π3g1/3
3 /


31/2Γ (1/3)6


(g3 > 0) (13)

using Section 23.5(v) of [1].
For the mean values µ1 and µ3 on these lattices, a key prelimi-

nary issue is whether or not they are real.

Theorem 1. For a rectangular lattice, µ1, µ3 ∈ R. For a rhombic
lattice, µ1 ∈ R and µ3 ∉ R.

Proof. For the rectangular lattice case, ℘(z) ∈ R when Im z =

ω3/i. Therefore taking z0 = ω3 and j = 1 in (5) shows that
µ1 ∈ R. For µ3, homogeneity relations imply that ℘(z; g2, g3) =

−℘(iz; g2,−g3) and ζ (z; g2, g3) = iζ (iz; g2,−g3) (e.g. substitute
t = i into Section 18.2.13 and Section 18.2.14 of [6]). Therefore for
a rectangular lattice

µ3(g2, g3) = −µ1(g2,−g3) (14)

and thus µ3 ∈ R also. Note that the validity of (14) does depend
on the lattice being rectangular.

For rhombic lattices, (7) implies that if Imµj = 0 for some val-
ues of g2 and g3, then ∂ Imµj/∂g2 = ∂ Imµj/∂g3 = 0 and thus
Imµj ≡ 0. Now µ1 ∈ R and µ3 ∉ R when g3 = 0 and g2 < 0.
Therefore µ1 ∈ R and µ3 ∉ R for all g2 and g3.

For µ1, one can alternatively use the infinite series Section
23.8.5 of [1], which shows immediately that η1 and thusµ1 is real-
valued for both lattice types. �
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5. Analytical solutions to (7)

In this section we present exact solutions for µj(g2, g3) (j =

1, 3). We present these in the context of g2, g3 ∈ R but our
derivations and solutions extend easily to g2, g3 ∈ C, and this
will be discussed in Section 8. As a prelude, it is helpful to sketch
out why Eqs. (7) are exactly solvable. The µj’s contain two ob-
jects: ηj and the half-period ωj. The former are expressible in
terms of Legendre’s complete elliptic integrals (see for example
[6, Section 18.9.13]), while ωj is given by integrals of the form (9),
which can also be written in terms of Legendre’s complete elliptic
integrals [6, Sections 18.9.7–18.9.8]. In principle, these combine to
give exact solutions for the µj’s, but the formulae are very cum-
bersome and inconvenient to use. It should also be noted that they
require knowing the lattice roots e1, e2, and e3 in terms of g2, g3.
This further complicates the result, to say nothing of analysis of
signs in numerous radicals of branch-points (see for example the
tables in Section 13.5 of [19]). Therefore we follow a different ap-
proach, inspired by the oldwork of Bruns [18] and Innes [24] on the
representation of periods of holomorphic and meromorphic ellip-
tic integrals in terms of hypergeometric functions. The latter satisfy
a linear differential equation of second order and the relationship
between the periods of integrals and such equations has an exten-
sive theory. It is known nowadays as the Picard–Fuchs theory, and
Bruns [18] was the first (1875) to construct the closed ‘hypergeo-
metric’ theory for ‘elliptic’ periods. See [25] for history and classical
references and [26,27] for some modern applications.

5.1. Solution in terms of hypergeometric functions

From (8) we have

µj(g2, g3) = g1/3
3 µj(g

−2/3
3 g2, 1) ≡ g1/3

3 µ(g−2/3
3 g2) (15)

where for notational simplicity we omit the subscript j from µ.
Here and throughout this section we choose the real cube root
when g3 < 0.

Substituting (15) into either of the equations in (7) and writing
z = g−2/3

3 g2 gives

(z3 − 27)
dµ
dz

=
9
2
µ2

+
1
2
z2µ +

3
8
z. (16)

This has the form of a first order Riccati equation, and the substi-
tutionµ = µ +

1
18 z

2 gives the canonical form

dµ
dz

=
9
2

µ2

z3 − 27
+

7
72

z. (17)

Using a standard trick for the Riccati equation [28, Section 1.2.1],
we write

µ =
2
9
(27 − z3)

ψz

ψ
⇒ (z3 − 27)ψzz + 3z2ψz +

7
16

zψ = 0.

Intuitively, this linear ode arises because the differential equations
in (7) may be viewed as two separate ode s, each having the Riccati
equation form. The appearance of the self-similarity variable z is
not surprising because it is directly related to a quantity uniquely
characterising the Weierstrass equation (1), namely Klein’s abso-
lute invariant

J =
g3
2

g3
2 − 27g2

3
=

z3

z3 − 27
.

This suggests the variable change s =
1
27 z

3. The equation for
ψ(z) = Ψ (s) then becomes

s(s − 1)Ψ ′′
+

1
3
(5s − 2)Ψ ′

+
7

144
Ψ = 0, (18)
which is a standard hypergeometric equation [6, Section 15.5],
[1, Section 15.10]. Eq. (18) and all the ensuing equations of
hypergeometric or Legendrian type provide examples of the
Picard–Fuchs equations in the context mentioned above. The
singularity in (18) at s = 1 is expected, since this point corresponds
to∆ = 0. There are a variety of different exact forms for the general
solution of the hypergeometric equation: Kummer famously
constructed 24 different solutions [29], [1, Section 15.10(ii)]. We
will use different forms for the cases |s| < 1 and |s| > 1; note that
|s| < 1 ⇒ ∆ < 0, while |s| > 1 allows both∆ > 0 and∆ < 0.

|s| < 1. For this case the general solution of (18) that we use is

Ψ = A · 2F1


1
12
,

7
12

;
2
3

s


+ B · s1/3 · 2F1


5
12
,
11
12

;
4
3

s

. (19)

Here 2F1 denotes the hypergeometric function, which is given
simply by the single-valued hypergeometric series since |s| < 1.
We comment that the ability to represent the solution in terms
of hypergeometric functions is expected, since all of the elliptic
integrals mentioned at the start of this section can be represented
in terms of such functions [6, Sections 17.3.9–12].

Wenowperform the inverse transformations, using the identity
d
ds 2

F1(a, b; c|s) =
ab
c

· 2F1(a + 1, b + 1; c + 1|s)

[1, Section 15.5.1]. After some algebraic manipulation, one obtains

µj(g2, g3) =
27g2

3 − g3
2

65g3
3

14Cg2
2g

2/3
3 G3 − 55g3

2G4 − 123g2
3G2

Cg2/3
3 G1 − g2G2

−
1
18

g2
2

g3
(20)

where

G1 = 2F1


1
12
,

7
12

;
2
3

s , G2 = 2F1


5
12
,
11
12

;
4
3

s ,
G3 = 2F1


19
12
,
13
12

;
5
3

s , G4 = 2F1


23
12
,
17
12

;
7
3

s (21)

with s = g3
2/

27g2

3


. Here C = −3A/B is a constant of integration,

which depends on j. For the equianharmonic case g2 = 0, g3 ∈

R+, (20) implies µ(0, g3) = −6g1/3
3 /C . Comparing this with (13)

shows that for µ1

−
6
C

3
√
g3 = −

8π3 3
√
g3

√
3Γ 6

 1
3

 H⇒ C =
3
√
3

4π3
Γ 6

1
3


≈ 15.486339.

Similarly for µ3,

C =
3
√
3

4π3
Γ 6

1
3


e2π i/3 ≈ −7.743169 + 13.411563 i.

|s| > 1. For this case we use the general solution of (18) given by

Ψ =As−1/12
· 2F1


1
12
,

5
12

;
1
2

s−1


+Bs−7/12

· 2F1


7
12
,
11
12

;
3
2

s−1


.

This generates a new solution for µj:

µj(g2, g3) =
g3
2 − 27g2

3

36g4
2g3

×
2Cg9/2

2
G1 + 45Cg3/2

2 g2
3
G3 + 14g3

2g3G2 + 231g3
3
G4Cg3/2

2
G1 + g3G2

−
1
18

g2
2

g3
, (22)
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whereC =A/(B√27) and

G1 = 2F1


1
12
,

5
12

;
1
2

s−1

, G2 = 2F1


7
12
,
11
12

;
3
2

s−1

,

G3 = 2F1


17
12
,
13
12

;
3
2

s−1

, G4 = 2F1


23
12
,
19
12

;
5
2

s−1
 (23)

(recall that s = g3
2/(27g

2
3 )). The constantC depends on the lattice

and on j. For a rectangular lattice (s > 1), the µj’s corresponding
to s = ∞ are given by (11), while (22) reduces to µj = g1/2

2 /

3C

when g3 = 0. ThereforeC = −Γ 4

1
4


/

12π2 for j = 1 and

C = Γ 4

1
4


/

12π2 for j = 3.

For a rhombic lattice (s < −1), we use the values of the µj’s
corresponding to s = −∞, which are given by (12); these implyC = iΓ 4


1
4


/

12π2 for j = 1 and

C = −Γ 4

1
4


/

12π2 for j = 3.

Note that Γ 4
 1
4


/

12π2


≈ 1.4589597.

Remark. There are old results on the representation of theωj’s and
ηj’s in terms of hypergeometric functions, due to Bruns [18]. His
formulae (25), (28) (on pages 241 and 243 of the 1886 reprint) can
be used to derive a formula for µj that is equivalent to (22). Note
that Bruns’s formulae were rewritten by Innes [24] to facilitate
numerical evaluation.

Continuity of (20) and (22). It is important to note that (20) and (22)
are continuous for all g2, g3 ∈ R. This continuity includes values
of g2 and g3 for which ∆ = 0. To see this, one uses the known
behaviour of the hypergeometric function when the argument is
close to unity (e.g. [1, Sections 15.4.20–23]). This implies that for
(20) with s ∈ R, µj → −

1
2g

1/3
3 as s → 1−, while for (22)

µj → −
1
2g

1/3
3 as s → 1+; these apply irrespective of the values

of the constants C andC .
5.2. Solution in terms of Legendre functions

We now present the derivation of an alternative solution form
for the µj’s, in terms of Legendre functions. Summaries of the
theory of these special functions are given, for example, in [6, Ch. 8]
and [1, Ch. 14].

Eq. (18) is a hypergeometric equation with parameters 1
12 ,

7
12

and 2
3 . Notably, the first two of these differ by 1

2 . This condition
implies that (18) can be reduced to a Legendre equation by a
quadratic transformation (see Section 3.2 of [17]). Moreover the
fact that the sum of the first two parameters is equal to the third
( 1
12 +

7
12 =

2
3 ) implies that the Legendre equation is of the simpler

non-associated type. Specifically, we substitute s = ξ−2 and Ψ =

s−1/3Y , arbitrarily fixing ξ > 0 if s > 0 and Im ξ > 0 if s < 0. This
gives

(1 − ξ 2)Y ′′
− 2ξY ′

−
5
36

Y = 0, (24)

which is in the standard form of Legendre’s non-associated equa-
tion. Note that different transformations, such as ŝ = 1 − ξ−2,
would reduce (18) to a complete Legendre equation, i. e. of associ-
ated type. We consider separately the three cases 0 < s < 1, s > 1
and s < 0.

0 < s < 1. In this case ∆ < 0 so that the lattice is rhombic.
We have ξ ∈ (1,∞), so that (24) has the general solution
Y (ξ) = AP−1/6(ξ) +BQ−1/6(ξ) [1, Section 14.2(i)]. Derivatives of
Legendrian functions generate Legendrian functions with different
indices [6, Section 8.5]. Thus inverting the various transformations
in Section 5.1 gives a solution for µ in terms of P−1/6(ξ), Q−1/6(ξ),
P5/6(ξ) and Q5/6(ξ). We omit the details and just give the final
result:

µj(g2, g3) = −
5
6

√
3g1/2

2

CP5/6(ξ)+ Q5/6(ξ)CP−1/6(ξ)+ Q−1/6(ξ)
+ 6

g3
g2
, (25)

where ξ = 3
√
3|g3|g

−3/2
2 ; note that g2 > 0 in this parameter

regime, and we take g−3/2
2 > 0. The integration constantC =A/B

again depends on j.

s > 1. In this case ∆ > 0: a rectangular lattice. Then Y (ξ) =AP−1/6(ξ) +BQ−1/6(ξ) where P−1/6 and Q−1/6 are Ferrer’s func-
tions [17, Section 3.4], [1, Section 14.23]. The derivation above pro-
ceeds in exactly the same way with these functions replacing the
Legendre functions, giving

µj(g2, g3) = −
5
6

√
3g1/2

2

CP5/6(ξ)+ Q5/6(ξ)CP−1/6(ξ)+ Q−1/6(ξ)
+ 6

g3
g2
. (26)

Again g2 > 0 and ξ = 3
√
3|g3|g

−3/2
2 with g−3/2

2 > 0. It is straight-
forward to show that (25) and (26) are continuous at s = 1.

s < 0. This is the case of g2 < 0. Then the lattice is necessarily
rhombic, and ξ is pure imaginary. We assume principal branches
of the Legendre functions, with a cut along (−∞, 1]. The fact that
the Legendre functions are multi-valued is reflected in the multi-
valuedness of theµj’s for g2, g3 ∈ C, and this is discussed in detail
in Section 8.

The solution (25) applies in this case. The Legendre functions
are complex-valued on the imaginary axis, and thus theµj given by
(25) is in general complex. We have shown (Theorem 1) that µ1 ∈

R for a rhombic lattice, and yet it is far from obvious thatC can be
chosen in order that the solution (25) is real. However we show in
Appendix B that for g2 < 0 and under our assumption g1/2

2 /i > 0,
(25) is always real provided thatC satisfies the constraint

C =

2π cos

arg
C − π/6


.

Note that 0 < s < 1 (i.e. 0 < g2 < (27g2
3 )

1/3) and s < 0 (i.e.
g2 < 0) both correspond to a rhombic lattice, but different values
ofC are required in these two cases. The explanation for this is that
(25) is not continuous at g2 = 0,which corresponds to ξ = ∞: this
follows from standard results on the behaviour of Pν(ξ) as ξ → ∞

(e.g. [1, Section 14.8.12]). Therefore to give a continuous solution
for µj one requires different values ofC for g2 > 0 and g2 < 0.

As in Section 5.1, the values ofC andC corresponding toµ1 and
µ3 for rectangular and rhombic lattices can be determined using
the known values for g2 = 0 and g3 = 0.

6. Monotonicity results for g2, g3 ∈ R

In applications it can be important to consider whether or not
the µj’s are monotonic as functions of the gi’s. In this section we
prove the following two theorems pertaining to this issue.

Theorem 2. For a rectangular lattice, µ1 and µ3 satisfy

(i) ∂µ1/∂g2 < 0 (ii) ∂µ1/∂g3 < 0
(iii) ∂µ3/∂g2 > 0 (iv) ∂µ3/∂g3 < 0.

Moreover, the ranges of µ1 andµ3 as one of g2 and g3 are varied with
the other fixed are specified by

(v) µ1 = −c, µ3 = −c on g2 = 12c2, g3 = 8c3

(⇒ ∆ = 0) with c ∈ R
(vi) µ1 → −∞, µ3 → +∞ as g2 → ∞with g3 fixed.
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Theorem 3. For a rhombic lattice

(i) for g2 > 0: ∂µ1/∂g2 < 0 for g3 > 0 and ∂µ1/∂g2 > 0 for
g3 < 0;

(ii) for g2 < 0 and g3 > 0:µ1 is non-monotonic as a function of both
g2 and g3 > 0. Specifically, for any g2 < 0 there is a g3 > 0 at
which ∂µ1/∂g3 = 0 and ∂2µ1/∂g2

3 < 0, and for any g3 > 0
there is a g2 < 0 at which ∂µ1/∂g2 = 0 and ∂2µ1/∂g2

2 < 0.

Although these monotonicities must follow from the exact
solutions derived in Section 5, we have found it easier to prove
them directly from the governing differential equation (7).

Proof of Theorem 2. In the proof of Theorem 1 we showed that
the identity (14) holds for rectangular lattices. Therefore it is
sufficient to prove only the parts of the theorem concerning µ1.

We consider first (v) and (vi). When ∆ = 0, exact for-
mulae for η1 and ω1 (and indeed for ℘(.) itself) are available
[6, Section 18.12], and (v) follows easily from these. For (vi), (8)
⇒ µ1(g2, g3) ∼ µ1(1, 0)g

1/2
2 as g2 → ∞ with g3 fixed. Moreover

(11) implies that µ1(1, 0) < 0. Therefore (vi) holds.
We turn now to (ii). From (7) we have

∆
∂µ1

∂g3
= −


3

g2µ1 +

3
2
g3

2

+
1
4
∆


/g2. (27)

Since g2 > 0 and∆ > 0 for a rectangular lattice, this implies (ii).
Finally, we consider (i). We begin by proving two preliminary

inequalities. Differentiating (1) and multiplying by ℘ gives

6℘3
−

1
2
g2℘ = ℘℘ ′′

= (℘℘ ′)′ − (℘ ′)2

⇒ ℘3
=

1
10
(℘℘ ′)′ +

3
20

g2℘ +
1
10

g3 (28)

using (1). Substituting (28) into (1) gives

2g2℘ + 3g3 = 2(℘℘ ′)′ − 5(℘ ′)2. (29)

Now ℘(z) is real-valued when Im z = ω3/i, so that (℘ ′)2 ≥ 0.
Therefore integrating (29) between ω3 and ω3 + 2ω1 along a path
parallel to the real axis shows that

2g2µ1 + 3g3 ≤ (1/ω1)

℘℘ ′

ω3+2ω1
ω3

= 0. (30)

Note that the validity of (30) is lattice-dependent. In particular, it
does not hold in general for a rhombic lattice: the derivation fails
because there is no path for the integration of (29) along which ℘
is real-valued and non-singular.

Our second preliminary inequality follows immediately from
(ii) and (v). For a given value of g2 > 0, and for g3 such that∆ > 0,

µ1


g2,−


g3
2/27

1/2
> µ1(g2, g3) > µ1


g2,

g3
2/27

1/2
i.e. − (g2/12)1/2 < µ1(g2, g3) < (g2/12)1/2

⇒ µ2 < g2/12. (31)

Substituting (30) and (31) into the formula for ∂µ1/dg2 in (7) gives

∂µ1/∂g2 <
3
8
g2g3 +

1
2
g2
2 (−3g3/2g2)+

9
2
g3(g2/12)


/∆ = 0. �

Proof of Theorem 3. We consider first (i). From (7) we have

∂µ1

∂g2
= g3


9
2∆


µ1 +

g2
2

18g3

2

−
g2

72g2
3


from which (i) follows immediately.
For (ii), we consider first the case of g2 < 0 fixed. Then (7)
and (12) imply that when g3 = 0, ∂µ1/∂g3 ≈ −0.0934/g2 > 0.
But (8) implies that µ1(g2, g3) ∼ g1/3

3 µ1(0, 1) as g3 → ∞ with
g2 fixed, and (13) ⇒ µ1(0, 1) < 0. Therefore ∂µ1/∂g3 < 0 for
g3 sufficiently large and positive. Hence by continuity there is a
value of g3 > 0 for which ∂µ1/∂g3 = 0 and ∂2µ1/∂g2

3 ≤ 0. It
remains to exclude the possibility that ∂2µ1/∂g2

3 = 0, which we
do by contradiction. Differentiation of the equation for ∂µ1/∂g3 in
(7) implies that when ∂µ1/∂g3 = 0, ∂2µ1/∂g2

3 = −9µ1/∆. Thus
∂µ1/∂g3 = ∂2µ1/∂g2

3 = 0 ⇒ µ1 = 0 ⇒ ∂µ1/∂g3 ≠ 0, using (7).
A similar argument applies for g3 > 0 fixed. Then (7) implies

that when g2 = 0, ∂µ1/∂g2 = −µ2
1/6g3 < 0 since µ1 < 0. But (8)

implies that µ1(g2, g3) ∼ (−g2)1/2µ1(−1, 0) as g2 → −∞ with
g3 > 0 fixed. But (12) ⇒ µ1(−1, 0) < 0. Therefore ∂µ1/∂g2 > 0
for g2 sufficiently large and negative. Hence by continuity there is
a value of g2 < 0 for which ∂µ1/∂g2 = 0 and ∂2µ1/∂g2

2 ≤ 0. To
exclude the possibility that ∂2µ1/∂g2

3 = 0, we first consider the
sign of µ1. The first equation in (7) implies that if µ1 = 0 then
∂µ1/∂g2 = 3g2g3/8∆ > 0. However µ1 < 0 when g2 = 0.
Therefore µ1 < 0 must hold for all g2 < 0 and g3 > 0. Now
when ∂µ1/∂g2 = 0, (7) implies that ∂2µ1/∂g2

2 =
 3
8g3+g2µ1


/∆.

Therefore ∂µ1/∂g3 = ∂2µ1/∂g2
3 = 0 ⇒ µ1 = −3g3/8g2 > 0, a

contradiction. �

Remark. We note that Eq. (27), and the monotonicity results (ii)
and (iv) that follow from it, appear on page 315 of the 1886 edition
of Halphen’s book [13]. This is the only published reference to the
µj’s of which we are aware.

7. Numerical computation of µ1 and µ3

The mean values µ1 and µ3 can be computed by numerical
evaluation of the defining integrals (5). However this is a slightly
laborious approach, and error estimation is difficult. Our results
suggest two other approaches that are more robust. Again we
restrict attention in this section to g2, g3 ∈ R, with computation
of the µj’s for complex invariants discussed in Section 8.
Numerical solution of (7). For g2, g3 ∈ R, numerical solution of
the differential equations (7) is an efficient method for calculating
the µj’s. A suitable starting point is required for the solution. For
a rectangular lattice, one can use the lemniscatic case (11), while
for a rhombic lattice, potential starting points are provided by
the pseudo-lemniscatic case (12) or the equianharmonic case (13).
As one would expect from the form of (7), numerical integration
becomes progressively more difficult as one approaches ∆ = 0,
and very small increments in the gi’s are required.
Numerical evaluation of the exact solutions. The exact solutions
(20), (22) and (25) can also be used for numerical calculation
of the µj’s. Hypergeometric and Legendre functions are pre-
programmed in many mathematical software packages including
maple [30], making numerical evaluation of these solutions
relatively straightforward.

We have used both of these numerical methods successfully.
We found the use of the solutions (20) and (22) in terms of hyper-
geometric series to be the most efficient for real g2 and g3. For ex-
ample, using themaple functionevalf/hypergeom/kernel [30]
with Digits=10, one can perform about 2000 evaluations of µj
per second on a typical desktop computer. Notice that whilst µ3
is strictly complex for rhombic lattices (Theorem 1), its computa-
tion is no less efficient than that for µ1 because it involves only
the real 2F1-series, or it reduces to a computation of µ1 itself (via
formula (14)).

Fig. 1 shows contour plots of µ1 and µ3 in the g2–g3 plane
for rectangular lattices; note that only the part of the plane for
which ∆ > 0 is relevant. One notable feature of Fig. 1b is the
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Fig. 1. Numerically calculated values of µ1 and µ3 for rectangular lattices; then
µ1, µ3 ∈ R. (a, c) Contours ofµ1 (a) andµ3 (c) in the g2–g3 plane. The thick curves
denote the boundaries ∆ = 0 of the parameter region covered by rectangular
lattices. Note that µ1 takes positive as well as negative values, but µ1 > 0 only
in a thin layer adjacent to the left hand branch of the∆ = 0 curve; the opposite is
true forµ3 . This is illustrated in (b, d), which showµ1 (b) andµ3 (d) as a function of
g3 for g2 = 5. Note the steepness of the curve at the left/right (b/d) hand boundary
of the g3 range; the arrows indicate the values of µ1 on these boundaries.

steepness of µ1 when g3 is just above its minimum value of
−(g3

2/27)
1/2. Detailed calculation of this behaviour using (7) shows

that µ1 −
√
g2/12 ∼ 2(g2/3)1/2/ log


(g3

2/27)
1/2

+ g3

as g3 →

−(g3
2/27)

1/2+. The corresponding steepness ofµ3 for g3 just below
(g3

2/27)
1/2 is implied by (14); this is illustrated in Fig. 1d.

For rhombic lattices, Fig. 2 showsµ1 and the real and imaginary
parts of µ3 as functions of g2 for g3 = ±1, and Fig. 3 shows them
as functions of g3 for g2 = ±1. The parts of the graphs in which
nothing is plotted are those for which∆ ≥ 0.

8. Extension to g2, g3 ∈ C

In Sections 5–7 we have focussed on the case of real invariants
g2 and g3. However our definition of the mean values µ1 and µ3,
and the differential equations (7), are valid for all g2, g3 ∈ C. In
this sectionwe discuss the extension of our results in Section 5 and
Section 7 to this more general setting.

8.1. Analytical solutions of (7) for g2, g3 ∈ C

No assumption of reality for g2 and g3 is needed in the
derivation of solutions (20) and (22) for the µj’s in terms of
hypergeometric functions, and these solutions also apply for
complex g2 and g3. The hypergeometric functions 2F1 and non-
integer powers are then multi-valued; the former is obtained by
analytic continuation of the hypergeometric series. Therefore the
solutions for µj are similarly multi-valued; this issue is discussed
in detail in Section 8.2. Single-valued analytic functions can be
obtained on suitably cut planes. The principal branch of 2F1
is defined by introducing a cut along [1,∞) [1, Section 15.2],
while the principal branch of a non-integer power is given by a
cut along (∞, 0] [1, Section 4.2(iv)]. If we assume these principal
branches, then (20) is valid for s ∈ C\[1,∞) and g3 ∈ C\(−∞, 0],
while (22) is valid for s ∈ C \ [0, 1] and g2 ∈ C \ (−∞, 0]. In fact
the branch cuts for g3 in (20) and g2 in (22) can be relocated to any
half lines arg(gj) = θ via the substitutions C∗

= e2i(θ−π)/3C andC∗
= ei(θ−π)/2C . It is important to emphasise that (20) and (22) are

not analytic continuations of one another. In practice, it is natural
to use (20) when |s| > 1 and (22) when |s| < 1, because then
the principal branches of the hypergeometric functions are given
simply by hypergeometric series.

The solution (25) is also valid for complex g2 and g3, provided
that one redefines ξ = 3

√
3g3g

−3/2
2 (i.e. provided one omits the

modulus sign around g3). Again these solutions are multi-valued.
The principal branch of Legendre’s functions are given by a cut
along (−∞, 1], and therefore if one assumes this branch then (25)
is valid for ξ ∈ C \ (−∞, 1] and g2 ∈ C \ (−∞, 0].

8.2. The multi-valuedness of µj for g2, g3 ∈ C

The hypergeometric and Legendre functions that appear in our
exact solutions for µj are not single-valued: this is a ramification
of the singularities of Eqs. (18) and (24). Therefore themean values
µj(g2, g3) are multi-valued, when considered as analytic functions
on C × C. To explain this, it is necessary to return to the modular
inversion problem mentioned in Section 3. This is the problem
of determining half-periods ω1 and ω3 for given values of the
invariants g2 and g3; it is discussed in detail inmany textbooks (see
for example [2, Section 21.73]), [16,5] and we give here only a very
brief summary of the key results. The central player in the theory is
the period ratio τ = ω3/ω1, andω = ω1 and τ are themost natural
parameters for the Weierstrassian functions in this context. For g2
and g3, τ is determined by the transcendental equation

J(τ ) = g3
2/

g3
2 − 27g2

3


, (32)

where J(.) is Klein’s modular function, introduced previously in
Section 5.1 [31], [3, Section 10], [1, Section 23.15.7]. Once τ is
known, the ωj’s are determined uniquely apart from an arbitrary
choice of the signs of theωj’s. This arbitrariness of sign is clear from
the basic formulae (2), which imply

ω2
1 =

7
3
g2
g3


(2m + 2nτ)−6
(2m + 2nτ)−4

(33)

(here the summations are over m, n ∈ Z with m = n = 0
excluded) [32, Section II.4]2 and does not affect the values of the
µj’s. However the solution of (32) for τ is not unique in H+.
(Here we use H+ to denote the upper half of the complex plane.)
Consequently there is multi-valuedness in the ωj’s, and this is
inherited by the µj’s. The branch cuts mentioned in Section 8.1
implicitly imply one choice for the ωj’s, but it is not the standard
choice. Rather, one conventionally specifies the solution of (32)
by requiring τ to lie in T ⊂ H+, known as the ‘‘fundamental
region’’. There are different conventions for the choice of T, and
we follow [16] by defining T by the four conditions (i) Im (τ ) > 0,
(ii) −1/2 ≤ Re (τ ) < 1/2, (iii) |τ | ≥ 1, (iv) Re (τ ) ≤ 0 if
|τ | = 1 (see Fig. 4). The key result is that given any g2, g3 ∈ C such
that ∆ ≠ 0, the transcendental equation J(τ ) = c has a unique
solution with τ ∈ T for any given c ∈ C [32, Section II.4.3, Thm. 3,
p. 211]; see also [33, Section II.3.2]. Therefore the restriction τ ∈ T
specifies the ωj’s uniquely (up to sign change). The definition (5)
then uniquely determines the µj’s. Finally, it should be noted that
for g2, g3 ∈ R, the lattices implied by fixing τ ∈ T differ (in
some cases) from those specified in Section 4. One great advantage
of the lattices given in Section 4 is that the corresponding µj’s
vary continuously with g2 and g3 away from ∆ = 0; also µ1 is
continuous across ∆ = 0. In contrast, specifying τ ∈ T gives
discontinuities in theµj’s as functions of g2 and g3. These arise from
discontinuities in τ at the boundaries of T, and also, in some cases,
when g2 and g3 change sign.

2 Note that this step in the modular inversion solution, i. e. determination of ω1 ,
is given incorrectly in Section 11 of [3]. Note also that the Weierstrass–Eisenstein
series (33) is entirely unsuited for numerical computations, and in practice one uses
instead Lambert series; see [32, Section II.4.2, p. 210, 222].
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Fig. 2. Numerically calculated values of µ1 and µ3 as functions of g2 with g3 = ±1, for rhombic lattices. The dashed lines indicate the boundaries (∆ = 0) of the g2 range
given by rhombic lattices, and the arrows indicate the values on these boundaries.
Fig. 3. Numerically calculated values of µ1 and µ3 as functions of g3 with g2 = ±1, for rhombic lattices. For g2 = 1, the dashed lines indicate the boundaries (∆ = 0) of
the g3 range given by rhombic lattices, and the arrows indicate the values on these boundaries; for g2 = −1 there is no restriction on the value of g3 .
8.3. Numerical computation of µ1 and µ3 for g2, g3 ∈ C

When g2 and g3 are complex, numerical solution of the govern-
ing differential equation (7) is not a very convenientmeans of com-
puting the µj’s. However the exact solutions (20), (22) and (25) all
provide straightforward approaches to computation; we found the
Legendrian form (25) to be the most computationally efficient for
g2, g3 ∈ C.

Another numerical approach is also available, different from
those discussed in Section 8.3, that builds on the comments
in Section 8.2. This involves numerical solution of the elliptic
inversion problem. For g2 and g3 both non-zero, Klein’s equation
(32) has the solution

τ = i
P−1/6


−3

√
3g3/g

3/2
2


P−1/6


3
√
3g3/g

3/2
2



[15, Thm. 8.1] which can be evaluated numerically using standard
mathematical software such as maple [30]. Separate formulae are
required for g2 = 0 or g3 = 0; these are the lemniscatic and
equianharmonic cases. Using these solutions for τ , the series

ηj =
1
ωj

· 2π2


1
24

−

∞
k=1

e2kπ iτ

(1 − e2kπ iτ )2


, where τ =

ω3

ω1
(34)

can be used to numerically calculate ηj; µj = −ηj/ωj then fol-
lows. The computational efficiency of this approach depends on
the value of Im τ . However, fixing τ to be in the fundamental re-
gion T defined in Section 8.2 causes the convergence to be very
rapid. For example, even the ‘‘worst’’ purely equianharmonic point
Im τ =

√
3/2 ≈ 0.866025 corresponds to a very rapidly conver-

gent series. Formula (34) shows that this series converges almost in
the manner of the geometric progression


qk with the very small

exponent q = exp(−π
√
3) ≈ 0.004333 (see the two last sen-

tences in [32, Section II.7.2, p. 249]).
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Fig. 4. An illustration of the fundamental region T. The significance of this region
is that given any g2, g3 ∈ C such that∆ ≠ 0, there is a unique solution of J(τ ) = c
with τ ∈ T for any given c ∈ C (see Section 8.2 for more details).

Figs. 5 and 6 show plots of the µj’s as functions of complex-
valued g2 and g3 respectively. These figures have g3 ≡ 1 and g2 ≡ 1
respectively; however the behaviour for other fixed values of g3
and g2 can be inferred from (8). The discontinuities discussed in
Section 8.2 are clearly visible; however, note that the plots suggest
that Imµ1 is continuous as a function of g3 (for fixed g2).

9. Example application: vegetation patterns

An example of the application of our results comes from self-
organised patterns of vegetation. These are a common feature of
semi-arid landscapes, and on hillsides they consist of stripes of
vegetation running parallel to the contours, separated by stripes of
bare ground. The plants involved can range from grasses to shrubs
and trees, with typical wavelengths for the latter being about 1km.
Patterns of this type occur in many parts of the world and are
particularly well documented in Africa, Australia and Mexico (see
[34,35] for ecological reviews). The harsh environmental condi-
tions make field work difficult, and there are no laboratory repli-
cates of the pattern-forming process. Consequently mathematical
modelling is an important research tool; for reviews of the vari-
ous models that have been proposed, see [36,37]. One of the oldest
and most influential models is due to Klausmeier [9], and has the
dimensionless form

∂u/∂t =

plant
growth
wu2

−

plant
loss
Bu +

plant
dispersal  
∂2u/∂x2 (35)
Fig. 5. Numerically calculated values of µ1 and µ3 as functions of g2 ∈ C for g3 ≡ 1. Here the lattice generators are specified by the requirement τ ∈ T (see Section 8.2).
The discontinuities correspond either to τ lying on the boundary of T or to g2 = 0.



J.A. Sherratt, Y.V. Brezhnev / Physica D 263 (2013) 86–98 95
Fig. 6. Numerically calculated values of µ1 and µ3 as functions of g3 ∈ C for g2 ≡ 1. Here the lattice generators are specified by the requirement τ ∈ T (see Section 8.2).
The discontinuities correspond either to τ lying on the boundary of T or to g3 = 0.
∂w/∂t = A
rain-
fall

− w
evap-

oration

− wu2
uptake

by plants

+ ν∂w/∂x  
flow

downhill

. (36)

Here u(x, t) is plant density,w(x, t) is water density, t is time and
x is a one-dimensional space variable running in the uphill direc-
tion. A key term in this model is the nonlinear uptake rate of water
by plants,wu2. On bare ground, much of the water that falls as rain
simply runs off, but on vegetated ground the higher levels of or-
ganic matter in the soil, and the presence of roots, both increase
the proportion of rain water infiltrating into the soil [38,39]. Con-
sequently when vegetation biomass is larger there is greater water
availability, and thus increased per capita uptake by plants and in-
creased plant growth.

Many empirical studies show that on a time-scale of decades,
striped vegetation patterns move uphill; speeds of 0.3–0.8 m/year
are typical [34]. Intuitively, this pattern migration is due to
higher moisture levels on the uphill edge of the vegetation bands
than on their downhill edge, leading to reduced plant death and
greater seedling density [40,41]. Numerical solutions of (35) and
(36) reflect this migration. Starting from randomly generated
initial conditions, numerical solutions typically evolve to spatially
periodic solutions that move in the positive x direction at a
constant speed (Fig. 7). Therefore the appropriate solution ansatz
for patterns is u(x, t) = U(ξ), w(x, t) = W (ξ), ξ = x − ct where
the newparameter c > 0 is themigration speed. Substituting these
solution forms into (35) and (36) gives

U ′′
+ c U ′

+ WU2
− BU = 0

(ν + c)W ′
+ A − W − WU2

= 0.
(37)

The value of ν is typically large; this follows from the nondimen-
sionalisation [9,42] and the fact that the advection rate of water
is much larger than the plant dispersal rate. For instance, Klaus-
meier [9] estimated ν = 182.5, with A and B lying in the ranges
0.1–3.0 and 0.05–2.0 respectively, depending on vegetation type.
Therefore it is natural to study the asymptotic form of solutions of
(37) for large ν. This depends on how c scaleswith ν, but if one con-
siders the case c ≪ 1 then to leading order for large ν,W = W0, a
constant, and

U ′′
+ W0U2

− BU = 0. (38)

The constantW0 is determined by the rainfall parameter A and the
migration speed [11]. Substituting ξ =ξ/√B and

U = B

1
2

− 6U /W0 (39)

into (38) gives d2U(ξ)/dξ 2 = 6U2
−

1
24 . Therefore U(ξ) satisfies

(1) with g2 = 1/12. Calculations of higher order terms in the
asymptotic expansion of U [11] show that g3 corresponds to
the leading order migration speed, and can take any value in
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Fig. 7. A typical example of a pattern solution of the model (35) and (36) for
vegetation in semi-arid environments. The alternating peaks and troughs of u
correspond to vegetation bands and the gaps between them, respectively. The
solution is plotted at three different times, 3 dimensionless time units apart, to
illustrate the uphill migration of the pattern. The parameter values are A = 2.4,
B = 0.5 and ν = 182.5. The spatial domain is of length 100 with periodic boundary
conditions. The initial conditions are small random perturbations (amplitude ±5%)
to the vegetated steady state u = 2B/


A +


A2

− 4B2
1/2, w =


A +

A2
− 4B2

1/2
/2. The first solution is plotted after 2400 dimensionless time units;

this long time ensures that transients have decayed. The equations were solved
numerically using a finite difference scheme in which the diffusion terms were
evaluated semi-implicitly, with explicit evaluation of the reaction and advection
terms, using upwinding for the latter. The spatial grid had a uniform spacing of
0.025 and I used a time step of 1.096 × 10−4; these imply a CFL number of 0.8,
and give an error of about 0.06% in the solution.

(−1/216, 1/216) (⇒ ∆ > 0). Ecological realismdemands that the
solution is real-valued and without singularities. Taking ω1, iω3 ∈

R as in Section 4, it follows thatUξ  = ℘
ξ + ω3 + ξ0


(40)

where ξ0 ∈ R is arbitrary.
One important reason for studying vegetation patterns in semi-

arid regions is their potential vulnerability to a transition to total
desert [43]. In this context, a key solution measure is the mean
vegetation density, and (39) and (40) imply that, to leading order
for large ν, this is given by

Umean ≡ B

1
2

− 6µ1


1
12
, g3


/W0.

The results presented in this paper can then be combined with
details of the relationship between g3 and the migration speed
c to make predictions on the relationship between Umean and c .
For example, for c ≪ 1/ν as ν → ∞, it is shown in [11]
that c is a decreasing function of g3 when ν is sufficiently large.
Theorem 2(ii) then implies that ∂µ1/∂c > 0, i.e. the mean
vegetation level is negatively correlated with the speed of pattern
migration. This prediction is experimentally testable, by combining
field data on vegetation cover (e.g. [44]) with inferences about
pattern migration from satellite images [45].
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Appendix A. Derivation of (3)

In this appendix we give a derivation of (3), based on the
presentations in [14,12]. Let G(z|ω1, ω3) be any doubly periodic
function, i.e.

G(z + 2nω1 + 2mω3|ω1, ω3) = G(z|ω1, ω3).

Differentiating this identity with respect to z, ω1 and ω3 gives

∂G
∂z
(z + 2nω1 + 2mω3) =

∂G
∂z
(z) (A.1)

2n
∂G
∂z
(z + 2nω1 + 2mω3)

+
∂G
∂ω1

(z + 2nω1 + 2mω3) =
∂G
∂ω1

(z) (A.2)

2m
∂G
∂z
(z + 2nω1 + 2mω3)

+
∂G
∂ω3

(z + 2nω1 + 2mω3) =
∂G
∂ω3

(z). (A.3)

We now define

Φ1[G] = ω1∂ω1G + ω3∂ω3G + z∂zG.

Multiplying (A.1), (A.2) and (A.3) by z, ω1 and ω3 respectively and
adding gives

ω1
∂G
∂ω1

(z + 2nω1 + 2mω3)+ ω3
∂G
∂ω3

(z + 2nω1 + 2mω3)

+ (z + 2nω1 + 2mω3)
∂G
∂z
(z + 2nω1 + 2mω3)

= ω1
∂G
∂ω1

(z)+ ω3
∂G
∂ω3

(z)+ z
∂G
∂z
(z) ;

that is Φ1[G](z + 2nω1 + 2mω3|ω1, ω3) = Φ1[G](z|ω1, ω3).
Similarly the combination

Φ2[G] = η1∂ω1G + η3∂ω3G + ζ (z)∂zG

is doubly periodic in the periods of G.
We now fix G = ℘. Near z = 0

℘(z) =
1
z2

+
1
20

g2z2 +
1
28

g3z4 + · · · . (A.4)

[1, Sections 23.9.2, 23.9.4]. Therefore −
1
2Φ1[℘] is an elliptic func-

tionwith (minimal) periodsω1 andω3, with a double pole at z = 0
whose principal part is 1/z2, and with−

1
2Φ1[℘]−1/z2 being zero

at z = 0 and analytic near z = 0. These properties uniquely define
℘(z), so that

ω1
∂℘

∂ω1
+ ω3

∂℘

∂ω3
+ z

∂℘

∂z
= −2℘. (A.5)

Similarly, using the Laurent expansion

ζ (z) =
1
z

−
1
60

g2z3 −
1

140
g3z5 + · · ·

[1, Sections 23.9.3, 23.9.4] one sees that −
1
2Φ2[℘] +

1
6g2 is an el-

liptic function with (minimal) periodsω1 andω3, with a quadruple
pole at z = 0 whose principal part is 1/z4, and with −

1
2Φ2[℘] +

1
6g2 − 1/z4 being zero at z = 0 and analytic near z = 0. These
properties uniquely define ℘(z)2, so that

η1
∂℘

∂ω1
+ η3

∂℘

∂ω3
+ ζ (z)

∂℘

∂z
= −2℘2

+
1
3
g2. (A.6)
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We now differentiate (A.4) termwise with respect to ωj (j =

1, 3) giving
∂℘

∂ωj
=

1
20
∂g2
∂ωj

· z2 +
1
28
∂g3
∂ωj

· z4 + · · · .

Substituting these expansions and (A.4) into (A.5) and (A.6), and
equating coefficients of z2 and z4 gives

ω1
∂g2
∂ω1

+ ω3
∂g2
∂ω3

= −4g2, η1
∂g2
∂ω1

+ η3
∂g2
∂ω3

= −6g3,

ω1
∂g3
∂ω1

+ ω3
∂g3
∂ω3

= −6g3, η1
∂g3
∂ω1

+ η3
∂g3
∂ω3

= −
1
3
g2
2 .

Using Legendre’s identity ω3η1 −ω1η3 =
1
2π i [1, Section 23.2.14],

these linear equations for ∂gi/∂ωj can be solved to give

∂g2
∂ω1

=
i
π


12g3ω3 − 8g2η3


,

∂g2
∂ω3

= −
i
π


12g3ω1 − 8g2η1


,

∂g3
∂ω1

=
i
π

2
3
g2
2ω3 − 12g3η3


,

∂g3
∂ω3

= −
i
π

2
3
g2
2ω1 − 12g3η1


.

Hence for F(ω1, ω3) =F(g2, g3), the usual linear chain relations

∂F
∂ωj

=
∂g2
∂ωj

∂F
∂g2

+
∂g3
∂ωj

∂F
∂g3

(j = 1, 3) imply

∂F
∂ω1

=
2
3

i
π


6

3g3ω3 − 2g2η3

 ∂F
∂g2

+

g2
2ω3 − 18g3η3

 ∂F
∂g3


,

∂F
∂ω3

= −
2
3

i
π


6

3g3ω1 − 2g2η1

 ∂F
∂g2

+

g2
2ω1 − 18g3η1

 ∂F
∂g3


which implies the first of both of the double equalities in (3).
The second equality follows easily by applying the chain rule for
differentiation and using Legendre’s identity. For completeness we
also give the inverse formulae:

∆
∂F
∂g2

= −
1
4


g2
2ω1 − 18g3η1

 ∂F
∂ω1

+

g2
2ω3 − 18g3η3

 ∂F
∂ω3


,

∆
∂F
∂g3

=
3
2


3g3ω1 − 2g2η1

 ∂F
∂ω1

+

3g3ω3 − 2g2η3

 ∂F
∂ω3


.

An alternative derivation of these formulae is given in the
Halphen’s book [13, p. 302–307 and p. 319–320]. Halphen uses se-
ries expansions of theWeierstrass sigma function; in fact he works
with variants of σ(z)which he denotes by σ1, σ2 and σ3; these are
defined on page 189 of the 1886 edition of his book.

Appendix B. Condition for (25)∈ R when g2 ∈ R−

In this appendix we show that when g2, g3 are real with g2 <
0, solution (25) for µj is also real provided that the constant of
integrationC satisfies the conditionC = 2π cos


arg
C − π/6


.

This defines one of the two real quantities
C and argC as a func-

tion of the other. Therefore there is one remaining real free pa-
rameter, which depends on the lattice and j, and which can be
calculated by reference to the lemniscatic (g2, 0) or equianhar-
monic (0, g3) cases. Note that since

C ≥ 0, arg
C is restricted

to the interval [−π/3, 2π/3].
This result is a simple corollary of:

Proposition B.1. For ν ∈ R, define

H(x) =
i [CPν(ix)+ Qν(ix)]
CPν−1(ix)+ Qν−1(ix)

. (B.1)

Then H(x) ∈ R for all x ∈ R+ if and only if

|C | =
π cos{arg(C)− (1 − ν)π}

sin{νπ}
.

Remark. For x ∈ R−, a different condition must be satisfied:

|C | =
π cos{arg(C)+ (1 − ν)π}

sin{νπ}
.

This follows immediately from Proposition B.1, by taking the
complex conjugate of (B.1).

Proof. We begin by writing the Legendre functions Pν and Qν in
terms of hypergeometric functions, using formulae (22) and (40)
of [17]; here we are following the approach of Dunster [46]. For
x ∈ R+, these formulae give

Pν(ix) =
π1/2Aν(x)
Γ
 1
2 −

1
2ν
 − i

2π1/2Bν(x)
Γ

−

1
2ν
 (B.2)

Qν(ix) = iπ1/2e−iπν/2

Γ


1 +

1
2
ν


Bν(x)

−
1
2
Γ


1
2

+
1
2
ν


Aν(x)


where Aν = 2F1


−

1
2
ν,

1
2

+
1
2
ν;

1
2
; −x2


/Γ


1 +

1
2
ν


Bν = 2F1


1
2

−
1
2
ν, 1 +

1
2
ν;

3
2
; −x2


x/Γ


1
2

+
1
2
ν


. (B.3)

Note that positivity of x is necessary for (B.3) though not for (B.2).
Writing C = CR + iCI (CR, CI ∈ R), it follows that

Re [CPν(ix)] =
π1/2CRAν(x)
Γ
 1
2 −

1
2ν
 +

2π1/2CIBν(x)
Γ

−

1
2ν
 (B.4)

Im [CPν(ix)] =
π1/2CIAν(x)
Γ
 1
2 −

1
2ν
 −

2π1/2CRBν(x)
Γ

−

1
2ν
 (B.5)

Re [Qν(ix)] = π1/2 sin

1
2
πν


×


Γ


1 +

1
2
ν


Bν(x)−

1
2
Γ


1
2

+
1
2
ν


Aν(x)


(B.6)

Im [Qν(ix)] = π1/2 cos

1
2
πν


×


Γ


1 +

1
2
ν


Bν(x)−

1
2
Γ


1
2

+
1
2
ν


Aν(x)


. (B.7)

Now

H(x) ∈ R ⇔ Re [CPν(ix)+ Qν(ix)] · Re [CPν−1(ix)+ Qν−1(ix)]
+ Im [CPν(ix)+ Qν(ix)] · Im [CPν−1(ix)+ Qν−1(ix)] = 0.

Substituting (B.4)–(B.7) into this condition and simplifying using
the identity Γ (z + 1) = zΓ (z) gives

H(x) ∈ R ⇔ [Aν(x)Aν−1(x)− 2νBν(x)Bν−1(x)]H0 = 0
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where

H0 =


CR +

1
2
Γ


1 −

1
2
ν


Γ


1
2
ν


cos


1
2
πν


×


CR −

1
2
Γ


1
2

−
1
2
ν


Γ


1
2

+
1
2
ν


sin

1
2
πν


+


CI −

1
2
Γ


1 −

1
2
ν


Γ


1
2
ν


sin

1
2
πν


×


CI −

1
2
Γ


1
2

−
1
2
ν


Γ


1
2

+
1
2
ν


cos


1
2
πν


.

ThereforeH(x) ∈ R for all x ∈ R+ if and only ifH0 = 0. Simplifying
the conditionH0 = 0 using the identityΓ (z)Γ (1−z) = π/ sinπz
gives the condition stated in the proposition. �
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