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Abstract. Self-organised patterns of vegetation are a characteristic fea-
ture of many semi-arid regions. In particular, banded vegetation is typ-
ical on hillsides. Mathematical modelling is widely used to study these
banded patterns, because there are no laboratory replicates. I will de-
scribe the development of spatial patterns in an established model for
banded vegetation via a Turing bifurcation. I will discuss numerical sim-
ulations of the phenomenon, and I will summarise nonlinear analysis on
the existence and form of spatial patterns as a function of the model
parameter that corresponds to mean annual rainfall.

1 Introduction

Self-organised patterns of vegetation are a characteristic feature of semi-deserts.
The most striking and best studied example is striped patterns on gentle slopes
(see [1, 2] for review). These occur in many parts of the world, and are partic-
ularly well documented in Australia [3, 4], Mexico/South-Western USA [5, 6]
and sub-Saharan Africa [7–9] Bands of grass, shrubs or trees run along contours,
separated by bare ground; wavelengths of about 1km are typical for trees and
shrubs, with shorter wavelengths observed for grasses.

There are no laboratory replicates of banded vegetation, so that empirical
study is limited to observation of existing patterns. Because the timescale of
pattern evolution is very slow (decades), such observational data is ineffective
as a basis for assessing the implications of changes in environmental parameters
such as rainfall. Therefore theoretical models are an important and widely used
tool for studying these patterns [10]. This paper is concerned with pattern for-
mation in one model for banded vegetation, due originally to Klausmeier [11].
It comprises coupled partial differential equations for plant and water densities,
and is the basic model for patterning due to water redistribution. Many exten-
sions of the Klausmeier model have been proposed over the last decade. Most of
these involve separate variables for soil and surface water [12–16]. Some authors
have also incorporated features such as rainfall variability [17–19] and a herbi-
vore population [20]; see [21, 22] for other recent extensions. Note also that the
Klausmeier model and its extensions are not the only theoretical explanation for
vegetation stripes. Lejeune and coworkers [23–26] have studied in detail a model
based on the combination of short-range activation and long-range inhibition
between neighbouring plants. Here the activation is due to shading of one plant
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by another, while competition for water results in inhibition; the difference in
length scales of these processes is due to the root system within the soil being
much more extensive than the parts of the plants above ground. In this model,
slope acts as a selector rather than an initiator of spatial patterning.

This paper is concerned with the original Klausmeier model [11]. I will present
a detailed discussion of pattern solutions of this model, which arise via a Turing
bifurcation in the model partial differential equations. I will show that studying
these pattern solutions can provide valuable new ecological insights into the
formation and maintainance of vegetation patterns in semi-deserts.

2 Model Equations

The dimensionless form of the Klausmeier model is:

∂u/∂t =

plant
growth
︷︸︸︷

wu2 −

plant
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Here u(x, t) is plant density, w(x, t) is water density, t is time and x is space in
a one-dimensional domain of constant slope, with the positive direction being
uphill. The (dimensionless) parameters A, B and ν reflect rainfall, plant loss
and slope gradient respectively. For full details of the dimensional model and
nondimensionalisation, see Klausmeier (1999), Sherratt (2005) or Sherratt &
Lord (2007).

For all parameter values, (1) has a stable trivial steady state u = 0, w = A,
corresponding to bare ground, without vegetation. When A ≥ 2B, there are also
two other homogeneous steady states which arise from a saddle node bifurcation:

u = u1 ≡ 2B

A−√
A2 − 4B2

, w = w1 ≡ A−√
A2 − 4B2

2
(2)

and u = u2 ≡ 2B

A+
√
A2 − 4B2

, w = w2 ≡ A+
√
A2 − 4B2

2
. (3)

The first of these (2) is always unstable to homogeneous perturbations; the
second is the key equilibrium from which patterns develop. This steady state is
linearly stable to homogeneous perturbations whenever B < 2. For larger values
of B and small A, (3) can become unstable, giving complicated local dynamics
including a limit cycle, but realistic parameter values for semi-arid environments
imply that B < 2.

For large values of the rainfall parameter A, (3) is also stable to inhomoge-
neous perturbations, so that the model predicts the spatially uniform vegetation
that characterises temperate parts of the world. However as A is decreased a Tur-
ing bifurcation occurs: (3) becomes unstable to some spatially inhomogeneous
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perturbations, and spatial patterns develop. The patterns consist of periodically
repeating peaks and troughs of vegetation (Figure 1), and as the rainfall pa-
rameter A is decreased further, these solutions gradually increase in amplitude,
resembling more closely the empirically observed patterns. In the prototypical
Turing system of two coupled reaction-diffusion equations, the patterns arising
from a Turing bifurcation are stationary. However the advection term in (1a)
causes the patterns to move, in the positive x direction (uphill). There has been
a long-running debate in the ecological literature about this uphill migration,
with some field studies reporting stationary patterns (e.g., [3]). However, the
majority of data sets spanning a time period sufficient to address this issue do
indicate uphill migration, with speeds in the range 0.2–1myear−1 (see Table 5
of [1]). A recent and very detailed study using photographic data from satellites
[27, Chapter 10] confirms migration, with speeds in this range, for three out
of six geographical locations. The ecological cause of uphill migration is that
moisture levels are higher on the uphill edge of the bands than on their downhill
edge, leading to reduced plant death and greater seedling density [28, 29].

3 Travelling Wave Solutions

Mathematically, patterns moving with constant shape and speed can be studied
via the ansatz u(x, t) = U(z) and w(x, t) = W (z), where z = x − ct with c
being the migration speed. Substituting these solution forms into (1) gives the
travelling wave equations

d2U/dz2 + c dU/dz +WU2 −BU = 0 (4a)

(ν + c)dW/dz +A−W −WU2 = 0 . (4b)

Patterned solutions correspond to periodic solutions of (4). In [30], Gabriel Lord
and I used numerical bifurcation analysis to study these periodic solutions. We
showed that for a given value of the migration speed c, patterns occur for a
range of rainfall parameter values A. For most values of c, this range is bounded
by a Hopf bifurcation point for (3,4) and a homoclinic solution of (4). However
for some values of c there is a fold in the branch of periodic travelling wave
solutions, and this then constitutes on end of the rainfall range for patterns
[31, 32]. A typical result is illustrated in Figure 2, which shows the loci of the
Hopf bifurcation point and the homoclinic solution in the A–c parameter plane,
for fixed values of B and ν.

Analytical study of (1) is made more complicated by the advective term in the
u-equation. For example, linear stability analysis of (3) to investigate the Turing
bifurcation is significantly more complicated in (1) than for a system of two
reaction-diffusion equations [34], and indeed one cannot obtain an exact closed-
form expression for the value of A at which the bifurcation occurs. However,
the slope parameter ν is much larger than A and B: Klausmeier [11] estimated
ν = 182.5, A = 0.1–3.0 and B=0.05–2.0. This large value is not due to the slope
itself being steep: banded vegetation is restricted to slopes of a few percent, and
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Fig. 1. An illustration of a typical vegetation pattern, as predicted by the Klausmeier
model (1). There is a periodic pattern of peaks in vegetation density u, separated by
regions in which vegetation is almost absent. The surface water density w also has
a periodic form; it is largest on the uphill side of a vegetation stripe, and gradually
decreases with distance uphill to the next stripe. The pattern moves slowly uphill;
in this case the (dimensionless) migration speed is approximately 0.9. The parameter
values are A = 2.5, B = 0.45, ν = 182.5, which are in the range of Klausmeier’s
(1999) parameter estimates for grass. The equations were solved numerically using a
finite difference scheme (see [30] for details) on the domain 0 < x < 125 with periodic
boundary conditions.
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Fig. 2. A typical example of the part of the A–c parameter plane in which there are
patterned solutions of (1), which corresponds to limit cycles in (4). I plot the loci
of Hopf bifurcation points ( ) and homoclinic solutions ( ) in (4),
which bound the pattern region. The other parameters are B = 0.45 and ν = 182.5.
The plot is truncated at c ≈ 20: patterns actually exist for values of c up to about
50. The numerical solutions were performed using auto [33]. The loci of homoclinic
orbits are approximations; they are in fact the loci of solutions of a fixed but very long
wavelength (3000). Further details of the numerical continuation approach are given in
[30].

on steeper slopes, different processes occur because rainwater generates gullies.
Rather, ν is large because the plant diffusion coefficient is small compared to
the advection rate of water, and it is the relative values of these quantities that
determines the nondimensional parameter ν [11, 34]. By exploiting this large
value of ν it is possible to obtain leading order approximations for various key
points in the A–c parameter plane. In particular:

– The Turing bifurcation occurs at A = (
√
2−1)1/2ν1/2B5/4, c = A2/(2B2ν)+

B3ν/(2A2) [32].

– The maximum migration speed for patterns is c = νB/(2−B) [31].

– The base of the “tusk-shaped” region (see Figure 2) occurs at
c = 0.881B3/4ν1/2 [35, 36].

– Pattern solutions exist for arbitrarily small values of the migration speed c
[32].
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4 Conclusion

Ecological pattern formation at the level of whole ecosystems is a new, exciting,
and rapidly growing research area, whose study is influenced strongly by Turing’s
ideas [37]. Vegetation patterns in semi-arid regions represent one example of
such patterns, but there are many others, including regular isolated spots of
trees and shrubs in savanna grasslands [38, 39], patterns of open-water pools in
peatlands [40, 41], labyrinthine patterns in mussel beds [42, 43], striped patterns
of tree lines (“ribbon forests”) in the Rocky Mountains [44, 45]. Mathematical
modelling is an important tool for the study of landscape patterns, and the
Klausmeier model (1) is one of the most generic models: as well as semi-arid
vegetation, it has been used to model fog-dependent plant ecosystems [46] and
(with a slight modification) mussel beds in river estuaries [47]. I have outlined the
mathematical analysis of pattern formation in the Klausmeier model, showing
how such analysis can make clear and quantitative predictions concerning critical
levels of the rainfall level and wave speed.
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