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PATTERN SOLUTIONS OF THE KLAUSMEIER MODEL FOR
BANDED VEGETATION IN SEMIARID ENVIRONMENTS V: THE

TRANSITION FROM PATTERNS TO DESERT∗

JONATHAN A. SHERRATT†

Abstract. Vegetation in semideserts often self-organizes into spatial patterns. On gentle slopes,
these typically consist of stripes of vegetation running parallel to the contours, separated by stripes
of bare ground. The Klausmeier model is one of the oldest and most established of a number of math-
ematical models for this “banded vegetation.” The model is a system of reaction-diffusion-advection
equations. Under the standard nondimensionalization, one of its dimensionless parameters (ν) re-
flects the relative rates of water flow downhill and plant dispersal and is therefore very large. This
paper is the fifth and last in a series in which the author provides a detailed analytical understanding
of the existence and form of pattern solutions (periodic travelling waves) of the Klausmeier model,
to leading order as ν → ∞. The problem is a very rich one because the underlying mathematics
depends fundamentally on the way in which the migration speed c scales with ν. This paper concerns
the case 1 = O(c) and c = o(ν1/2) as ν → ∞. The author derives leading order expressions for the
curves bounding the parameter region giving patterns, and for the pattern forms in this region. An
important consequence of this is leading order formulae for the maximum and minimum rainfall lev-
els for which patterns exist. The author demonstrates via numerical simulations that a decrease in
rainfall through the minimum level for patterns causes a transition to full-blown desert that cannot
be reversed by increasing the rainfall again.

Key words. pattern formation, arid landscapes, reaction-diffusion-advection, Wavetrain, tiger
bush, desertification
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1. Introduction. In semiarid environments, the infiltration rate of rainwater
into the soil increases with vegetation density [1, 2]. This is due both to increased
levels of organic matter in the soil and to the presence of root networks. Since water
is a limiting resource in these ecosystems, there is an adaptive benefit to plants of
forming localized aggregations rather than having more sparse uniform distributions.
Consequently spatial patterns of vegetation are widespread in many semiarid regions
[3, 4, 5]. The most striking manifestation of such patterns is the “banded vegetation”
that occurs on gentle slopes, in which stripes of vegetation run parallel to the contours,
separated by stripes of bare ground. This has been documented in many parts of the
world, particularly Australia [6], Southwestern North America [7], and Africa [8].

The “water redistribution hypothesis” for banded vegetation argues that rain
falling on bare ground infiltrates only a little, mostly running off in the downhill
direction to the next vegetation band. Here it infiltrates into the soil, thereby facili-
tating plant growth. One implication of this argument is that moisture levels should
be higher on the uphill edge of the bands than on their downhill edge, and this is
widely observed, being reflected in lower levels of plant death and higher seedling den-
sities [9, 10]. Therefore one expects vegetation bands to move uphill on a timescale of
the plant generation time, as new vegetation grows immediately upslope of the bands,
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1348 JONATHAN A. SHERRATT

with a corresponding loss of biomass through plant death at the downslope edge. Such
movement is indeed observed in many cases [11], [4, Table 5]. However, some field
studies also report stationary banded patterns [6, 8, 11]. This has been attributed
to complicating factors including inhibition of seed germination by long-term changes
in soil structure in nonvegetated regions [6], and preferential dispersal of seeds in the
downslope direction due to transport in run-off [12, 13].

This paper concerns a mathematical model for banded vegetation due to Klaus-
meier [14] that is based on the water redistribution hypothesis. However, it is impor-
tant to comment that other mechanisms for banded vegetation have been proposed. In
particular the extensive root systems that occur in semiarid regions [15] lead to non-
locality in water uptake, and some authors have argued that this plays an important
role in the pattern formation process, either alongside the water redistribution mech-
anism [16, 17] or in combination with short-range facilitation due to shading [18, 19].

When suitably nondimensionalized [14, 20], the Klausmeier model is

∂u/∂t =

plant
growth︷︸︸︷
wu2 −

plant
loss︷︸︸︷
Bu +

plant
dispersal︷ ︸︸ ︷
∂2u/∂x2,(1.1a)

∂w/∂t = A︸︷︷︸
rain-
fall

− w︸︷︷︸
evap-
oration

− wu2︸︷︷︸
uptake

by plants

+ ν∂w/∂x︸ ︷︷ ︸
flow

downhill

.(1.1b)

Here u(x, t) is plant density, w(x, t) is water density, t is time, and x is a one-
dimensional space variable running in the uphill direction. The dimensionless pa-
rameters A, B, and ν can be most usefully interpreted as reflecting rainfall, plant
loss, and slope gradient, respectively, although they actually represent a combination
of ecological quantities. Klausmeier’s [14] parameter estimates were A = 0.9–2.8,
B = 0.45 for grass and A = 0.08–0.2, B = 0.045 for trees, with ν = 182.5. The
parameter ν is large because it reflects the relative rates of water flow downhill and of
plant dispersal [14, 20]. Note that wu2 is the only nonlinear term in (1.1); it assumes
that the infiltration rate is proportional to vegetation density, which is consistent with
the available data (e.g., [2, Figure 4]).

Equations (1.1) have either one or three spatially homogeneous steady states. The
“desert” state (0, A) is always a locally stable steady state. For A ≥ 2B, (u±, w±) =([
A±√

A2 − 4B2
]/
2B,

[
A∓√

A2 − 4B2
]/
2
)
are also solutions. (u−, w−) is unsta-

ble, but the stability of (u+, w+) is parameter dependent. Provided that B < 2,
(u+, w+) is locally stable to spatially homogeneous perturbations; B < 2 is an eco-
logically realistic assumption that I will make throughout this paper. However, there
is a range of values of the rainfall parameter A (to be discussed in this paper) in
which (u+, w+) is unstable to inhomogeneous perturbations, and in which (1.1) has
spatial patterns. Figure 1.1 illustrates a typical example of such a pattern. There
are alternating peaks and troughs of vegetation density, corresponding respectively
to vegetation bands and the bare interbands, and there is a corresponding pattern
of water density. The patterns move at a constant speed in the positive x direction,
corresponding to the uphill migration seen in many data sets and discussed above.

The Klausmeier model (1.1) was the first of many continuous models for banded
vegetation formation based on the water redistribution hypothesis. Most of the subse-
quent models represent soil and surface water separately (e.g., [21, 22, 23]), and some
authors have also extended their models to include herbivory [24] and variations in
rainfall [25, 26, 27]. However, almost all of these studies use only numerical simula-
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FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1349

Fig. 1.1. A typical example of a pattern solution of the model (1.1) for vegetation in semiarid
environments. The alternating peaks and troughs of u correspond to vegetation bands and the gaps
between them, respectively. The initial conditions are small random perturbations (amplitude ±5%)
to the vegetated steady state (u+, w+), and the solutions are plotted at t = 2000, 2003, and 2006
dimensionless time units, illustrating the uphill migration of the patterns. The long initial time
ensures that transients have decayed. The parameter values are A = 2.2, B = 0.45, and ν = 182.5.
The spatial domain is of length 100 with periodic boundary conditions. The equations were solved
numerically using a semi-implicit finite difference method with time step δt = 1.1×10−4 and uniform
spatial grid spacing δx = 0.025; these give the CFL number νδt/δx = 0.8.

tions of the model equations; one recent exception is a proof by Goto et al. [28] of the
existence of solutions for the model of Gilad et al. [16]. This paper is the fifth and
last in a series in which I attempt a comprehensive analytical study of the Klausmeier
model (1.1). My approach exploits the large value of the slope parameter ν, and I
investigate the asymptotic form of pattern solutions as ν → ∞. I assume formal ex-
pansions for the pattern solutions; a possible area for future work would be to establish
rigorous results using geometric singular perturbation theory [29, 30]. The problem
is a very rich one because the underlying mathematics depends fundamentally on the
way in which the migration speed c scales with ν. Previously I have considered the
cases c � ν1/2 [31, 32], c = Os(ν

1/2) [33], and c � 1 [34] as ν → ∞. Note that
the notation f = Os(g) denotes f = O(g) and f 	= o(g). In this paper I consider
the remaining case of 1 = O(c) and c = o(ν1/2). This is a particularly important
parameter region because it includes the minimum level of rainfall giving patterns,
below which the model (1.1) predicts vegetation-free desert as the only possible state.

Since they move at a constant speed and with constant shape, pattern solutions
of (1.1) are periodic traveling waves, with the form u(x, t) = U(z), w(x, t) = W (z),
z = x − ct. Here c > 0 is the migration speed in the uphill direction. Substituting
these forms into (1.1) gives

d2U/dz2 + c dU/dz +WU2 −BU = 0,(1.2a)

(ν + c)dW/dz +A−W −WU2 = 0.(1.2b)

A detailed numerical study of the existence and stability of periodic traveling waves is
possible via numerical continuation; for this I have used the software package wave-
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1350 JONATHAN A. SHERRATT

Fig. 1.2. Existence and stability of pattern solutions of (1.1) for B = 0.45 and c = 182.5. Pat-
terns exist in between the locus of Hopf bifurcation points of (U,W ) = (u+, w+) for (1.2) (thick solid
black line) and the locus of homoclinic solutions (thin solid black line). The dashed black line is the
boundary between patterns that are stable or unstable as solutions of (1.1). Top: A wider range of c
values, although it has been truncated at c ≈ 10; the parameter region giving patterns actually extends
up to c ≈ 50 [32]. Bottom: A close-up of the part of the parameter plane studied in this paper, in-
cluding contours along which the pattern period (wavelength) is constant at the value indicated (grey
lines). For c between about 0.002 and 0.004, and also for c above about 14, there is a fold in the branch
of pattern solutions, with small regions of parameter space in which there are two different patterns
(both unstable) for given A and c (see [32, 34] for details). In the remainder of the parameter plane
there is at most one pattern solution. All calculations and plotting were done using the software pack-
age wavetrain [35, 36, 37, 38]. Full details of the wavetrain input files, run commands (including
run times), and plot commands are given at http://www.ma.hw.ac.uk/∼jas/supplements/kl5.

train [35, 36]. A typical result is illustrated in Figure 1.2(top), which shows the
region of the A–c parameter plane in which patterns exist and also the part of that
region in which they are stable as solutions of (1.1). The pattern region is bounded to
the right by a locus of Hopf bifurcations of (u+, w+) in (1.2), and to the left by a locus
of homoclinic solutions. Figure 1.2(bottom) shows a close-up of the part of parameter
space that is the subject of this paper, with contours of constant pattern wavelength
superimposed on the plot. The basic objective of this paper is to determine asymptotic
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FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1351

expansions as ν → ∞ for the loci of Hopf bifurcations and homoclinic solutions that
bound the pattern region, and for the form of the patterns for parameters between
these loci.

In section 2 I consider pattern solutions at rainfall levels close to the maximum
possible value when c = Os(1). Section 3 is concerned with the form of solutions in
the interior of the region of parameter space giving patterns, and section 4 focuses
on patterns at the lowest possible rainfall levels, with c assumed to be Os(1) in both
cases. A key result of section 4 is the asymptotic form of the minimum rainfall giving
patterns; as A is decreased through this value, there is a transition to total desert. In
section 5 I describe numerical simulations of this transition. In section 6 I consider
patterns with 1 � c � ν1/2. I conclude (section 7) with a discussion of the stability
of pattern solutions.

2. Pattern solutions for c = Os(1), A = Os(ν
1/2). Although my previous

paper [34] was concerned primarily with the case c = o(1) as ν → ∞, it also included
a brief discussion of patterns when c = Os(1) and A = Os(ν

1/2); this scaling includes
part of the Hopf bifurcation locus. In this section I briefly summarize this previous
work and then present some extensions. My key conclusion is that there is exactly
one pattern at every point in this part of the A–c plane to the left of a locus of Hopf
bifurcation points whose form can be calculated explicitly. I will also show that the
pattern wavelength varies nonmonotonically with c and A in this parameter region.

For c = Os(1) and A = Os(ν
1/2) the traveling wave equations (1.2) can be

simplified by the rescalings Ǔ = (B/A)U , W̌ = (A/B2)W , ž = B1/2z, č = B−1/2c,
Γ = A2/(νB5/2). Note that Γ = Os(1) as ν → ∞. In terms of these new variables
the leading order form of (1.2) as ν → ∞ is

d2Ǔ/dž2 + č dǓ/dž + W̌ Ǔ2 − Ǔ = 0,(2.1a)

dW̌/dž + Γ
(
1− W̌ Ǔ2

)
= 0.(2.1b)

My rescalings map (U,W ) = (u+, w+) and (u−, w−) to (Ǔ , W̌ ) = (1, 1) and (0,∞),
respectively. Calculation of the eigenvalues of (2.1) at (1, 1) shows that there is a
Hopf bifurcation at Γ = ΓH ≡ (č2 + 2 − √

č4 + 4 )/(2č) [34]. This Hopf bifurcation
locus is illustrated in Figure 2.1. It has a turning point at A = (

√
2−1)1/2B5/4ν1/2 ≈

0.6436B5/4ν1/2, which is a Turing bifurcation point for (1.1).
In [34] I proved that for all values of č the Hopf bifurcation at Γ = ΓH is subcrit-

ical, meaning that the branch of pattern (limit cycle) solutions leaves in the direction
of decreasing Γ. Moreover, numerical continuation suggests that the pattern solution
branches remain monotonic in Γ away from the Hopf bifurcation locus. Such mono-
tonicity implies exactly one pattern solution at all points in the Γ–č plane to the left
of the Hopf bifurcation locus Γ = ΓH . Figure 2.2 illustrates these solution branches
for three different values of Γ, plotting the period (pattern wavelength) as a function
of č. One notable feature of these plots is that for the two smaller Γ values there
is a local maximum in the period as a function of č, while for the largest value of Γ
the period is monotonic as a function of č. Detailed numerical investigation shows
that the local maxima of the period as a function of č trace out a locus in the Γ–č
plane that is illustrated in Figure 2.1. The “ridge” in the period intersects the Hopf
bifurcation locus at Γ = 0.345 (see Figure 2.1). Note that the limiting period on the
Hopf bifurcation locus is

√
1− čΓH(č), which is an increasing function of č.

For the full Klausmeier model (1.1), contours of constant wavelength also show
a ridge close to the Hopf bifurcation locus, above the Turing bifurcation point (see
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1352 JONATHAN A. SHERRATT

Fig. 2.1. Existence of periodic solutions of (2.1). The thick black line shows the locus of Hopf
bifurcation points of (Ǔ , W̌ ) = (1, 1) in the Γ–č plane; periodic solutions exist to the left of this curve.
The grey lines show contours of constant period. The dashed curve shows the locus of local maxima
of the period as a function of č. The vertical dashed line indicates the value of Γ at which this locus of
maxima intersects the Hopf bifurcation locus. The calculation of the Hopf bifurcation locus and the
period contours, and also the plotting, were done using the software package wavetrain [35, 36]. The
maximum period locus was calculated from solution branches such as those illustrated in Figure 2.2,
via quadratic interpolation. Full details of the wavetrain input files, run commands (including run
times), and plot commands are given at http://www.ma.hw.ac.uk/∼jas/supplements/kl5.

Fig. 2.2. Plots of periodic solution branches of (2.1). I plot the period as a function of the
rescaled speed č for three different values of the parameter Γ. The vertical dashed lines denote the
Hopf bifurcation points, which are the end points of the solution branches. For Γ = 0.22 and Γ = 0.28
there is a local maximum in the period at a point between the Hopf bifurcation values, whereas for
Γ = 0.37 the period is monotonic as a function of č. The transition to monotonicity occurs at
Γ = 0.345 (see Figure 2.1). The solutions were calculated using the numerical continuation package
auto [39, 40, 41].

Figure 1.2). My results show that as ν is increased so that the Turing bifurcation
point of (1.1) moves further to the right in the A–c plane, this ridge remains localized
near the Hopf bifurcation locus, with A = Os(ν

1/2) on both curves.

3. Pattern solutions for c = Os(1), ν
−1/2 � A � ν1/2. Close to the Hopf

bifurcation locus in the A–c plane, the patterns consist of relatively gentle oscillations.
However, as A is gradually decreased with fixed c, the solution profile develops an
increasingly spiked appearance. The separation of the spikes is proportional to ν1/2/A,
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FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1353

while their separation is Os(1) as ν → ∞. Therefore for A � ν1/2 the patterns must
be studied via two matched layers. In this section I will derive the leading order form
of this matched asymptotic solution.

Between the spikes, I write U = A1/2ν1/4c1/2Uinter, W = ν−1/2Winter, and z =
(ν1/2/A)zinter. Note that the factor of A1/2 in the scaling of U includes some ν-
dependence; the factor of c1/2 is also included because it gives simpler algebra when
matching to the spike solution. Substituting these rescalings into (1.2) gives, to leading
order as ν → ∞, Uinter = 0 and dWinter/dzinter + 1 = 0 ⇒ Winter = kinter − zinter,
where kinter is a constant of integration. Note that in fact all terms of algebraic order
in the asymptotic expansion for Uinter are identically zero.

For the spikes, I again use c as well as ν in the rescalings for algebraic convenience:
U = ν1/2c1/2Uspike, W = ν−1/2c3/2Wspike, and z = c−1zspike. These imply

dUspike/dzspike = Vspike,(3.1a)

dVspike/dzspike = −Vspike −WspikeU
2
spike + (B/c2)Uspike,(3.1b)

dWspike/dzspike = WspikeU
2
spike,(3.1c)

to leading order as ν → ∞. I have been unable to solve (3.1) exactly, but some insight
is given by integrating across the spike. Eliminating the WspikeU

2
spike term between

the equations and integrating between zspike = −∞ and zspike = +∞ gives

[Wspike]
+∞
−∞ = (B/c2)

∫ +∞

−∞
Uspike dzspike .

Simple matching of the spike and interspike regions requires c3/2Wspike(zspike = −∞) =
kinter − z∗∗inter and c3/2Wspike(zspike = +∞) = kinter − z∗inter, where zinter = z∗inter and
zinter = z∗∗inter are the locations of consecutive spikes (z∗∗inter > z∗inter). Therefore the
pattern wavelength L is given by

(3.2) L =
ν1/2

A

(
z∗∗inter − z∗inter

)
=

ν1/2c3/2

A
[Wspike]

+∞
−∞ =

ν1/2B

c1/2A

∫ +∞

−∞
Uspike dzspike .

In (3.1), the Wspike-axis (Uspike = Vspike = 0) is a line of equilibria. Straight-
forward calculation shows that there are two real eigenvalues at each point on this
line, one positive and one negative, with the corresponding eigenvectors being orthog-
onal to the Wspike-axis. The third eigenvalue is zero and corresponds to the neutral
stability along the Wspike-axis.

Numerical calculation of trajectories leaving the Wspike-axis along the unstable
eigenvector suggests that they all go to infinity with a single exception; for this unique
starting value of Wspike, the trajectory terminates back on the Wspike-axis, giving a
heteroclinic connection that corresponds to the spike. The start- and end values of
Wspike for this connection can be determined via numerical shooting, and Figure 3.1(a)
illustrates the two values of Wspike as a function of B/c2, which is the only param-
eter grouping in (3.1). The difference between these values of Wspike then gives the
pattern wavelength using (3.2), and the dependence of this on the migration speed c
is illustrated in Figure 3.1(b). The increase in wavelength with c is consistent with
the result from section 2 that the ridge in the pattern wavelength in the A–c plane is
restricted to values of A that are Os(ν

1/2).

D
ow

nl
oa

de
d 

08
/1

6/
13

 to
 1

37
.1

95
.2

6.
10

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1354 JONATHAN A. SHERRATT

Fig. 3.1. (a) Numerical calculations of the start- and end values of Wspike for the heteroclinic

connection in (3.1), which corresponds to the spike in vegetation density for ν−1/2 � A � ν1/2.
The two values are plotted as a function of B/c2, which is the only parameter grouping in (3.1).
I calculated Wspike(±∞) using a shooting method, which is described in Appendix A. Note that
Wspike(−∞) < Wspike(+∞), from (3.1). (b) The dependence of the wavelength L on migration

speed c when ν−1/2 � A � ν1/2. L is determined by Wspike(±∞) via (3.2), and the numerical
values shown are for A = 1.5, B = 0.45, ν = 182.5.

4. Pattern solutions for c = Os(1), A = Os(ν
−1/2). In this section I

extend the work in section 3 to A = Os(1). My key result is the leading order form
of the homoclinic locus that forms the left-hand boundary of the parameter regions
giving patterns in the A–c plane. One implication of this is a leading order formula
for the value of the rainfall parameter A at the fold in the homoclinic locus; this is
the minimum possible rainfall level at which vegetation can survive.

The solutions derived in section 3 are valid only when ν−1/2 � A � ν1/2. For
A = Os(ν

1/2), the scalings used for z within and between the spikes become the
same, so that the solution loses its two-layered structure: this was the case discussed
in section 2. However, for A = Os(ν

−1/2) there is no change in the solution structure,
which again consists of sharp spikes whose separation is � 1 as ν → ∞. The scalings
used in section 3 remain valid, as does the leading order spike solution derived in
section 3. Also Uinter ≡ 0, as in section 3. The difference when A = Os(ν

1/2)
comes in the leading order equation for the water density W between the spikes,
which contains an additional term: dWinter/dzinter + 1 −Winter/(Aν

1/2) ⇒ Winter =
Aν1/2 − kinter exp(zinter/Aν

1/2), where kinter is a constant of integration.
Matching of the spike and interspike regions now requires c3/2Wspike(zspike =

−∞) = Aν1/2 − kinter exp(z
∗∗
inter/Aν

1/2) and c3/2Wspike(zspike = +∞) = Aν1/2 −
kinter exp(z

∗
inter/Aν

1/2); as in section 3, zinter = z∗inter and zinter = z∗∗inter are the lo-
cations of consecutive spikes (z∗∗inter > z∗inter). Therefore the pattern wavelength L is
given by

(4.1) L =
ν1/2

A

(
z∗∗inter − z∗inter

)
= ν log

[
Aν1/2 − c3/2Wspike(−∞)

Aν1/2 − c3/2Wspike(+∞)

]
.

Since Wspike(+∞) > Wspike(−∞), the expression in (4.1) is finite and positive, pro-
vided that A > ν−1/2c3/2Wspike(+∞) ≡ Ahc, with the wavelength tending to infinity
as A approaches this lower limit. Therefore A = Ahc is the leading order form of the
homoclinic locus that forms the left-hand boundary of the parameter region giving
patterns in Figure 1.2. Between the spikes, Uinter = 0 with Winter decaying to Aν1/2

to leading order, which corresponds to the “desert” steady state (u,w) = (0, A) of
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FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1355

Fig. 4.1. (a) An illustration of Ahc as a function of the migration speed c (black curve)
for B = 0.45. This is the leading order form (as ν → ∞) of the locus of homoclinic solutions
when A = Os(ν−1/2). The locus was calculated using (4.2), with Wspike(+∞) calculated using the
algorithm described in Appendix A. The vertical dashed line shows Amin, the leading order form of
the minimum rainfall level at which banded vegetation is possible. I have superimposed on this plot
the locus (grey curve) of the migration speed giving the minimum wavelength for a given value of A.
This is evaluated using the formula (4.3), with Wspike(±∞; ξ) and (d/dξ)Wspike(±∞; ξ) calculated
using the algorithm described in Appendix A. Note that this locus of minima intersects the locus of
homoclinic solutions at A = Amin. (b) A typical example of the variation in pattern wavelength L
with migration speed c, to leading order as ν → ∞ with A = Os(ν−1/2) fixed. The case shown is
for A = 2.75, B = 0.45, ν = 182.5. L is given by the formula (4.1), and I evaluated Wspike(±∞)
numerically using the algorithm described in Appendix A. The vertical dashed lines show the values
of c giving homoclinic solutions, to leading order as ν → ∞.

(1.1). Therefore the homoclinic solution is homoclinic to this desert steady state.
Using my numerical algorithm for Wspike(+∞) (described in Appendix A), it

is straightforward to calculate Ahc, and its dependence on c is illustrated in Fig-
ure 4.1(a). A key feature of this figure is the turning point, at A = Amin. This is the
lowest rainfall level at which patterns can be sustained: below this, only full-blown
desert is possible. To investigate this critical value of A in more detail, it is convenient
to replace c by ξ = B/c2 (ξ > 0); recall that equations (3.1) depend only on this single
parameter grouping. Then

(4.2) Ahc = ν−1/2B3/4ξ−3/4Wspike(+∞; ξ),

and Amin corresponds to (d/dξ)
[
ξ−3/4Wspike(+∞; ξ)

]
= 0; i.e., 3Wspike(+∞; ξ) =

4ξ d
dξWspike(+∞; ξ). In Appendix A, I describe a numerical algorithm for the calcula-

tion of (d/dξ)Wspike(+∞; ξ), which gives the solution of this equation as ξ = 2.1654,
implying Amin = 3.8405B3/4ν−1/2.

In [34, section 5.2] I showed that for 1/ν � c � 1 as ν → ∞, the leading
order form of the homoclinic locus is A = (24/7)1/2Bc−1/2ν−1/2. Formula (4.2) is
consistent with that result if and only if Wspike(+∞; ξ) ∼ (24/7)1/2ξ as ξ → ∞, and
this is confirmed by numerical calculations.

For A > Ahc, but still with A = Os(ν
1/2), numerical evaluation of (4.1) indicates

that the wavelength L is a unimodal function of c, with a single local minimum, and
with the period increasing to infinity at the homoclinic points on either side. A typical
example is illustrated in Figure 4.1(b). Differentiating (4.1) with respect to ξ shows
that the minimum period occurs at
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1356 JONATHAN A. SHERRATT

(4.3)

A =
B3/4ξ1/4

ν1/2

[
Wspike(−∞; ξ) d

dξWspike(+∞; ξ)−Wspike(+∞; ξ) d
dξWspike(−∞; ξ)

ξ d
dξΔ(ξ)− 3

4Δ(ξ)

]
,

where Δ(ξ) = Wspike(+∞; ξ) − Wspike(−∞; ξ). The locus of this minimum in the
A–c plane is illustrated in Figure 4.1(a). Note that since Δ(ξ) → 0 as A → A+

min,
comparison of (4.3) and (4.2) shows that the locus of minimal periods intersects the
homoclinic locus exactly at its turning point A = Amin.

5. Simulating the transition to desert. When parameters are such that (1.1)
has pattern solutions, these patterns coexist with the “desert” steady state (u,w) =
(0, A), which is always locally stable. Moreover, the many simulation-based studies of
(1.1) have failed to find any long-term solutions other than uniform steady states and
constant speed periodic patterns (e.g., [14, 20, 42]). Therefore the minimum rainfall
level giving patterns is of major ecological significance, representing a threshold below
which no vegetation can be sustained, so that full-blown desert is inevitable. In
his original paper, Klausmeier [14] speculated that this threshold was 2B, which
is the minimum rainfall level for the existence of a homogeneous vegetated steady
state. However, Klausmeier overlooked the fact that in a nonlinear model, pattern
solution branches that emanate from a Hopf bifurcation of a steady state can extend
to parameter values for which that steady state does not exist. This is indeed the case
for the model (1.1), and numerical work has shown that the minimum rainfall level for
patterns is significantly below 2B [43]. From an ecological viewpoint the explanation
for this is that patterned vegetation can exist at rainfall levels that are too low for
homogeneous vegetation. Here, for the first time, I have derived the asymptotic form
of the threshold for large ν, namely, Amin = 3.8405B3/4ν−1/2.

To emphasize the significance of this threshold value of the rainfall parameter, I
undertook a numerical study of the transition to desert, as predicted by (1.1). My
results are illustrated in Figure 5.1. With the values of B and ν as in Figure 1.2,
I began by calculating the pattern solution for A = 0.6 with wavelength 100; this

Fig. 5.1. An illustration of a permanent transition to total desert in the Klausmeier model
(1.1). With A initially set to 0.6, I solved (1.1) numerically as described in the legend to Figure 1.1,
changing the rainfall parameter by 0.1 every 1000 time units. The initial conditions were the pattern
solution for A = 0.6 with wavelength 100, which has c = 1.499. I plot A against the mean value
of the vegetation density u. (a) shows the results when A is decreased to 0.3 and then increased
back to 0.6: the mean vegetation density decreases with A and then follows a reverse trend when A
is increased again. (b) shows that when A is decreased further to 0.2, vegetation is lost, and the
solution then remains in this “desert state” when A is increased again.
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FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1357

uniquely determines c = 1.499. I then used this as an initial condition for the numer-
ical solution of (1.1) on a domain of length 100, with periodic boundary conditions. I
gradually decreased A in steps of 0.1, solving (1.1) for a time interval of 1000 at each
value of A. As A is decreased down to 0.3, the solution continues to have the form of
a single spike in vegetation density. If A is now increased again in steps of 0.1, the
progress of the solution is simply reversed (Figure 5.1(a)). However, further decrease
in A to 0.2 causes the patterned (vegetated) state to be lost, and instead the solution
approaches the desert steady state (Figure 5.1(b)). A subsequent increasing of A does
not reverse the behavior; rather, the solution remains at this desert steady state.

The critical level of the rainfall parameter A, between 0.2 and 0.3, at which
vegetation is lost in this simulation is greater than 3.8405B3/4ν−1/2 ≈ 0.16. This is
because the patterns that exist for A between 0.16 and 0.2 have wavelengths greater
than 100 and are therefore incompatible with the boundary conditions used in the
simulation. In the field, vegetation patterns typically occur in regions of very large
spatial extent, so that 3.8405B3/4ν−1/2 is the relevant threshold. A key prediction of
the Klausmeier model (1.1) is that a decrease in the rainfall level below this threshold
heralds the onset of desertification, and moreover the loss of vegetation is permanent,
in the sense that it cannot be reinstated by simply increasing rainfall levels. Similar
behavior has been found previously in other models of banded vegetation [16, 21].
Consequently the rainfall threshold that I have calculated is of considerable potential
value for the management of ecosystems containing banded vegetation.

6. Pattern solutions for 1 � c � ν1/2. In sections 3 and 4, I studied the ex-
istence and form of pattern solutions of (1.1) when c = Os(1) as ν → ∞. I now extend
this to the case of 1 � c � ν1/2. I will derive leading order formulae for the boundaries
of the parameter region giving patterns, and I will show that there is an abrupt change
in pattern form as parameters are varied, at a point whose leading order location I will
derive. Note that beyond the scaling range considered in this section, at c = Os(ν

1/2)
the solution structure changes completely: there is an intersection of two different loci
of homoclinic solutions, which can be seen at (A, c) ≈ (1.6, 6.6) in Figure 1.2(a). De-
tails of this intersection and of pattern solutions when c = Os(ν

1/2) are given in [33].
For c = Os(1) patterns exist between a locus of Hopf bifurcations and a locus of

homoclinic solutions in (1.2), and this also applies for 1 � c � ν1/2. Again, as for
c = Os(1), different solution structures apply in the vicinity of the Hopf bifurcation
locus and in the remainder of parameter space, and I consider the latter case first. In
sections 3 and 4, I showed that for c = Os(1) patterns away from the Hopf bifurcation
locus are composed of a spike layer and an interspike region. Valuable insight into
the corresponding structure for 1 � c � ν1/2 is given by the change in the form
of the spike solutions (Uspike,Wspike) of (3.1) as a function of zspike as c increases
(Figure 6.1). The front of the spike remains of approximately constant width, while
the back becomes progressively wider as c increases. The culmination of this behavior
is that for 1 � c � ν1/2 the spike solution separates into two sublayers, with different
scalings for z:

Spike layer 1: U = ν1/2c1/2Ûspike1, W = ν−1/2c3/2Ŵspike1, z = c ẑspike1,

(6.1)

Spike layer 2: U = ν1/2c1/2Ûspike2, W = ν−1/2c3/2Ŵspike2, z = c−1ẑspike2.

(6.2)

Here I use hats to distinguish the present case from those discussed in sections 3
and 4. I will show that these scalings are relevant when c3/2/ν1/2 = O(A) and
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1358 JONATHAN A. SHERRATT

Fig. 6.1. The variation with c of the spike solution discussed in section 3. I plot the solution
of (3.1) that begins and ends on the Uspike = Vspike = 0 axis for three different values of ξ = B/c2;
the values of c shown in the figure are for B = 0.45. The figure shows that the width of the front of
the spike is approximately independent of c, while the back becomes wider as c increases.

A = O(ν1/2/c1/2); the homoclinic locus occurs when A = Os(c
3/2/ν1/2), while A =

Os(ν
1/2/c1/2) gives the Hopf bifurcation locus.
Solution in spike layer 1. For c3/2/ν1/2 = O(A) and A = O(ν1/2/c1/2), substi-

tuting (6.1) into (1.2a) gives Ŵspike1Û
2
spike1 = o(1) as ν → ∞. If Ûspike1 = o(1), then

(1.2b) implies that Ŵspike1 is a constant, which cannot match with the other solution

layers (details omitted for brevity). Therefore Ŵspike1 = o(1). The same argument

shows that the smallest nonzero term in the asymptotic expansion for Ŵspike1 must

satisfy Ŵspike1Û
2
spike1 = Os(Ac

−5/2ν−1/2). Therefore the Ŵspike1Û
2
spike1 term is neg-

ligible in (1.2a), which implies the leading order solution Ûspike1 = K̂spike1e
Bẑspike1,

where K̂spike1 is a constant of integration.
Solution in spike layer 2. Substituting (6.2) into (1.2) gives leading order equa-

tions which can be integrated once, yielding

dÛspike2/dẑspike2 = −Ûspike2 − Ŵspike2 + K̂spike2,(6.3a)

dŴspike2/dẑspike2 = Û2
spike2Ŵspike2,(6.3b)

where K̂spike2 is a constant of integration. Equations (6.3) also feature in the solu-
tion of (1.1) when c = Os(ν

1/2), and in [33, Proposition 3] I proved that there is

a bifurcation at K̂spike2 = K̂∗
spike2 ≈ 1.1606. For K̂spike2 ≤ K̂∗

spike2 there is exactly

one trajectory connecting the two steady states (K̂spike2, 0) and (0, K̂spike2); its de-

parture from (0, K̂spike2) is algebraic in ẑspike2 if K̂spike2 < K̂∗
spike2, and exponential if

K̂spike2 = K̂∗
spike2. For K̂spike2 > K̂∗

spike2 there are no trajectories connecting the two
steady states.

Solution between the spikes. The appropriate rescalings between the spikes are
U = ν1/2c1/2Ûinter, W = ν−1/2c3/2Ŵinter, and z = c3/2ν1/2A−1ẑinter. As in sections 3
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FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1359

and 4, substitution of these rescalings into (1.2) implies that Ûinter ≡ 0, with
(6.4)

Ŵinter=

{
K̂inter,1 − ẑinter if c3/2/ν1/2 = O(A) and A = O(ν1/2/c1/2),

Aν1/2c−3/2−K̂inter,2 exp
{
ẑinterc

3/2A−1ν−1/2
}

if A=Os(c
3/2/ν1/2),

to leading order as ν → ∞, where K̂inter,1 and K̂inter,2 are constants of integration.
Matching the three layers. Matching between the two spike layers requires that

limẑspike2→∞(Ûspike2, Ŵspike2) be equal to (Ûspike1, Ŵspike1) at an arbitrary finite value

of ẑspike1, which I take to be zero. Therefore Ûspike2(∞) = K̂spike1 and Ŵspike2(∞) = 0.
I denote by ẑinter = ẑ∗inter and ẑ∗∗inter the locations of two consecutive spikes (ẑ∗∗inter >
ẑ∗inter). Then matching between spike layer 1 and the interspike solution (6.4) re-

quires Ûspike2(−∞) = 0 and Ŵspike2(−∞) = Ŵinter(ẑ
∗
inter). This finite start point

for the solution trajectory of (6.3) must be the steady state (0, K̂spike2). Therefore

(Ûspike2, Ŵspike2) must connect the two steady states of (6.3). Moreover, the behavior

near (0, K̂spike2) must be exponential in ẑspike2; otherwise there would be algebraic

terms needing to be matched at higher order, which contradicts Ûinter ≡ 0. As dis-
cussed above, this specifies the solution and uniquely determines K̂spike2 = K̂∗

spike2.

Finally, matching the interspike solution and spike layer 1 requires Ŵinter(ẑ
∗∗
inter) = 0.

Combining these various matching conditions gives K̂spike1 = K̂∗
spike2, and also

c3/2/ν1/2 = O(A) and A = O(ν1/2/c1/2) : K̂inter,1 − ẑ∗inter = K̂∗
spike2

and K̂inter,1 − ẑ∗∗inter = 0

⇒ L = K̂∗
spike2c

3/2ν1/2/A,(6.5)

A = Os(c
3/2/ν1/2) : Aν1/2c−3/2 − K̂inter,2 exp

{
ẑ∗interc

3/2A−1ν−1/2
}
= K̂∗

spike2

and Aν1/2c−3/2 − K̂inter,2 exp
{
ẑ∗∗interc

3/2A−1ν−1/2
}
= 0

⇒ L = ν log
[
ν1/2A/

(
ν1/2A− K̂∗

spike2c
3/2

)]
,(6.6)

where L =
(
ẑ∗∗inter − ẑ∗inter

)
c3/2ν1/2A−1 is the leading order pattern wavelength. Note

that L is independent of B to leading order in both cases. This is an interesting result
from the viewpoint of land management. Numerical simulations of (1.1) show that
slow changes in parameters cause the migration speed of the observed patterns to
change in order to preserve the pattern wavelength [43, 44]. Hence in this parameter
regime, changes in grazing intensity will not affect either the migration speed of
patterns or their wavelength—though of course it will affect the vegetation density in
the bands.

This completes the calculation of the leading order form of the pattern solution for
c3/2/ν1/2 = O(A), A = O(ν1/2/c1/2). Its key implication comes from (6.6): L → ∞
as A → Â+

hc, where Âhc = c3/2K̂∗
spike2/ν

1/2; recall that K̂∗
spike2 ≈ 1.1606. Hence

the leading order form of the left-hand boundary of the parameter region giving
patterns in the A–c plane is the homoclinic locus A = Âhc. Consistency between
this result and (4.2) requires that Wspike(+∞; ξ) → K̂∗

spike2 as ξ → 0+, and this is

confirmed by numerical calculations.1 My expression for Âhc is also consistent with

1Note that Wspike(· ; ξ) is defined only for ξ > 0. Equations (3.1) are of course well defined at
ξ = 0, but the limit is a singular one (see Figure 6.1 and the associated discussion).
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1360 JONATHAN A. SHERRATT

Fig. 6.2. An illustration of the abrupt change in pattern form that occurs as the rainfall A
is varied, when 1 � c � ν1/2 as ν → ∞. I plot three solution measures as a function of A for
B = 0.45 and ν = 182.5: the L2 norm of the solution of (1.2), the period, and the mean value of U
over one period. The vertical dashed lines indicate the values of A at the Hopf bifurcation point and
the homoclinic solution; these are the end points of the solution branch. The results were obtained
by numerical continuation of the limit cycle branch of (1.2) starting from the Hopf bifurcation point,
using the software package auto [39, 40, 41].

the leading order form of the homoclinic locus when c = Os(ν
1/2), which is derived

in [33, section 4.4].
The scaling A = Os(ν

1/2/c1/2) includes the Hopf bifurcation locus, and patterns
in the vicinity of this locus have relatively gentle oscillations, in contrast to the spiked
solutions discussed above. To study patterns in this parameter regime, I follow [31, 33]
and use the scalings for U , W , and z corresponding to the steady state (us, ws) and the
limiting period of the limit cycles at the Hopf bifurcation point, namely, Ũ = (B/A)U ,

W̃ = (A/B2)W , and z̃ = (B/c)z. Substituting these into (1.2) gives

dŨ/dz̃ = Ũ − Ũ2W̃,(6.7a)

dW̃/dz̃ = σ2(Ũ2W̃ − 1),(6.7b)

to leading order as ν → ∞; here σ = Ac1/2/ν1/2B3/2, which is Os(1). Equations (6.7)
also arise for c � ν1/2, and I have studied them in detail in [31]. The key result is

that the unique steady state (Ũ, W̃ ) = (1, 1) undergoes a subcritical Hopf bifurcation
at σ = 1, while at σ = σ∗ ≈ 0.9003 there is a homoclinic solution that is homoclinic
to a point at infinity. Numerical continuation suggests that the branch of limit cycles
varies monotonically in σ between these end points.

For c = Os(1) as ν → ∞, I showed in sections 3 and 4 that there is a gradual
transition from the gentle oscillations that occur in the vicinity of the Hopf bifurcation
locus to the spiked patterns that occur for smaller values of A. For 1 � c � ν1/2

the patterns close to the Hopf bifurcation locus are given by the limit cycles of (6.7),
to leading order as ν → ∞. However, these exist only for A > σ∗ν1/2B3/2/c1/2.
This suggests a more abrupt change in pattern form, which is confirmed by numerical
continuation of the solutions of (1.2). Figures 6.2(a) and (b) illustrate switching in
the norm and period of patterns as A is varied for a fixed value of c. The key to
understanding this switching is the fact that the homoclinic solution of (6.7) that
occurs at σ = σ∗ is homoclinic to a point at infinity. As σ approaches σ∗ from above,
the maxima Ũmax and W̃max of Ũ and W̃ tend to infinity. Therefore for A sufficiently
close to σ∗ν1/2B3/2/c1/2, (6.7) is no longer the leading order form of (1.2) as ν → ∞:

for instance, the term W (= (B2/A)W̃ ) in (1.2b) will become comparable in size to
A. Therefore the structure of pattern solutions changes over an A-interval adjacent to
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σ∗ν1/2B3/2/c1/2 whose width is o(1) as ν → ∞. In fact, numerical solutions of (6.7)

suggest that Ũmax, W̃max = Os

(
log(σ − σ∗)

)
as σ → σ∗+ [31, Figure 5], implying

that the width of this transition interval is exponentially small in ν as ν → ∞. I have
not investigated the details of the solution in this transition interval, and this is a
natural area for future work.

From the viewpoint of land management, the abrupt change in pattern form as
rainfall varies is very significant. Figure 6.2(c) shows that it implies a sharp drop
in mean vegetation density as rainfall is gradually decreased. Many semiarid regions
with banded vegetation are used for grazing and/or timber [45, 46]. Consequently, this
type of abrupt change in vegetation productivity must be built into land management
strategies.

7. Discussion. In this paper I have studied pattern solutions of the Klausmeier
model (1.1) for banded vegetation at large values of the slope parameter ν, when the
migration speed c satisfies either c = Os(1) or 1 � c � ν1/2 as ν → ∞. My key
results are as follows:

1. For a given value of c, the largest value of the rainfall parameter A giv-
ing patterns is ν1/2B[(c2 + 2B − √

c4 + 4B )/(2c)]1/2 when c = Os(1), and
ν1/2B3/2c−1/2 when 1 � c � ν1/2. As the rainfall approaches this upper
limit, the amplitude of the patterns shrinks to zero. Note that I have shown
in [31, 33] that the upper limit on A has the same leading order functional
form whenever 1 � c � ν. When c = Os(ν), there is a change in qualitative
behavior: a fold develops in the branch of pattern solutions, and the homo-
clinic and Hopf bifurcation loci intersect, leading to a finite upper limit on c
for patterns, given by Bν/(2 −B) to leading order as ν → ∞ [32].

2. For a given value of c the smallest value of the rainfall parameter A giving
patterns is ν−1/2c3/2Wspike(+∞;B/c2) when c = Os(1), and 1.1606c3/2ν−1/2

when 1 � c � ν1/2. This lower limit corresponds to infinite pattern wave-
length: a homoclinic (pulse) wave in (1.2). The function Wspike is defined in
section 3. Consistency requires Wspike(+∞; ξ) → 1.1606 as ξ → 0+, and this
is confirmed by numerical calculations (see Appendix A). Note that I showed
in [33] that the lower limit on A retains the same leading order functional form
up to c = 0.8807B3/4ν1/2, when it changes abruptly to 0.9003B3/2c−1/2ν1/2.

3. A particularly important implication of points 1 and 2 is that as c varies, pat-
terns exist for values of the rainfall parameterA lying between 3.8405B3/4ν−1/2

and 0.6436B5/4ν1/2. The values of the wave speed c corresponding to these
two limits are different, but both are Os(1) as ν → ∞.

4. For a given value of c satisfying 1 � c � ν1/2, there is an abrupt change in
pattern form at A = 0.9003ν1/2B3/2c−1/2.

These are all formal results, valid to leading order for large ν. A natural area for
future work is to attempt to establish them rigorously, for example using geometric
singular perturbation theory [29, 30].

The different ν-scalings of the two limits in point 3 result in a large range of
rainfall levels giving patterns. This is consistent with field data, which shows banded
vegetation for a wide range of mean annual rainfall levels [47, 48]. The minimum
rainfall level giving patterns is particularly significant because it heralds an abrupt
transition from (patterned) vegetation to total desert. This is a consequence of the
bistability of the patterned and unvegetated states, and has been noted previously
in other mathematical models for banded vegetation [5, 16, 21, 49]. These previous
studies are entirely simulation-based: a novel feature of my results is an analytical
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formula for the critical rainfall level in the Klausmeier model (1.1). Of course, the
simplicity of the model means that one cannot expect a quantitative agreement be-
tween this formula and field data. However, the parametric trends implied by the
model can be expected to be paralleled in the field. There are no laboratory systems
mimicking banded vegetation, and field experiments are difficult and expensive; there-
fore any such detailed prediction from a mathematical model of semiarid vegetation
is valuable.

A key outstanding question for the Klausmeier model (1.1) is the stability of the
patterns that I have been studying. The fact that (1.1) has patterns for a range of
speeds is typical for PDEs possessing periodic traveling wave solutions. It is also
typical that the periodic traveling waves are stable as solutions of the PDEs for only
a subset of these speeds [50, 51, 52]. Numerical investigation confirms this for (1.1):
Figure 1.2 shows the division of the A–c parameter region giving patterns into sub-
regions containing stable and unstable cases. For this figure, I calculated the stability
boundary via numerical continuation; see [37, 38] for details of the algorithm, which is
implemented by the software package wavetrain [35, 36]. Analytical determination
of this stability boundary, even to leading order for large ν, is probably out of reach
at the present time. However, some details of the curve are more accessible. In
[34, section 7] I have already proved that the stability boundary touches the Hopf
bifurcation locus at the Turing bifurcation point. The argument is a relatively simple
one. Small amplitude expansion of the pattern solutions near the Hopf bifurcation
locus shows that they are unstable except at the Turing point, and stability near that
point is a consequence of the supercriticality of the Turing bifurcation. One possible
avenue for future work is to attempt an extension of this approach to calculate the
form of the stability boundary near the Turing point, using higher order terms in the
small amplitude expansion near the Hopf bifurcation locus.

A notable feature of Figure 1.2 is that the stability boundary intersects the ho-
moclinic locus at its turning point. Intuitively this is not surprising. At the value
of A corresponding to this turning point the PDEs (1.1) undergo a bifurcation, with
two homoclinic solutions existing for larger values of A and none for smaller values of
A. This is strongly analogous to a saddle-node bifurcation of equilibria in ODEs, and
therefore one expects one of these homoclinic solutions to be stable, with the other
unstable. This is another feature that may be amenable to analytical investigation.
There are results on the stability of homoclinic (pulse) waves in a number of PDEs
(e.g., [53]). Typically, the spectrum consists of a continuous part that comes from the
(stable) asymptotic equilibrium, and which lies in the left-hand half of the complex
plane, and also a discrete part arising from the pulse itself. These discrete eigenvalues
must include zero due to the neutral stability of the wave to translation; the other
discrete eigenvalues determine stability. Equations (1.1) have some similarities with
the FitzHugh–Nagumo equations, which also have periodic traveling waves in a region
of parameter space bounded by a Hopf bifurcation locus and a “C-shaped” homoclinic
locus [54, 55]. The stability of homoclinic solutions of the FitzHugh–Nagumo equa-
tions has been established for small values of one of the parameters [56, 57, 58]. It
may be possible to adapt these approaches to prove that homoclinic solutions of (1.1)
are stable/unstable at points above/below the turning point on the locus. If the ho-
moclinic solution is unstable, then the nearby large period patterns are guaranteed to
be unstable, but the converse does not hold. This issue has been studied in detail by
previous authors [59, 60]. The discrete eigenvalue at zero in the spectrum of the ho-
moclinic solution becomes a small loop for nearby periodic traveling waves. This loop
can lie either to the right or left of the imaginary axis, implying instability or stability,

D
ow

nl
oa

de
d 

08
/1

6/
13

 to
 1

37
.1

95
.2

6.
10

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FROM PATTERNS TO DESERT IN THE KLAUSMEIER MODEL 1363

respectively. Sandstede and Scheel [60] derive conditions that distinguish these two
cases, and these would have to be checked before the stability of large period patterns
could be inferred from the stability of the homoclinic solutions.

Since this is the last in my series of papers on the Klausmeier model (1.1), I end
with a short nontechnical summary of the work. The model contains three dimension-
less ecological parameters, and investigation of patterns introduces as an additional
parameter the uphill migration speed. I have shown that patterns exist for a large but
finite range of this speed, and I have derived analytical formulae for the maximum
and minimum values of the rainfall parameter giving patterns for speeds within this
range. My formulae are valid to leading order for large values of the slope parame-
ter, which is the ecologically relevant case because this parameter reflects the ratio of
water flow downhill and plant dispersal. I have also derived the leading order forms
of the pattern solutions. One notable feature of these is a sharp transition in pattern
form in the interior of the parameter region giving patterns, which is significant for
land management (see section 6). The basic fact that patterns exist for a range of
wave speeds for given ecological parameters is also of direct practical importance,
because it raises the possibility of history-dependence in pattern selection. This is
confirmed by simulation-based studies of (1.1) [43, 44]. My results in the present
paper and [31, 32, 33, 34] provide an analytical framework for understanding this hys-
teresis. The Klausmeier model is deliberately constructed as a simple representation
of the complex phenomenon of vegetation dynamics in semiarid environments. This
simplicity inevitably limits its predictive capability; however, it also makes possible
the type of detailed mathematical study that I have undertaken. Extension of my
results to more complex and realistic models for banded vegetation is an important
challenge for future research.

Appendix A. In this appendix I describe my algorithm for numerical calculation
of Wspike(±∞) and (d/dξ)Wspike(+∞; ξ); here Wspike(.) satisfies (3.1), and ξ = B/c2.
The first stage is a preliminary shooting method in which I solve (3.1) forwards in z
from a point on the unstable eigenvector at (0, 0, ω0), close to the Wspike-axis, for a
grid of values ω0. I find that there are two different behaviors, according to the value
of ω0: either Uspike becomes negative along the solution trajectory, or Uspike becomes
very large (presumably tending to infinity). These behaviors occur for ω0 above or
below a critical value for which the trajectory terminates back on the Wspike-axis: this
is the required value Wspike(−∞; ξ). Therefore the solutions for my grid of ω0 values
give a preliminary estimate for Wspike(−∞; ξ) and hence also for Wspike(+∞; ξ).

My next step is to refine these estimates using a more sophisticated shooting
method. For a given pair of values ω1 and ω2, I solve (3.1) as two different initial
value problems, beginning at a point on the unstable eigenvector at (0, 0, ω1) and at
a point on the stable eigenvector at (0, 0, ω2), close to the Wspike-axis in both cases.
I solve forwards and backwards, respectively, in zspike, calculating the values of Uspike

and dUspike/dzspike when Wspike = 1
2 (ω1 + ω2); these values are unique since Wspike

is an increasing function of zspike. This gives two “mismatch” quantities as functions
of ω1 and ω2. With this algorithm in place, I use a nonlinear algebraic equation
solver to calculate the values of ω1 and ω2 at which these mismatch functions are
both zero; these are the values of Wspike(−∞) and Wspike(+∞), respectively. The
preliminary shooting method described in the previous paragraph gave good initial
approximations for the nonlinear equation solver, enabling rapid convergence. I denote
by ε the numerical error in these calculated values.

I now describe an extension of this algorithm to calculate (d/dξ)Wspike(+∞; ξ). I

D
ow

nl
oa

de
d 

08
/1

6/
13

 to
 1

37
.1

95
.2

6.
10

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1364 JONATHAN A. SHERRATT

begin by calculating Wspike(+∞; ξ) numerically on a grid of ξ values. I then estimate
the second derivative (d2/dξ2)Wspike(+∞; ξ) at each of these grid points by quadratic
interpolation through successive triples of points on the grid. For each value of ξ on
the grid, I then calculate the first derivative using

d
dξWspike(+∞; ξ) ≈ [

Wspike

(
+∞; ξ + h(ξ)

)−Wspike

(
+∞; ξ − h(ξ)

)]/
2h(ξ),(A.1)

where h(ξ) = ε1/3 Wspike(+∞; ξ)
/

d2

dξ2Wspike(+∞; ξ) .(A.2)

The spacing (A.2) is an optimal choice for the numerical estimation of the first deriva-
tive and gives an error in the numerical derivative of about ε2/3 [61, section 5.7].

The numerical errors in the values given by this algorithm for Wspike(+∞; ξ) and
(d/dξ)Wspike(+∞; ξ) depend on three tolerances: the distance ρ from the Wspike-axis
of the point on the unstable eigenvector of (3.1) along which shooting is started,
the local error tolerance 	 of the ODE solver, and the absolute error tolerance τ in
the nonlinear equation solver used to calculate Wspike(±∞; ξ). I consider first the
optimal choice of ρ. For a given point (0, 0, ω0), I denote by λ and E the unsta-
ble eigenvalue of (3.1) and the corresponding normalized eigenvector; both of these
are real, and E3 = 0. Then the starting point for numerical solution of (3.1) is
(Uspike, Vspike,Wspike)|zspike=0 = (0, 0, ω0) + ρE. After a few numerical integration
steps, the first two components of the numerical solution are

(Uspike, Vspike) = ρ exp{λzspike}(E1, E2) + 	L(zspike) + ρ2R(zspike),

where L, R ∈ R
2 are O(1) as 	, ρ → 0. The ρ2 term arises from nonlinear terms in

the ODEs. The deviation of this point from the eigenvector is given by

ρE1 exp{λzspike}+ 	L1(zspike) + ρ2R1(zspike)

ρE2 exp{λzspike}+ 	L2(zspike) + ρ2R2(zspike)
− ρE1 exp{λzspike}

ρE2 exp{λzspike} ,

which is O(ρ+ 	/ρ) as 	, ρ → 0. To minimize this deviation, I therefore chose ρ =
√
	,

and I ran tests to confirm the optimality of this choice.
In addition to λ (> 0), there are two other eigenvalues of (3.1) at (0, 0, ω0): one

negative, with the eigenvector again lying in the Uspike–Vspike plane, and the other
zero, with eigenvector (0, 0, 1). Therefore the Uspike and Vspike components of the
numerical solution gradually return to those of the required solution trajectory, but
the error caused by deviation from the eigenvector persists in the Wspike component
of the solution. However, the form of (3.1c) implies that this error is O(	 3/2), and it
is therefore dominated by local errors in the ODE solution.

Since the number of steps in the numerical solution of (3.1) is not particularly
large, these various considerations imply that the global error in the solution is O(	).
Provided that τ is chosen significantly smaller than 	, it follows that ε = O(	). Hence
the numerical errors in Wspike(+∞; ξ) and (d/dξ)Wspike(+∞; ξ) are O(	) and O(	 2/3),
respectively. I chose 	 = 10−8 using 8-byte precision, giving error estimates of 10−8

and 5× 10−6, respectively.
Finally I comment on the numerical estimation of limξ→0+ Wspike(+∞; ξ). Since

B/c2 → 0 is a singular limit for (3.1) (see Figure 6.1 and associated discussion),
numerical calculation of Wspike(+∞; ξ) becomes progressively more difficult as ξ is
decreased towards zero, and the algorithm ultimately fails. Therefore I estimated the
limiting value by fitting a polynomial through a sequence of values for small nonzero
ξ. This gives the limit as 1.1606, which is consistent with the calculations in section 6.
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