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HOW DOES NONLOCAL DISPERSAL AFFECT THE SELECTION
AND STABILITY OF PERIODIC TRAVELING WAVES?∗

JONATHAN A. SHERRATT†

Abstract. In ecology a number of spatiotemporal datasets on cyclic populations reveal periodic
traveling waves of abundance. This calls for studies of periodic traveling wave solutions of ecologically
realistic mathematical models. For many species, such models must include long-range dispersal.
However, mathematical theory on periodic traveling waves is almost entirely restricted to reaction-
diffusion equations, which assume purely local dispersal. I study integrodifferential equation models
in which dispersal is represented via a convolution. The dispersal kernel is assumed to be of either
Gaussian or Laplace form; in either case it contains a parameter scaling the width of the kernel. I
show that as this parameter tends to zero, the integrodifferential equation asymptotically approaches
a reaction-diffusion model. I exploit this limit to determine the effect of a small degree of nonlocality
in dispersal on periodic traveling wave properties and on the selection of a periodic traveling wave
solution by localized perturbation of an unstable steady state. My analysis concerns equations of “λ–
ω” type, which are the normal form of a large class of oscillatory systems close to a Hopf bifurcation
point. I finish the paper by showing how my results can be used to determine the effect of nonlocal
dispersal on spatiotemporal dynamics in a predator-prey system.
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1. Introduction. Many natural populations undergo regular cycles of abun-
dance. Investigation of the population dynamics of such cyclic populations is an
active research area because of well-documented evidence that in many cases their
demographic parameters are shifting in response to climate change [1, 2]. A partic-
ular focus of recent research has been the spatial distribution of cyclic populations,
with field studies documenting periodic traveling waves (PTWs) in a number of nat-
ural populations including voles [3, 4], moths [5], and red grouse [6] (see [7] for ad-
ditional examples). Spatially extended oscillatory systems have a family of PTW
solutions [8], and the initial and boundary conditions select one member of the family
[11, 12, 13, 14]. Solution of this wave selection problem is crucial for a thorough
understanding of the PTWs seen in the field. In this paper I focus on PTW selection
by localized perturbations of an unstable steady state.

There is an extensive mathematical literature on PTW generation [15, 18, 17,
12, 16, 19, 13, 14], but it concerns almost exclusively reaction-diffusion equations.
Although such equations are widely used in ecological modeling (see, for example,
[20]), their realism is limited by the use of diffusion to represent dispersal. Rare long-
distance dispersal events play a key role in the spread of many natural populations,
and thus it is more appropriate to use a nonlocal term: spatial convolution with a
dispersal kernel. Estimation of dispersal kernels is at its most refined in plants; for
example, the recent review of Bullock et al. [21] lists the most appropriate kernels for
144 plant species. However, long-range dispersal is also important for animals. For
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example, Fric and Konvicka [22] studied dispersal kernels for three species of butterfly,
and Byrne et al. [23] discussed the potential importance of long-range dispersal of
European badgers for the spread of bovine tuberculosis.

Many of the theoretical models used in applied ecology involve nonlocal dispersal,
and the aim of this paper is to bridge the gap between such models and the mathe-
matical work on PTW generation in reaction-diffusion systems. The results presented
here build directly on two previous papers of mine [24, 25]. In [24] I studied PTWs
in integrodifferential equations with “λ–ω” kinetics (details below), which arise as
the normal form of an oscillatory system close to a standard supercritical Hopf bi-
furcation, and which offer considerable mathematical simplicity compared to general
kinetics. In [24] I derived the form of PTW solutions of these equations, and condi-
tions for their stability, when the dispersal kernel is of either Gaussian or Laplace form
(defined below). In [25] I focused on PTW generation, with the central result being
a theorem on PTW selection, and I also made a brief numerical comparison between
PTW selection in a predator-prey model with nonlocal dispersal and the correspond-
ing reaction-diffusion model. In the present paper I undertake a much more detailed
version of this comparison. I begin by showing that for a dispersal kernel of Gaussian
form, the integrodifferential equation reduces to a reaction-diffusion system to leading
order in a suitable asympototic limit; the case of a Laplace kernel is discussed later in
the paper. Focusing again on the case of λ–ω kinetics, I exploit this to derive leading
order corrections to the PTW that is selected by localized perturbation of an unstable
steady state, and its stability. I also consider the absolute stability of the selected
PTW, which is a key determinant of the resulting spatiotemporal dynamics. Finally
I apply my results to a model for predator-prey interaction.

2. Relating local and nonlocal dispersal. The study of PTW solutions of
models with nonlocal dispersal is very much in its infancy, and the general case is cur-
rently out of reach. Throughout this paper I restrict attention to models satisfying
two simplifying assumptions: (i) the dispersal is scalar, meaning that the dispersal
kernel and the coefficient are the same for each interacting population; (ii) the kinetic
parameters are close to a Hopf bifurcation of standard supercritical type. These as-
sumptions are made for mathematical simplicity. From the viewpoint of ecological
applications, scalar dispersal is appropriate in some situations, for example, for in-
teracting microscopic aquatic populations [26]; however, in terrestrial or macroscopic
marine predator-prey systems the predators typically disperse more rapidly than their
prey [27, 28]. Being close to a Hopf bifurcation point implies that oscillations are of low
amplitude, which is certainly relevant to applications, although many population cy-
cles involve large variations in abundance. Nevertheless, a study making assumptions
(i) and (ii) is valuable as a first stage in understanding PTWs in integrodifferential
equation models.

For scalar dispersal, the normal form of an oscillatory system with nonlocal dis-
persal close to a standard supercritical Hopf bifurcation in the kinetics has the form

∂u/∂t = δ

[∫ y=∞

y=−∞
K(x− y)u(y, t)dy − u

]
+ (λ0 − λ1r

2)u− (ω0 + ω1r
2)v ,

(2.1)

∂v/∂t = δ

[∫ y=∞

y=−∞
K(x− y)v(y, t)dy − v

]
+ (ω0 + ω1r

2)u+ (λ0 − λ1r
2)v

[29, 30, 31, 32], and it is this system of equations that will be the focus of my study.
Here r =

√
u2 + v2 and δ, λ0, λ1, ω0, and ω1 are constants with δ,λ0, λ1 > 0.
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In the context of an ecological application, these constants would be functions of the
ecological parameters and u and v would be functions of the population densities; these
functional dependencies can be derived using standard normal form theory [33, 31, 32]
(see also section 6).

The inclusion of the dispersal parameter δ is actually unnecessary because it can
be removed by suitable rescalings of t, λ0, λ1, ω0, and ω1. However, I include it
because it simplifies the comparison between (2.1) and the corresponding model with
local dispersal. The dispersal kernel K(y) must be ≥ 0 for all y and must satisfy∫∞
−∞K(y) dy = 1 so that the dispersal term conserves population. I will focus on two

specific forms,

Gaussian kernel: K(s) =
(
1/ε
√
π
)

exp
(
−s2/ε2

)
,(2.2)

Laplace kernel: K(s) = (1/2εl) exp
(
−|s|/εl

)
(2.3)

(ε, εl > 0), which are probably the most widely used kernels in ecological and epi-
demiological applications (e.g., [34, 35, 36]). I will consider the Gaussian kernel (2.2)
in the bulk of the paper, with corresponding results for the Laplace kernel discussed
in section 7.

The central objective of my study is to compare PTW generation by localized
disturbance of the (unstable) steady state u = v = 0 in (2.1) and in the corresponding
model with local dispersal:

∂u/∂t = ∂2u/∂x2 + (λ0 − λ1r
2)u− (ω0 + ω1r

2)v ,
(2.4)

∂v/∂t = ∂2v/∂x2 + (ω0 + ω1r
2)u+ (λ0 − λ1r

2)v .

This generic oscillatory reaction-diffusion system was first studied in the 1970s [8],
and the existence and stability of its PTW solutions are known in detail [8, 11, 17]. I
will begin by showing that (2.1) with (2.2) reduces to (2.4) as the parameter ε → 0,
provided that the dispersal coefficient δ is chosen appropriately; a similar argument
was used in [37].

For the Gaussian kernel (2.2), the dispersal term (for u, say) is

δ

[
1

ε
√
π

∫ s=∞

s=−∞
e−s

2/ε2u(s+ x, t)ds− u(x, t)

]

= δ

[
1

ε
√
π

∫ s=∞

s=−∞
e−s

2/ε2
{
u(x, t) + sux(x, t) +

1

2
s2uxx(x, t) + · · ·

}
ds− u(x, t)

]

∼ δuxx(x, t)

2ε
√
π

∫ s=∞

s=−∞
s2e−s

2/ε2ds =
1

4
ε2δuxx(x, t)

using Watson’s lemma. Here the subscript x denotes a partial derivative. Therefore
taking δ = 4/ε2 means that the (nonlocal) dispersal term in (2.1) approaches the
(local) diffusive dispersal term in (2.4) asymptotically as ε → 0. It is this direct
correspondence between the models with local and nonlocal dispersal that enables a
detailed comparison of PTW behavior.

3. Previous results on periodic traveling waves for nonlocal dispersal.
The starting point for my work is the results in [24, 25] on PTWs in (2.1) with (2.2)
or (2.3), which I now summarize.
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• PTW solutions of (2.1) with (2.2) or (2.3) have the form u = R cos
[
(ω0 +

ω1R
2)t ± αx

]
, v = R sin

[
(ω0 + ω1R

2)t ± αx
]
, where the amplitude R (> 0)

and the wavenumber α (of either sign) are related by

(3.1) λ0 − λ1R
2 = δ

[
1−

∫ s=∞

s=−∞
K(s) cosαs ds

]
(equation (2.2) of [24]). When λ0 ≥ δ this implies that a PTW exists for all
α, while for λ0 < δ PTWs exist for α below a critical value at which R = 0.

• The PTW is stable as a solution of (2.1) if and only if

(3.2)

δ

[
1 +

(
ω1

λ1

)2
]
·
[∫ s=∞

s=−∞
sK(s) sinαs ds

]2

< λ1R
2

∫ s=∞

s=−∞
s2K(s) cosαs ds

(Theorems 2.1, 3.2, and 3.3 of [24]). For both kernels, this implies a critical
value of |α| above/below which waves are unstable/stable.

• Numerical simulations show that a localized disturbance of the steady state
u = v = 0 generates transition fronts moving in the positive and negative x
directions with constant speed. Behind the fronts PTWs develop, which have
the same amplitude but opposite direction behind the fronts moving in the
positive and negative x directions.

• The PTW selected behind the transition front moving in the positive x di-
rection satisfies

(3.3) cα = −ω1R
2 ,

where c is the front (or spreading) speed (Theorem 3.1 of [25]). The com-
bination of this equation and (3.1) has a unique solution for α whose sign
is opposite to that of ω1. Intuitive arguments based on theorems on front
propagation in simpler integrodifferential equation systems [35, 38] suggest
that the spreading speed c satisfies

(3.4) c = min
η>0

1

η

[
δ

∫ s=∞

s=−∞
K(s)eηs ds− δ + λ0

]
(equation (3.4) of [25]); however, a formal proof of this is lacking. Note that
M(η) ≡

∫ s=∞
s=−∞K(s)eηs ds is known as the moment generating function of

the kernel K(.).
Figure 3.1 illustrates the generation of PTWs by localized perturbation of u = v = 0
in (2.1). In (a) and (b) the values of ω1 have opposite signs, and consequently the
PTWs move in opposite directions. In (c) and (d) the selected PTW is unstable; in
(c) PTWs are generated but they then destabilize, with the long-term behavior being
spatiotemporal disorder. In (d) spatiotemporal disorder occurs without any preceding
PTWs; nevertheless PTW selection is the key process underlying this behavior, as I
will show.

From the viewpoint of applications to predator-prey systems, the solutions illus-
trated in Figure 3.1 correspond to the spreading of PTWs into predators and prey
at the coexistence steady state. In applications this is relevant when a change in
environmental conditions alters the stability of the coexistence state. The local dy-
namics then change from noncyclic to cyclic; an example of this is given in the work
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Fig. 3.1. Examples of PTW generation by a localized disturbance of the steady state u = v = 0
in the λ–ω system (2.1). In (a) and (b) the selected PTW is stable, moving in the opposite direction
to the spread of the PTWs in (a) and the same direction in (b). In (c) the PTW is unstable;
a band of PTWs is visible, followed by spatiotemporal disorder. In (d) spatiotemporal disorder
develops immediately: in this case a PTW is selected but it is absolutely unstable in the frame of
reference moving with the spreading speed (see section 5). The equations were solved numerically
by discretizing in space using a uniform grid (δx = 0.012) and calculating the spatial convolutions
using fast Fourier transforms. This gives a system of ordinary differential equations that was solved
using the stiff ODE solver ROWMAP [39] (http:// numerik.mathematik.uni-halle.de/ forschung/
software/ ), with relative and absolute error tolerances both set to 10−10. At t = 0 I set u = v = 0
except for a small perturbation near x = 0. The solutions are plotted for x > 0 only, but I actually
solved on −L < x < L for L sufficiently large that the solution remains close to u = v = 0 near
the domain boundaries x = ±L during the time period considered. The boundary conditions are
u = v = 0 at x = ±L; this avoids the difficulties posed by non-Dirichlet boundary conditions for
nonlocal equations. The parameter values are δ = 1, λ0 = 0.8, and ε = 0.2 with (a) ω0 = 3.0,
ω1 = −3.0, λ1 = 2.8; (b) ω0 = 1.0, ω1 = 3.0, λ1 = 2.8; (c) ω0 = 3.0, ω1 = −3.0, λ1 = 1.0; (d)
ω0 = 3.0, ω1 = −3.0, λ1 = 0.08. In (a)–(c) the solution is plotted for 105 ≤ t ≤ 135; in (d) t = 120.
By choosing L sufficiently large I deliberately avoid consideration of the longer term behavior after
the spatiotemporal patterns spread over the whole domain. This is an important objective for future
work: necessarily work such as that in the present paper must be done first. There are some results
on long-term behavior following PTW generation on finite domains for reaction-diffusion models
[40], but none (to my knowledge) for nonlocal models.

of Brommer et al. work on voles in Finland [41]. The alternative process of predators
invading a population of prey is more complex and has yet to be addressed in models
with nonlocal dispersal, other than in numerical simulations. For reaction-diffusion

http://numerik.mathematik.uni-halle.de/forschung/software/
http://numerik.mathematik.uni-halle.de/forschung/software/
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models it is known that the two processes actually select the same PTW solution close
to a Hopf bifurcation in the kinetics [42]; however, there is no corresponding result
for integrodifferential equation models.

4. Periodic traveling wave selection and stability for small ε. My basic
approach in this paper is to calculate asymptotic expansions in ε for the various
conditions in section 3, in order to determine how a small but nonzero value of ε
affects PTW behavior, relative to the local dispersal limit of ε → 0. I consider the
Gaussian kernel (2.2) and I fix δ = 4/ε2; I comment on the case of the Laplace kernel
(2.3) in section 7.

4.1. PTW existence. For the Gaussian kernel (2.2), (3.1) implies

λ0 − λ1R
2 =

4

ε2

[
1− 1

ε
√
π

∫ s=∞

s=−∞
e−s

2/ε2 cosαs ds

]

=
4

ε2

[
1− 1

ε
√
π

∫ s=∞

s=−∞
e−s

2/ε2
{

1− 1

2
α2s2 +

1

24
α4s4 + · · ·

}
ds

]

∼ 4

ε2

[
1− 1

ε
√
π

{∫ s=∞

s=−∞
e−s

2/ε2ds− 1

2
α2

∫ s=∞

s=−∞
s2e−s

2/ε2ds

+
1

24
α4

∫ s=∞

s=−∞
s4e−s

2/ε2ds+ · · ·
}]

using Watson’s lemma

= α2 − 1

8
ε2α4 +O(ε4) .(4.1)

This relationship between PTW amplitude and wavenumber defines the PTW family.
Note that the first two terms in the expansion (4.1) depend on the dispersal kernel
only through its second and fourth moments.

4.2. PTW stability. Asymptotic expansions of the integrals in (3.2) can be
obtained in a similar way. This gives the condition for PTW stability as

(4.2) α2
(
3 + 2ω2

1/λ
2
1

)
+ 1

8ε
2α4

(
3 + 4ω2

1/λ
2
1

)
+O(ε4) < λ0 .

As expected, setting ε = 0 in (4.2) gives the condition for PTW stability in a reaction-
diffusion system of λ–ω type, which has been known since the 1970s (e.g., equation
(41) in [8]).

4.3. Spreading speed. An asymptotic expansion of the moment generating
function M(.) of the Gaussian kernel (2.2) can again be found using Watson’s lemma,
giving

M(η) =
1

ε
√
π

∫ s=∞

s=−∞
e−s

2/ε2eηs ds ∼ 1 +
1

4
ε2η2 +

1

32
ε4η4 +O(ε6).

Therefore
[δM(η)− δ + λ0]

/
η ∼ λ0/η + η + 1

8ε
2η3 +O(ε4)

whose minimum occurs at η = λ
1/2
0 − 3

16ε
2λ

3/2
0 +O(ε4), giving

(4.3) c = 2λ
1/2
0 + 1

8ε
2λ

3/2
0 +O(ε4) .

Again the first two terms in this expansion depend on the dispersal kernel only through
its second and fourth moments.
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4.4. PTW selection by a localized perturbation of u = v = 0. Substitut-
ing the expressions (4.3) for the spreading speed c and (4.1) for the PTW amplitude
R into (3.3) gives the wavenumber of the PTW selected by localized perturbation of
u = v = 0 as

α = α0 + ε2α1 +O(ε4) ,(4.4a)

where α0 = λ
1/2
0

[(
λ1

/
ω1

)
− sign(ω1)

√
1 +

(
λ1

/
ω1

)2]
(4.4b)

and α1 =
α0

16
· α

3
0 + λ

3/2
0 λ1/ω1

α0 − λ1/2
0 λ1/ω1

.(4.4c)

Note that (3.3) actually gives a quadratic equation for α0; the appropriate root has a
sign opposite to that of ω1.

4.5. Effects of nonlocal dispersal on wavenumber selection. My focus in
this paper is to compare PTW generation by localized perturbation of u = v = 0
when ε = 0 (local dispersal) and ε > 0 (slightly nonlocal dispersal). Equation (4.3)
shows that the speed of PTW spread is faster in the latter case—as expected, long-
range dispersal accelerates the spreading speed. To investigate differences in the
wavenumber of the selected PTW, it is convenient to write ξ = λ1/|ω1|. Then

α1 = −sign(ω1) ·

[
λ

3/2
0

16
·
√

1 + ξ2 − ξ√
1 + ξ2

]
·Q(ξ) ,

where Q(ξ) =
(√

1 + ξ2 − ξ
)3

− ξ

=
(
1 + ξ2

)1/2(
1 + 4ξ2

)
− 4ξ

(
1 + ξ2

)
=

(1 + 8ξ2 + 16ξ4)− 16ξ2(1 + ξ2)(
1 + ξ2

)−1/2(
1 + 4ξ2

)
+ 4ξ

=
1− 8ξ2(

1 + ξ2
)−1/2(

1 + 4ξ2
)

+ 4ξ
.

Recall that the sign of α0 is opposite to that of ω1. Therefore α1 has the same sign
as α0 if and only if ξ < 1/

√
8 ≈ 0.354. In that case a small degree of nonlocal

dispersal increases the absolute value of the wavenumber of the selected PTW (and
thus decreases its wavelength); for ξ above 1/

√
8 the wavelength increases.

4.6. Effects of nonlocal dispersal on PTW stability. Another important
consideration is how nonlocal dispersal affects the stability of the selected PTW.
Substituting (4.4) into (4.2) gives a criterion for stability, but it is very complicated

algebraically. To simplify it, I write α0 = sign(ω1)λ
1/2
0 α0, α1 = sign(ω1)λ

1/2
0 α1, ε =

λ
1/2
0 ε, and as before ξ = λ1/|ω1|. With these rescalings the stability criterion has no

explicit dependence on λ0 or on the sign of ω1; its form is F1(ξ)+ε2F2(ξ)+O(ε4) < 0,
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where

F1(ξ) =
(√

1 + ξ2 − ξ
)2 (

3ξ2 + 2
)
− ξ2,

F2(ξ) =
(
1 + ξ2

)−1/2(
3ξ2 + 2

) [{(
1 + ξ2

)1/2 − ξ}3

− ξ
]

+
(
3ξ2 + 4

){(
1 + ξ2

)1/2 − ξ}2

.

Now

F1(ξ) < 0⇔ 2ξ
(
3ξ2 + 2

)(
1 + ξ2

)1/2
>
(
1 + 2ξ2

)(
3ξ2 + 2

)
− ξ2 .

Since both sides of this inequality are positive, one can square them, which gives
C(ξ2) > 0, where C is a cubic polynomial with a positive leading coefficient and with
a unique real positive root, which can easily be calculated numerically as 0.871 . . . .
Therefore to leading order in ε, the selected PTW is stable⇔ ξ >

√
0.871 . . . ≈ 0.933.

Turning now to F2(ξ), this simplifies to

F2(ξ) = 2(1 + ξ2)1/2
[(

9ξ4 + 11ξ2 + 3)− ξ
(
9ξ2 + 8

)(
1 + ξ2

)1/2]
=

2(1 + ξ2)1/2
(
9 + 2ξ2 − 33ξ4 − 27ξ6

)(
9ξ4 + 11ξ2 + 3) + ξ

(
9ξ2 + 8

)(
1 + ξ2

)1/2 .
The numerator in this expression is a cubic polynomial in ξ2 with a unique real positive
root at ξ2 = 0.467 . . . , implying that F2(ξ) < 0 ⇔ ξ >

√
0.467 . . . = 0.683 . . . . The

key implication of this is that F2(ξ) < 0 whenever F1(ξ) < 0, so that a small degree
of nonlocality in dispersal always increases the region of parameter space in which the
selected PTW is stable.

5. Absolute stability of the periodic traveling wave selected by a local-
ized perturbation of u = v = 0. In spatiotemporal systems, unstable solutions
subdivide into those that are “absolutely unstable” and those that are “convectively
unstable” but “absolutely stable” (see [43] for a detailed review). The distinction lies
in the spatiotemporal behavior of small perturbations. In the convectively unstable
case all growing perturbations move while they are growing and actually decay at their
original location. In contrast, absolute instability is defined by the growth of a small
perturbation at its point of application. For PTWs generated by a localized pertur-
bation of an unstable steady state, the two types of instability lead to very different
spatiotemporal behavior. When the PTW is convectively unstable, one sees bands
of alternating left- and right-moving PTWs separated by sharp transitions known as
sources and sinks [44, 45, 46]. The change from convective to absolute instability in
the selected PTW leads to a single band of PTWs followed by more comprehensive
disorder (Figure 3.1(c)). Another change occurs when the selected PTW becomes
absolutely unstable not just in a stationary frame of reference but also in a frame
moving with the spreading speed. Then spatiotemporal disorder arises immediately,
without a band of PTWs (Figure 3.1(d)).

To my knowledge there are no results on the absolute stability of solutions of inte-
grodifferential equations, but I will show that it is possible to determine the absolute
stability of the PTW selected by a localized perturbation of u = v = 0 when the pa-
rameter ε is small. I begin by rewriting (2.1) in terms of the amplitude r =

√
u2 + v2
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and phase θ = tan−1(v/u):

∂r

∂t
= δ

∫ y=+∞

y=−∞
K(y − x)r(y) cos

[
θ(y)− θ(x)

]
dy + rλ(r)− r ,(5.1a)

∂θ

∂t
= δ

∫ y=+∞

y=−∞
K(y − x)

r(y)

r(x)
sin
[
θ(y)− θ(x)

]
dy + ω(r) .(5.1b)

The advantage of this formulation is that PTW solutions have a particularly simple
form: r = R, θ =

(
ω0 + ω1R

2
)
t± αx. As with stability, the investigation of absolute

stability begins by linearizing (5.1) about this PTW and looking for solutions propor-
tional to eνx+Λt. The criterion for nontrivial solutions of this type (the “dispersion
relation”) is

D(Λ, ν) ≡ (Λ−A)(Λ−D)−BC = 0 ,(5.2)

where A = λ0 − 3λ1R
2 + ν2 − α2 + 1

8ε
2
(
α4 + ν4 − 6α2ν2

)
+O(ε4) ,

B = −2Rαν + 1
2ε

2αν(α2 − ν2)R+O(ε4) ,

C = 2ω1R+ 2αν
/
R− 1

2ε
2αν

(
α2 − ν2

)/
R+O(ε4) ,

D = λ0 − λ1R
2 + ν2 − α2 + 1

8ε
2
(
α4 + ν4 − 6α2ν2

)
+O(ε4) .

PTW stability depends on the sign of Re Λ in solutions of (5.2) with Re ν = 0, but
for absolute stability, one must consider ν with nonzero real and imaginary parts.
For spatially uniform solutions of certain classes of PDE, absolute stability is deter-
mined by repeated roots for ν of D(Λ, ν) = 0, i.e., simultaneous roots of D(Λ, ν) =
(∂/∂ν)D(Λ, ν) = 0. Specifically, denote the repeated roots by ν1, ν2, . . . , νN , where
Re νi ≥ Re νi+1, and suppose that the PDE is such that on a finite domain with
separated boundary conditions, nL conditions are required on the left-hand bound-
ary, and nR on the right (nL + nR = N). Then (Λ, ν) pairs for which D(Λ, ν) =
(∂/∂ν)D(Λ, ν) = 0 and for which the repeated roots for ν are νnL and νnL+1

are
known as “saddle points satisfying the pinching condition” [47, 48] or as “branch
points of the absolute spectrum” [49]. The PTW is absolutely stable if and only if all
such pairs have Re Λ ≤ 0. (See [49] for a precise statement and for the required tech-
nical conditions.) Note that the two distinct terminologies reflect two quite different
approaches to considering absolute stability, one developed in the physics literature,
initially by Richard Briggs in the 1960s [50], and the other developed more recently
by Björn Sandstede and Arnd Scheel [49].

Although the theory underlying the above remarks is rather complicated, its prac-
tical implementation is relatively straightforward. One simply has to study (usually
numerically) roots for ν of the polynomial D(Λ, ν) = 0. However, it depends funda-
mentally on D(Λ, ν) = (∂/∂ν)D(Λ, ν) = 0 having a finite number of roots. This is
guaranteed for a partial differential equation since D is then a polynomial, but for an
integrodifferential equation D can have an infinite number of repeated roots for ν, so
that nL and nR are not defined. However, asymptotic expansion for small ε restores
the polynomial form for D, enabling absolute stability to be determined. Neglecting

terms that are O(ε4) and writing ν = λ
1/2
0 ν, ε = λ

1/2
0 ε, and Λ = Λ/λ0 gives the

dispersion relation as

(5.3) D1(Λ, ν) ≡ Λ
2 −

[
P2(ν) + ε2P4(ν)

]
Λ +

[
Q4(ν) + ε2Q8(ν)

]
= 0,
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where P2, P4, Q4, and Q8 are polynomials of degree 2, 4, 4, and 8 (respectively) in ν;
their algebraic forms are rather complicated and are omitted for brevity. The various
rescalings result in there being no explicit dependence on λ0: thus the coefficients of
ν in the Pi’s and Qi’s are functions of ξ only. Ordering the roots of (5.3) for ν by real
part as above (Re νi > Re νi+1), the transition from convective to absolute stability
occurs when ν4 = ν5 with Re Λ = 0.

When ε = 0 the dispersion relation (5.3) reduces to a quartic polynomial in
ν, which has been studied in previous work on the absolute stability of PTWs in
reaction-diffusion equations of λ–ω type [17]. I denote the four roots of this quartic
by ν ε=0

1 , . . . , ν ε=0

4 , again with Re ν ε=0

i ≥ Re ν ε=0

i+1. It is important to consider how
the νi’s are related to the ν ε=0

i ’s. Clearly four of the νi’s are small perturbations
of the ν ε=0

i ’s; the other four approach infinity as ε → 0. To investigate this latter
group in more detail, I note that when |ν | is large the dominant terms in Q4(ν) and
Q8(ν) are ν4 and 1

8ν
8, respectively. These must balance, so that 1

8ε
4ν8 + ν4 = 0 to

leading order, implying that the roots approach infinity as ε→ 0 with ν4 ∼ −8/ε4 ⇒
ν ∼ 21/4(1 ± i)

/
ε, and 21/4(−1 ± i)

/
ε. Therefore these roots are respectively ν1,

ν2, ν7, and ν8. It follows that ν4 and ν5 are small perturbations of ν ε=0

2 and ν ε=0

3 ,
with the transition from convective to absolute stability occurring when these roots
are equal with Re Λ = 0.

Investigation of the roots for ν ε=0 was presented previously in [17]. Briefly, elim-
ination of Λ between D1|ε=0 = 0 and (∂/∂ν)D1|ε=0 = 0 gives a quartic polynomial
in ν ε=0, with coefficients depending on ξ. For any given ξ this polynomial can eas-
ily be solved numerically, and each of the four roots can be substituted back into
(∂/∂ν)D1|ε=0 = 0 to give the corresponding values of Λ. By tracking these roots for
ν and Λ as ξ is varied, it is straightforward to calculate critical values of ξ at which
Re Λ changes sign. At such points, the (pure imaginary) value of Λ can be substituted
back into D1|ε=0 = 0, which can then be solved (numerically); this will recover the
repeated roots for ν and will give two additional roots. This procedure shows that
there is one case in which the repeated roots are ν ε=0

2 = ν ε=0

3 , corresponding to a
change in absolute stability, namely,

(5.4) ξ ≈ 0.661 ν ε=0

2 = ν ε=0

3 ≈ −0.256 + 0.564i Λ ≈ 0.561i .

Details of this procedure are given in [17].
The critical case (5.4) provides a starting point for calculating the transition point

when ε > 0. I fix Λ to be pure imaginary in (5.3), with ε positive but very small, and
solve D1 = ∂D1/∂ν = 0 numerically using (5.4) as an “initial guess.” I then gradually
increase ε, on each occasion using the solution for the previous value of ε as an “initial
guess.” The results of this calculation are illustrated in Figure 5.1(a), in which the
threshold value of ξ for absolute stability is plotted against ε.

Absolute stability in a frame of reference moving with the spreading speed can
be calculated in a directly analogous way. In this case the dispersion relation is(

Λ− c ν
)2 − P(Λ− c ν)+Q = 0,

where O(ε4) terms have been neglected. Here c = c/λ
1/2
0 and c is the spreading

speed, given in (4.3); thus c = 2 + 1
8ε

2. For ε = 0 the transition from convective to
absolute instability of the PTW generated by a localized perturbation of u = v = 0
occurs at ξ ≈ 0.05341 and again the critical value of ξ increases with ε, as illustrated

1The corresponding spatial and temporal eigenvalues are ν ≈ −1.082 + 0.999i and Λ ≈ 3.41i.
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Fig. 5.1. The threshold value of the parameter ξ = λ1/|ω1| for absolute stability of the PTW
generated by a localized perturbation of u = v = 0 in the λ–ω integrodifferential equation model (2.1),

as a function of the parameter ε = ε/λ
1/2
0 in the dispersal kernel. Part (a) shows the critical value

for absolute stability in a stationary frame of reference; this is the division between “source-sink”
behavior [44, 45, 46] and a band of PTWs followed by more comprehensive disorder. Part (b) shows
the critical value for absolute stability in a frame of reference moving with the spreading speed; for
ξ below this value there is spatiotemporal disorder without a band of PTWs.

in Figure 5.1(b). For ξ below this value, there is no band of PTWs but rather an
immediate onset of spatiotemporal disorder.

Note that, as in section 4, the results derived in this section depend on the
dispersal kernel only through its second and fourth moments.

6. Application to a predator-prey model. The λ–ω equations (2.1) are not
a model for any particular biological or physical system; rather their significance is as
the normal form of models for real systems close to a (standard supercritical) Hopf
bifurcation. As an illustration of applying the results that I have derived for (2.1), I
consider the predator-prey model given by the Rosenzweig–MacArthur kinetics [51]
with nonlocal dispersal:

(6.1a)

predators
∂p

∂t
=

dispersal︷ ︸︸ ︷
δ̃

[∫ y=∞

y=−∞
K(x− y)p(y, t)dy − p

]
+

benefit from
predation︷ ︸︸ ︷

(C̃/B̃)hp/(1 + C̃h)−

death︷ ︸︸ ︷
p/ÃB̃ ,

(6.1b)

prey
∂h

∂t
= δ̃

[∫ y=+∞

y=−∞
K(x− y)h(y, t)dy − h

]
︸ ︷︷ ︸

dispersal

+ h(1− h)︸ ︷︷ ︸
intrinsic

birth & death

− C̃ph

1 + C̃h
.︸ ︷︷ ︸

predation

These equations are nondimensional with p(x, t) and h(x, t) denoting predator and
prey densities at space point x and time t. Ã, B̃, C̃, and δ̃ are positive constants. The
prey consumption rate per predator is taken to be an increasing saturating function
of prey density with Holling type II form: C̃ > 0 reflects how quickly the function
saturates. Parameters Ã > 0 and B̃ > 0 are dimensionless combinations of the birth
and death rates. Equations (6.1) have a unique coexistence steady state which has a
(standard supercritical) Hopf bifurcation at C̃ = (Ã+ 1)/(Ã− 1). Treating C̃ as the
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Fig. 6.1. The stability of the PTW generated by a localized perturbation of the coexistence
steady state in (6.1) for C̃ a little above the Hopf bifurcation value (Ã + 1)/(Ã − 1), as a function
of the parameters Ã and B̃. The Gaussian kernel (2.2) is used for dispersal, but the corresponding
pictures for the Laplace kernel (2.3) are very similar. In the left-hand panel I fixed ε = 0.2 and
considered a regular grid of (Ã, B̃) points. For each point I calculated λ0, λ1, and ω1 using (6.2),

which gives ξ = λ1/|ω1| and ε = λ
1/2
0 ε. The calculations in the main body of the text then enable

determination of the stability and absolute stability of the selected PTW. In the right-hand panel I
used a similar approach to determine the boundary in the ε–B̃ parameter plane between stability and
(convective) instability for Ã = 2.5. In both parts of the figure, C̃ is set to 1.2(Ã+ 1)/(Ã− 1).

bifurcation parameter, the standard process of reduction to normal form [33, 31, 32]
gives (2.1) to leading order, with

λ0 =
(Ã− 1)C̃ − (Ã+ 1)

2Ã(Ã+ 1)
, λ1 =

Ã+ 1

4Ã
,(6.2a)

ω0 =

(
Ã− 1

ÃB̃(Ã+ 1)

)1/2

+

[
(Ã− 1)C̃ − (Ã+ 1)

]
(Ã− 1)1/2

2Ã3/2(Ã+ 1)3/2B̃1/2
,(6.2b)

ω1 =
(Ã+ 1)1/2

(
2Ã2+5ÃB̃−Ã5B̃−Ã4−4Ã3B̃−4Ã2B̃2−1

)
24[Ã7(Ã− 1)B̃3]1/2

.(6.2c)

(See [18, 16] for details of the calculations for the specific case of the Rosenzweig–
MacArthur kinetics, including Maple worksheets.)

The expressions (6.2) enable ξ = λ1/|ω1| to be calculated in terms of Ã and
B̃. From this, one can determine the stability and absolute stability of the PTW
selected by a localized perturbation of the coexistence steady state, using the results
in sections 4 and 5. This is illustrated in Figure 6.1, which also shows the effect of
changing the kernel parameter ε on this parameter plane. Such a division of the Ã–B̃
parameter plane makes it possible to predict the type of spatiotemporal dynamics
expected following a localized perturbation of the coexistence steady state.
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Fig. 6.2. Examples of PTW generation by a localized perturbation of the coexistence steady
state in the predator-prey model (6.1). In (a) and (b) the selected PTW is unstable, and there is a
band of PTWs followed by spatiotemporal disorder; in (c) the selected PTW is stable and persists.
The equations were solved numerically as described in the legend to Figure 3.1; the spatial grid
spacing δx was set to 0.5. The perturbation to the coexistence steady state was applied at the center
x = 0 of a large spatial domain. As in Figure 3.1 I used Dirichlet boundary conditions and I stopped
the simulation before the PTWs reached the boundaries of the domain. I used the Laplace kernel
(2.3) with εl = 0.5; the parameter values are Ã = 2, C̃ = 3.6, δ̃ = 1, and (a) B̃ = 0.5, (b) B̃ = 1.0,
(c) B̃ = 2.5. In all three parts of the figure, the solution is plotted for 18800 ≤ t ≤ 18880.

Figure 6.2 shows numerical simulations of these dynamics. For small B̃, there is a
relatively narrow band of PTWs followed by spatiotemporal disorder (Figure 6.2(a)).
As B̃ in increased (with other parameters fixed) the band of PTWs becomes wider
(Figure 6.2(b)) and for sufficiently large B̃ the selected PTW is stable and persists
(Figure 6.2(c)).

7. Discussion. The detection of PTW behavior in spatiotemporal datasets from
ecology demands a detailed mathematical understanding of PTW solutions of ecolog-
ically realistic models. For many species such models must include nonlocal dispersal.
This paper is the third in a series studying PTWs in the integrodifferential equations
that arise when one uses a convolution-based representation of dispersal. I have fo-
cused on the generation of PTWs by a localized perturbation of an unstable steady
state, showing how nonlocality in dispersal affects PTW selection, stability, and ab-
solute stability.

I have restricted attention to the Gaussian dispersal kernel, but conditions for
existence and stability of PTWs are also known for the Laplace kernel (2.3) [24], as
are results on PTW selection by localized perturbation of an unstable steady state
[25]. All of the calculations in this paper can be repeated for the Laplace kernel.
The appropriate choice for δ is then 1/ε2l , and if one uses this and redefines ε =

εl
/(
λ

1/2
0

√
8
)
, then the conditions on ξ for stability and absolute stability of the selected

PTW are exactly the same as for the Gaussian kernel. To explain this, it is convenient
to denote by M2 and M4 the second and fourth moments of the dispersal kernel.
Then the key players in the calculations in sections 4 and 5 are δM2 and ε2δM4, and
appropriate choices for δ and ε (given above) make these the same for the Laplace
kernel as for the Gaussian kernel. This would also be true for any other (thin-tailed)
kernel, however, the key ingredient of a condition for PTW stability is then missing—
this is only known for the two kernels that I have considered.
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Fig. 7.1. An example of numerical calculations of the critical value of ξ = λ1/|ω1| above which
the PTW generated by a localized perturbation of an unstable steady state is stable. I use the Laplace
kernel (2.3) and consider large values of εl: my analytical results are valid only for sufficiently small
εl. The parameters are δ = 1 and λ0 = 0.1; the numerical procedure is outlined in the main text.

All of my results concern behavior when the degree of nonlocality in dispersal is
small, meaning that ε (or εl) is small. Analytical investigation of behavior for larger ε
(or εl) is a much harder problem, but a numerical study is possible. Figure 7.1 shows
one example of numerical results. I solved (3.1), (3.3), (3.4) numerically to calculate
the wavenumber of the PTW selected by a localized perturbation of the steady state;
in this case I used the Laplace kernel. Substituting this into (3.2) enables numerical
calculation of PTW stability, and I repeated this process for different values of ξ in or-
der to determine the critical ξ giving a change in stability. My analytical calculations
show that for small εl this critical ξ will decrease as εl increases, and this is confirmed
by the numerical calculations illustrated in the figure. However, for larger εl (above
about 2.1) the trend reverses and the critical ξ increases with εl. This argues persua-
sively for the importance of detailed investigation of PTW generation when dispersal
is significantly nonlocal.

Integrodifferential equations are certainly not the only class of ecological model
that includes a representation of nonlocal dispersal. Integrodifference equations are
also in widespread use, as are cellular automata and agent-based models incorporat-
ing long-range movement. The spatial and/or temporal discreteness in these models
makes the study of PTWs particularly challenging, and thus integrodifferential equa-
tions are a natural starting point for investigating the role of nonlocal dispersal in
PTW behavior.

I have focused on PTW generation by a localized perturbation of an unstable
steady state because it is the best studied generation mechanism in models with local
dispersal (e.g., [11, 9, 10]). However, other features of spatiotemporal systems can
generate PTW behavior, including heterogeneous habitats [19, 5, 13] and hostile habi-
tat boundaries [16, 14]. Neither of these has been studied for models with nonlocal
dispersal, and this is a natural area for future work. Once basic results on PTW selec-
tion by these mechanisms in integrodifferential equation models have been obtained,
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the approach of the present paper could be used to make a comparison between the
selected PTWs when dispersal is local and when it has a small nonlocal component.

Acknowledgment. The author thanks Lukas Eigentler for helpful discussions.
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