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Abstract

Periodic wave trains are the generic solution form for oscillatory reaction—diffusion equations in one space dimension. It
has been shown previously that invasive wavefronts generate behind them a wave train with a different speed from that of
the invasion [Sherratt, Physica D 70 (1994) 370--382]. In this paper, the mechanism of wave train generation is studied in
detail for systems of two reaction—diffusion equations close to a supercritical Hopf bifurcation in the kinetics, with equal
diffusion coefficients. A combination of analytical and numerical evidence is presented suggesting that the invasive front and
wave train are separated by a modulated travelling wave of phase gradient, in which phase singularities occur periodically.
This calculation leads to a prediction of the amplitude and speed of the wave train generated by invasion. Copyright © 1998
Elsevier Science B.V.
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1. Introduction

Periodic wave trains are the generic solution form for oscillatory reaction—diffusion equations in one space
dimension. Here ‘oscillatory’ means that the kinetic ordinary differential equations (ODEs) contain a stable limit
cycle, and reaction—diffusion systems with such kinetics are used widely in biological and chemical applications,
including the Belousov—Zhabotinskii reaction [1], intracellular calcium signalling [2], and predator—prey interactions
[3]. Periodic wave trains (a.k.a. periodic travelling waves) were first studied by Kopell and Howard [4], and over
the following two decades, a number of authors studied the existence of such waves, and their stability as solutions
of the corresponding reaction—diffusion systems [5-9). In the last few years attention has shifted to the generation
of periodic wave trains from types of initial condition that arise naturally in applications [10,11]. The present paper
extends previous work of my own on this question [12], concerning the generation of periodic wave trains behind
invasive transition waves. I begin with a brief summary of my previous results.
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Transition wavefronts of constant shape and speed are one of the most extensively studied solution forms for
reaction—diffusion equations, dating back to the ground-breaking work of Kolmogorov et al. [13] and Fisher [14].
Such wavefronts represent the invasion of one equilibrium state by another. The equilibrium ahead of the wave can
be either stable or unstable; however, that behind the wave, which I will refer to as the “invading equilibrium”, is
necessarily stable (see [15] for review). In systems of equations, similar transition fronts are relevant to a wide range
of applications [17,18], and numerical evidence for their existence is extensive, although formal proofs are rare, a
notable exception being the work of Dunbar [19] on predator—prey models.

In [12], I considered the fate of such transition fronts when kinetic parameters are altered such that the invading
equilibrium becomes unstable via a Hopf bifurcation. Although the simple transition front continues to exist formally
(at least in some cases), it can clearly no longer be stable. The basic conclusion, based on a series of analytical
estimates and numerical simulations, is that the transition front undergoes a bifurcation in parallel with that in
the kinetics, into a wavefront behind which there is a periodic wave train. Both the front and the wave train have
constant speeds, but these speeds are different, with the wave train moving faster; moreover, the direction of the
wave train can be either the same as or opposite to that of the front, depending on parameter values. I will denote
the two speeds by cfront and cyain- A numerical simulation illustrating this behaviour in a predator—prey model
is shown in Fig. 1(a). It is important to stress that the work in [12] is not general, and concerns a specific set of
equations. However, subsequent studies have shown that this phenomenon, referred to as “oscillatory wakes behind
invasion”, applies in a wide range of oscillatory reaction—diffusion systems [20,21]. In some cases, one observes
highly irregular spatiotemporal oscillations behind a band of periodic travelling waves, as illustrated in Fig. 1(b);
this arises when the periodic waves are unstable as solutions of the partial differential equations (PDEs), and the
dynamic nature of the irregularities is discussed in detail in [22].

Any oscillatory reaction—diffusion system has a one-parameter family of periodic wave train solutions [4,23], with
wave speed or amplitude being convenient parameters. Thus a question raised immediately by the above discussion
is: Which member of the wave train family is selected behind the invading front? This question will be answered
explicitly in this paper for systems of two reaction—diffusion equations in which the kinetics are close to Hopf
bifurcation and in which the diffusion coefficients are equal, via a detailed understanding of the way in which wave
trains are generated behind the invading fronts. This understanding builds on partial previous results, which I will
now briefly review.

The form of a wavefront with an oscillatory wake is illustrated schematically in Fig. 2. The leading wavefront
decays exponentially to the (unstable) invading equilibrium state, and provided that the kinetics are sufficiently
close to Hopf bifurcation, the solution remains close to this equilibrium state for a significant distance, before
evolving away from the equilibrium, and into a periodic wave train. The phrases “sufficiently close” and “'significant
distance” are based on previous numerical observations, but will be made analytically precise later in this paper.
In [12], I presented numerical evidence that the exponential decay of the leading front, towards the invading
equilibrium, plays the central role in wave train selection. This decay has the form of exponentially decaying
sinusoidal oscillations, corresponding to a complex eigenvalue with negative real part in the ODEs for travelling
wave solutions of speed cfrone. In [12], T presented numerical evidence indicating that when such an oscillatory
decay is applied as a perturbation to the invading equilibrium, it generates a periodic wave train.

In a later paper [24], I investigated this wave train generation in more detail, in the case of reaction—diffusion
systems of “A—w” type. This class of equations is a standard prototype for oscillatory reaction—diffusion systems;
their form facilitates analytical study. I will describe A—w systems in detail in Section 2, but a crucial point to
mention here is that they cannot be used to study invasion problems as such. This is because invasion requires the
existence of two kinetic equilibria, while A—w systems have only one. The value of the A—w prototype is in studying
the effects of perturbations to this one equilibrium, applied as initial conditions. In [24], I considered the particular
case of monotone (i.e. non-oscillatory) exponentially decaying perturbations, and showed that such initial data do
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Fig. 1. An illustration of an oscillatory wake behind the simulated invasion of a
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Fig. 2. A schematic illustration of the form of an invading wavefront with an oscillatory wake.

indeed generate a periodic wave train. Moreover, I derived a formula for the amplitude (and thus the speed) of this
wave train, as a function of the decay rate of the initial perturbation.

There are three basic and very significant differences between the scenario considered in [24] and the real case
of oscillatory wake generation, as discussed in [12]:

(i) The kinetics in general oscillatory reaction—diffusion systems are not of A—w form.
(ii) The exponential decay of the leading front to the invading equilibrium is oscillatory rather than monotone.
(iii) This decaying perturbation is applied continuously and moves with the speed of invasion, rather than being
applied instantaneously as a stationary initial condition.

The aim of this paper is to bridge these three gaps. [ deal with (i) by restricting attention to the case of two coupled
reaction—diffusion equations with equal diffusion coefficients, and with kinetic parameter values close to Hopf
bifurcation of the invading equilibrium. Then in the neighbourhood of this equilibrium, the kinetics are approximately
of Hopf normal form, which gives a A~ type system. In Section 2, I address (ii) by generalising the results in [24] to
oscillatory perturbations. In Section 3, I extend the work to moving perturbations, in the sense of (iii), by generalising
the results further to the case of a moving frame of reference. This will show that the key to wave train selection
lies in changes of phase when the solution is close to the invading equilibrium state. In Section 4, I will derive the
form of this phase change, which has the form of a modulated travelling wave, in which phase singularities occur
periodically in space and time. This is a novel and intrinsically spatiotemporal form of phase resetting. Moreover,
the calculation leads to an analytical prediction of the wave train amplitude selected behind invasion.

2. Wave train generation by oscillatory decaying initial data
2.1. Introduction to A—w systems

The “A-w” class of reaction—diffusion systems has the general form

du  3%u
a2t AMr)u — w(r)v, (2.1a)
v a%v

5: 5—;—2—+w(r)u+)\.(r)v. (2.1b)
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Here ¢ denotes time and x denotes space in a one-dimensional domain. In this paper, I will restrict attention to the
case

Ar) =2 —Air?, @) =wy +wr?, (2.1¢)

where g, A1 > 0, with wg, w; taking either sign (but not zero). Two of the parameters Ag, A1, wg, and w{ can in
fact be eliminated by simple rescalings, but since this does not simplify the subsequent analysis, I leave the system
in this general form. This is the normal form for kinetics close to a supercritical Hopf bifurcation; all the results in
this paper will be based on these forms, and thus apply only sufficiently close to Hopf bifurcation; later I will make
the term “sufficiently close” more precise. The case of subcritical Hopf bifurcation is quite different, and has been
the subject of fascinating recent work by Ermentrout et al. [11]. Note that (2.1c) implies that the kinetic ODEs have
a unique equilibrium point # = v = 0, which is unstable, with a stable limit cycle around that point that is circular,
with radius (ro/A1)!/2.

In common with any oscillatory reaction—diffusion system, (2.1) has a one-parameter family of periodic wave
train solutions [4]; the beauty of the A—w form is that these solutions may be written down explicitly:

u = fcos[w(F)t £ A(F)%x], v = Fsin[w(F)t £ A7) %x]. (22)

Here the wave amplitude 7 parametrises the wave train family; the + reflects the fact that the wave train can travel
in either the positive or negative x-direction. Moreover, Kopell and Howard [4] derived an exact condition for the
stability of (2.2) as a solution of (2.1), namely that

7oA 2
4r(F) [1 + (8@) :l +7rA(F) <0 (2.3)
Al(r)

for linear stability. Note in particular that waves of sufficiently large amplitude are stable, while those of sufficiently
small amplitude are unstable.

Analysis of (2.1) is facilitated by using polar coordinates in the u—v plane, ie. r = W +v)2and 9 =
tan~!(v/u), in terms of which (2.1) becomes

re=rA(r) + rog — rél, (2.42)
6 = w(r) + Oux + 2rxbs/1, (2.4b)
A(r) = ko — Mr?, (2.4¢)
w(r) = wy + w172, (2.4d)

and the periodic travelling wave solution (2.2) is
r=+ 6=w@t+r@"x (2.5)

The aim of this section is to study the solutions of (2.1) that evolve from exponentially decaying, oscillatory
perturbations to the equilibrium state # = v = 0. In terms of the invasion problem discussed in Section 1, u =
v = 0 is analogous to the invading equilibrium, and the initial conditions are analogous to the rear of the invading
wavefront. Specifically I consider (2.1) on the semi-infinite domain —oo0 < x < 0, with initial conditions

u(x,0) = eexp(éx) cos(vx + 6p), v(x, 0) = e exp(&x) sin(vx + 6p). (2.6)

Here £ > 0, and without loss of generality v > 0; 8y and € are constants, with € small relative to the maximum
wave train amplitude (Ao/ Al)l/ 2 Atthex =0 boundary I use the conditions

uy+&u+vev=0 and vy+E&v—vu=0, 2.7
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which are satisfied by (2.6), although numerical simulations suggest that Neumann or Dirichlet conditions give
essentially identical results except very close to this boundary. I do not attempt a direct analytical determination of
the long-term solution of this problem,; rather, I present an analytical study of particular solution forms, based on
the results of numerical simulations. The work in this section is analogous to that in [24], which considered the case
v = 0; the differences that result from non-zero v (i.e. oscillatory decay) are important for later sections of the paper.

2.2. Simulation of evolution from exponentially decaying, oscillatory data

Numerical solution of A-w type reaction—diffusion systems is most easily performed by integrating the u—v
equations (2.1) rather than the r—6 equations (2.4). This is because 8 is unbounded, which causes great difficulties
numerically, although it is of no mathematical significance, since only the value of & modulo 27 is meaningful. A
typical numerical simulation of (2.1) subject to (2.6) and (2.7) is illustrated in Fig. 3. The initial perturbation to the
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Fig. 3. Periodic wave trains v = 0 in a A—w system. I show the
numerical solution of (2.1) subject to (2.6) and (2.7), plotting u as a function of space at successive times, with the vertical separation
of successive solutions proportional to the time interval. The parameter values are A = A} = I, wg = 3,§ = 0.7,v = 0.15,¢ = 0.1
and 6y = %n, with (a) @] = —0.1; (b) w; = +0.1. The initial perturbation spreads across the domain as an amplitude transition front,
behind which is a periodic wave train. The front and wave train move at different speeds, in (a) the opposite, and (b) the same, direction.
I have used two different numerical methods to solve (2.1), a semi-implicit Crank-Nicolson scheme, and the method of lines and Gear’s
method. The two methods actually have rather different convergence properties, and their combined use provides a valuable check for
the validity of the numerical solutions; details of the methods are given in [25].
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Fig. 4. The solution generated by exponentially decaying, oscillatory perturbations to # = v = 0 in a A-w system, plotted as r, y = 6,
and ¢ = ry/r, rather than as u and v. The solution illustrated is the same as in Fig. 3(a). I plot r, ¥ and ¢, calculated from numerical
solutions for & and v, as functions of space at equally spaced times (time interval 15.7). This method of illustration shows that the solution
consists of transition wavefronts in r, ¥ and ¢, moving in the negative x-direction with constant shape and speed. The arrows indicate
the way in which the solution changes as time increases. The values of ¥ and ¢ are not plotted when the numerically calculated solution
for r is less than a critical value, taken as 10~9; this avoids values that are unreliable due to rounding errors, which occur both in the PDE
solution for # and v and in numerical differentiation of «, v and r.

equilibrium state evolves to a wavefront moving across the domain at constant speed, behind which is a periodic
wave train. The wave train has a different speed from the front, and can move in either the positive (as in Fig. 3(a))
or negative (as in Fig. 3(b)) x-directions. It is important to stress that this solution is quite different from that of the
invasion problem described in Section 1 and illustrated in Fig. 1, even though both involve a front and wave train
moving at different speeds. The essential difference is that the invasion problem arises from the perturbation of an
equilibrium point outside the limit cycle of the kinetics, while in the present case it is the equilibrium point inside
the limit cycle that is perturbed.

The basic form of the solution, as illustrated in Fig. 3, is the same in numerical simulations for a wide range
of parameters, and appears essentially independent of € and 6y except at very early times. Further insight into
the solution is given by replotting the solutions as r and ¥ = 6,. This reveals transition wavefronts of constant
shape and speed (Fig. 4); behind the front » and s are constant, corresponding to periodic travelling waves, and
ahead of the front, » = 0 and ¥ = v, the value imposed by the initial conditions. It is also convenient to calculate
¢ = r./r, which of course also has the form of a transition wavefront. As illustrated in Fig. 4, ¢ = 0 behind
this front (since r is constant and non-zero), while ahead of the front, ¢ = £, the value imposed by the initial
conditions.
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2.3. Existence of transition wavefronts

To study this behaviour analytically, I work with the equations in their polar coordinate formulation (2.4), and
look for solutions in travelling waveform, r = #(zperr), ¥ (= 6x) = &(zpen), where Zperr = X +Cpent. Here cpeny > 0
denotes the speed at which the wavefront, induced by the initial perturbation, moves across the domain. I neglect the
x = 0 boundary and work on the domain —0C < Zpenr < 00; this is appropriate because the travelling front solutions
are relevant to (2.4) as the limiting solutions at large times, and in this limit the x = 0 boundary corresponds to
Zpert = +00. The travelling waveform assumed for v implies that6 = !i!(zpen) + F(t), where g (-) is an indefinite
integral of 1]/(-) and F(-) is an arbitrary function of time, that arises as a constant of integration; recall that ¢ = 6,.
Substituting this and the travelling waveform for r into (2.4) gives a third-order system of ODEs, which are most
conveniently written in terms of the variables 7 (zpert), J!(Zpen), and J)(zpm) = F'(Zpert) /T (Zpert):

d7 /dzpen = 7, (2.8a)
d¥ /dzpen = —wp — 017 + Cpen ¥ — 20V + f(1), (2.8b)
d&/dzpert = 1/;2 + Cpert‘i - q;2 — Ao+ )»1’:2- (2.8¢)

Here f(t) = F'(t). Egs. (2.8) were studied originally in [26] for transitions between two wave trains with different
(non-zero) amplitudes; here I am considering transitions between solutions with zero and non-zero amplitudes,

which have significance differences. The required behaviour at zperr = —00 (F = 0, ¥ = v, ¢ = &) implies, using
(2.8b), that
f@) =wo — (cpen — 28, (2.8d)

independent of time. The same conditions substituted into (2.8c) imply that

cpert =& + (ho — V) /E. (2.8¢)

The transition wavefronts seen in Fig. 3 correspond to heteroclinic connections between steady states of (2.8). I
do not attempt a global analysis of such connections, but rather consider simply local stability close to the steady
states, which gives a great deal of insight.

Straightforward calculation shows that (2.8) has three steady states with 7 > 0:

SS1: 7 =0,y = v, ¢ = &. This has eigenvalues £ and (cperr — 2&) & 2vi. Eq. (2.8e) for cpen implies that this
steady state is completely unstable if £2 + v2 < Ap; otherwise it is a saddle point.

SS2:F=0,% = —v,¢ = Cpert — & This has eigenvalues (cpert — 2§) and (2§ — cpert) =2V i, and is thus completely
unstable if £2 + v? > Ag, and a saddle point otherwise.

SS3: ¥ = [(Cpent — 28)V + w172]/Cpent, @ = 0, with F satisfying
Chert(Ro — M72) = [@17* + (cpen — 2E)V]%. (2.9)

The number of solutions of (2.9) depends on parameter values. However, I will show shortly that only the case
V< A(l)/ 2is of interest, and it is straightforward to show that in this case, there is exactly one real solution for 7, say
Fs. The eigenvalues yu at this steady state satisfy

w = 2cp® 4[24 4h — 61170

rod - -

—— = lGpen (o = M17%) = (@17 + (cpert = 26)0)*] lr=s, = 0.
pert
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Thus the sum of the eigenvalues is positive, while their product is negative, implying that there is one real negative
eigenvalue and two others with positive real part.

The transition wavefronts of the type illustrated in Fig. 4 correspond to a heteroclinic connection in (2.8),
joining 883 (at zperr = +00) and SS1 (at zper = —00). Since SS3 has only one stable eigenvector, there are two
trajectories terminating at the steady state, one of which (71, say) has 7 decreasing to F;, with the other (73, say)
having 7 increasing to 7. Numerical integration of (2.8) backwards in zper as an initial value problem for a wide
range of parameter sets, starting close to SS3 on the stable eigenvector, suggests 7, ¥ and ¢ all tend to infinity
along 7}, while 77 connects to whichever of SS1 and SS2 is completely unstable. I will assume this behaviour
of 73 in what follows, although it must be remembered that it is only a conjecture, based on (strong) numerical
evidence.

It follows that a transition wavefront of the form illustrated in Fig. 3 exists provided SS1 is completely unstable,
which requires

g2 +v?2 < Ag. (2.10)

This in turn implies the condition v < k(l)/ 2, ensuring exactly one solution of (2.9) with positive non-zero 7. Thus
when condition (2.10) is satisfied, the above analysis suggests that the solution evolves to a transition front in r, ¥
and ¢, moving with speed given by (2.8e), and this is confirmed in numerical simulations (e.g. Fig. 4).

Numerical simulations of the initial value problem (2.1), (2.6), (2.7) show that when condition (2.10) is not
satisfied, the solution nevertheless evolves to a transition wavefront in r, { and ¢. The above analysis implies that
this front cannot have ¥ = v and ¢ = & ahead of it (since no such front exists), and in all cases I have found that
this wavefront is that with v = 0 and ¢ = A(])/ 2 ahead of it, which has speed 2+4/Ag. This wavefront is the slowest of
those fronts ahead of which ¥ = 0, and this numerical observation is consistent with the work in [24] which treats

only the case v = 0; however (2.8e) and (2.10) imply that slower fronts do exist for non-zero v.

2.4. Stability of transition wavefronts

The existence of transition wavefronts in r, ¢ and ¢ does not, of course, imply that they are stable as solutions
of the original reaction—diffusion equations (2.1). Intuitively, one can divide the origin of such instabilities into
two categories: either the steady state SS3 (a periodic wave train) behind the front could be unstable, or the front
itself could be unstable. The condition for the first of these instabilities was derived in [4] and is given in (2.3), and
numerical solutions indicate that as parameters are altered so that SS3 becomes unstable, the transition wavefront
solution develops irregular oscillations behind it, corresponding to irregular spatiotemporal oscillations in u and v
behind a band of periodic waves.

I end this section by briefly summarising the results of a numerical investigation into the second type of instability.
Numerical study is that I calculate the trajectory 72 by numerical integration of the ODE system (2.8), as explained
above. I then use this solution, with some noise added as a small perturbation, as an initial condition in the solution
of the PDEs (2.1), and determine whether the solution returns to the travelling front corresponding to 77, or
moves away to a new solution. I have used this procedure previously with success for other amplitude transition
fronts in A—w systems [27], and in the present case I have performed it for a wide range of parameter sets. Note
that £ and v are parameters, as well as Ao, A1 and w;; the value of wy is irrelevant, since it does not appear
in (2.8), and altering its value in (2.1) corresponds to taking two independent linear combinations of (2.1a) and
(2.1b).

These simulations indicate that condition (2.10) for the existence of a travelling front solution is not sufficient to
ensure its stability. In unstable cases, I have found that, as when (2.10) is not satisfied, the solution evolves to the
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front withy = Oand ¢ = Ag)/ % ahead of it. Recall that this front has speed Zk(l)/ 2. In the course of running numerical

simulations for a wide range of parameter sets, I noticed that the unstable fronts always correspond to a theoretical

speed (predicted by (2.8e)) that is less than 2)\(13/ 2, suggesting that this may be the condition for stability. In terms
of & and v, this condition is

£+ (ko —v3)/E > 2/ho e E+v <A

(The alternative possibility & > /Ao + v automatically contravenes condition (2.10)). However, it is important to
stress that my evidence for this condition is purely numerical observation; in fact the condition is not required in
what follows, and I mention it only for completeness. The essential result of this section is condition (2.10) for the
existence of amplitude transition fronts.

3. Wave train generation in a moving frame of reference

In this section, I extend the results of Section 2 to the case of a decaying, oscillatory perturbation that is moving,
rather than stationary. This reflects the fact that the decaying tail of the invasive wavefront moves at the speed cfront,
and is applied continuously, rather than as an instantaneous initial condition (see Fig. 2). To achieve this, [ work in
a frame of reference moving with speed cfronc in the positive x-direction, in terms of which the A—w system (2.1)
has the form

O U o = 4 MO — 0 (3.12)
—_— =4  m— ru—wrjv, .la
ot aZfront2 front 0Zfront
Jav 82v av
———:———2 + Cfront — +a)(r)u ‘I’)\.(r)v, (31b)
ar 0Zfront dZfront
A(r)=ho — Air?, 3.1¢)
w(r) = wy + w1r’. (3.1d)

Here Zfront = X — Cfront? - I consider this system on —00 < zgom < 0, with initial conditions

u(Zfront. t = 0) = € exp(€ Zfront) COS (VZfront + Go), (3.2a)
V(Zfront, t = 0) = € exp{& Zfront) SIN{(VZfront + 60)- (3.2b)

and boundary condition

d
“ —éu+vv=0 and

0 Zfront 3Zfront

—étv—vu=20 (3.3)

at zZfrom = 0. These end conditions are precisely (2.6) and (2.7), with x replaced by zfront-

It is important to stress that the front speed cfron; can reasonably be regarded as a parameter in this problem.
In a full invasion problem, such as that illustrated in Fig. 1, the invasion speed depends on the kinetics, diffusion
coefficients and initial conditions. Full expressions for these dependencies are only available for a few systems
of reaction—diffusion equations [28-30]. Crucially, however, these analytical results, together with a large amount
of numerical evidence, suggest that the speed depends only on the form of the Kinetics close to the equilibrium
state being invaded, i.e. the state ahead of the invading front. This is a region of the kinetic phase plane quite
separate from the limit cycle, and can thus be regarded as independent. However, it should be remembered that in
any particular application, c¢fron Will be coupled to Ao, A1, wo and wp, with all being functions of the same kinetic
parameters.
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By contrast, the initial decay rate & and wave number v are not independent parameters, and are functions of Aq,
wp and cfrone- Derivation of this dependence is straightforward. The initial conditions implied by £ and v correspond
to the decay of the tail of the invading wavefront towards the invading equilibrium (i.e. u = v = 0). This front, and
thus its tail, move with the constant speed cfon. The ODEs satisfied by such travelling wave solutions with speed
Cront are given by setting the right-hand sides of (3.1) to zero, and £ and v are simply the real and imaginary parts
of a complex pair of eigenvalues of these ODEs at # = v = 0. Direct calculation of these eigenvalues is possible
because the quartic eigenvalue equation factorises easily, giving

| [ -1\ 72
§= E —Cfront + (5 {Cfrom —4ro + \/(C%rom —4r0)? + ]6(")0 }) K (342)

), > a1\
V= ”2‘ E ~Ctront T 4ho + \/(Cfront — 4ho)* + 16&)0 : (3.4b)

These are uniquely determined since we are looking for a positive value of &; the other pair of eigenvalues (also
complex) always has negative real part. In fact, straightforward manipulation shows that the value of £ implied by
(3.4a) is only positive if

Cfront < wO/}\é/z- (3.5)
As Cfrone passes through this value, the ODEs for travelling waves of that speed pass through Hopf bifurcation at
u = v = 0; the resulting limit cycle for higher speeds corresponds to a periodic wave train. Thus for cgronr > wp/ A(l)/ 2,
there is the possibility of a periodic wave behind, and moving in parallel with, invasion. Solutions of this type were
studied in detail by Dunbar [31], and for invasion speeds above this critical value, the theory of oscillatory wakes
that I am describing does not apply, since the solution never approaches the invading equilibrium. However, I have
shown previously [20] that in a wide range of ecological applications, cfront is significantly below wg /A(])/ 2 (often
by an order of magnitude). Moreover, (3.5) always holds when one is sufficiently close to a Hopf bifurcation point
in the kinetics (= Ag < wg). In the remainder of this paper, I assume that (3.5) is satisfied.

I have solved (3.1) subject to (3.2) and (3.3) numerically, with § and v given by (3.4), for a wide range of parameter
sets. Of course, (3.4) implies that the initial conditions (3.2) are an exact solution of the PDEs when linearised about
u = v = 0; however, this solution is unstable even in the linear regime (since u = v = 0 is unstable), and numerical
simulations confirm that any small perturbations grow rapidly. As expected from the results of Section 2, the solution
generates a transition wavefront in amplitude r and phase gradient 6,, moving in the negative x-direction; an example
is illustrated in Fig. 5, with ¢ = r,/r also plotted. As is clear in the figure, the moving frame of reference causes a
‘gap’ to develop between the resulting periodic wave train and the Zgont = 0 boundary, and another transition wave
develops in this gap.

Numerical measurement of the speeds of these two wavefronts in r and 8, shows that for a wide range of
parameters, both move with absolute speed 218/ 2, but in opposite directions. Here the word *“absolute” means that
these are the speeds with respect to a stationary frame of reference (i.e. in an x-frame rather than a Zfront-frame).
Therefore, unless

Cfront > 2)\(])/2, (3.6)

the transition front moving in the positive x-direction will eventually ‘catch up’ with the zgon = 0 boundary, leading
to a more complex solution form. In this case, the theory that I will describe does not apply, and I will assume in the
remainder of the paper that (3.6) is satisfied. Note that, as with condition (3.5), (3.6) is always satistied sufficiently
close to Hopf bifurcation in the kinetics. Between the two transition fronts are two bands of periodic waves, of equal
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Fig. 5. The solution generated by a moving decaying oscillatory perturbation to # = v = 0 in a A—w system. I show the solution of (3.1)
subject to (3.2) and (3.3), plotting r, ¢ = 8, and ¢ = r,/r as functions of space at three equally spaced times. The solution consists of

two amplitude transition fronts moving in opposite directions but at the same speed, namely 21(1)/ 2 (see main text). Note that for clarity
the solutions are plotted in terms of the absolute space variable x, although the equations are actually solved in terms of zfon and ¢; the
vertical dashed lines denote the boundaries of the zgon-domain on which the equations are solved. As in Fig. 4, the values of ¢ and ¢
are not plotted when the numerically calculated solution for r is very small. The parameter values are Ag = 0.03, A} = 0.5, wg = 0.4,
wy = 0.15, and ¢fon; = 1.

amplitude but moving in opposite directions, so that the constant values of 8, are of opposite sign. The interface
between these bands is stationary with respect to a stationary frame.

To explain these results, it is simplest to consider the two amplitude transition fronts separately; I consider the
front moving in the positive x-direction in Section 4, but first consider that moving in the negative x-direction. This
front is directly analogous to those considered in Section 2, being generated by initial data that decay exponentially
tou = v = 0 as x - —oo0, and the theory presented in Section 2 remains valid even in the moving frame. Thus,
in view of condition (2.10) for the existence of amplitude transition fronts, we must consider the value of &2 + v2
relative to Ag, when £ and v are given by (3.4). In fact,

1
2 2 2 2
Vo= 3 I:_Cfmm +4ry + \/(cfmm —4x0)2 + 16w0]

I .
> [_cgmm 420 4/ (R — 410)% + 16A0c§mm] (using (3.5))
= A’O
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Fig. 6. A more detailed view of the transition in = 6y and ¢ = ry /r for the solution shown in Fig. 5. I plot ¥ and ¢ for a small range
of x-values at 10 successive equally spaced times; note that the time interval is very much shorter than in Fig. 5. The solution has the
form of a transition moving in the positive x-direction at a constant speed, but with a shape that varies in time. As in Fig. 5, solutions are
plotted in terms of the absolute space variable x, although the equations are actually solved in terms of zgon and ¢. The figure suggests
that the temporal variation is actually periodic in a suitable moving frame, and this is confirmed by the analysis in Section 5 of the main
text. Note also that there are periodic singularities, occurring once in each time period of the solution, at which ¥ and ¢ are infinite; again
this is confirmed by the analysis in Section 5 of the main text.

so that (2.10) is never satisfied. Thus the results of Section 2 predict a front speed of 2A(1)/ 2, as observed in simulations.
Note that in applications, this amplitude transition front moving in the negative x-direction is not usually relevant,
since an invasive front is usually generated by applying a perturbation to an unstable equilibrium state, either at
a boundary (as in Fig. 1) or localised near one point in the middle of a domain, which is essentially equivalent
to perturbing near a boundary on which a symmetry condition is applied. In both cases, the front will reach this
boundary almost immediately.

4. Modulated travelling phase resetting waves

The amplitude transition front moving in the positive x-direction requires more careful consideration. In Fig. 5,
it is clear that there is a rather complication transition in ¥ and ¢ ahead of this transition front; recall that ¥ = 6,
and ¢ = r,/r. The key to the explanation of the second transition front lies in understanding this transition. Fig. 6
shows the transition in more detail at a sequence of times. Both ¥ and ¢ have the form of a transition front which
moves in the positive x-direction, but whose form varies in time.
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4.1. An approximate analytical solution
These rather complicated behaviours in ¥ and ¢ occur when the amplitude 7 is very small (see Fig. 5); therefore

one anticipates that the nonlinearities in A(r) and w(r) are not significant in this behaviour. Exploiting this, I consider
the linearised PDE

du  8%u N du s @1a)
—_— = a — U — v, .

9t az,2 | “ag, M T @0 a
v _ 0% a2 4 ot A (4.1b)
_—_—= a — U V. .

9 0z,2 | T9g, | MMTAO

Here z, = x—at, sothat] am working in the frame of reference moving in the positive x-direction with an unspecified
speed a, denoting the speed of the amplitude transition front moving in the positive x-direction. Determination of
this speed is a key goal of this section of the paper, and the method I will use for this depends crucially on working
in a frame of reference that moves with the unknown speed. I take z, = 0 to be a point at which this transition front
is close to the u = v = O steady state.

The linearity of this equation raises the possibility of analytical solution, and I will solve the equations using the
method of Laplace transforms. The boundary at zfrone = 0 in Section 3 becomes z, = (¢front — a)¢ in the new frame
of reference, and such a moving boundary is incompatible with the Laplace transform method. Therefore, I omit
this moving boundary, and work instead on the domain 0 < z, < oo, with boundary condition

u=h(t)exp(Ezg)cos(vzy), v =h(t)exp(&z,)sin(vz,), as 74 — o0. 4.2)

Here & and v are given by (3.4), and A(-) is an arbitrary function of time; this condition reflects the continuous
imposition of oscillatory decay. I will show that the solution of this amended problem does in fact satisfy condition
(3.3) to leading order at large times; uniqueness of solutions thus implies that the solution of the original problem
(with moving boundary) and that of the amended problem (with boundary at infinity) are the same to leading order
at large times. Since I will only be concerned with the leading order behaviour at large times, this change in the
problem is valid as a convenient alteration, that facilitates solution.

I consider an initial condition that also reflects oscillatory decay:

u = exp(&zq) cos(vzy), v =exp(§z,)sin(vzy) atr =0. 4.3)
To reflect the behaviour as the amplitude transition front approaches # = v = 0, I use the boundary condition
u., +&u+vov =0 and vy, + v —vou =0 atz, = 0. (4.4)

Recall that z, = 0 is a point at which the transition front is close to u = v = 0, and thus & and v represent the
real and imaginary components of the eigenvalue along which this decay occurs; & > 0 necessarily. Based on the
results of Section 2, we expect &y, vg and a to be related by

a =&+ (ho—v3)/k with & +13 < Ao. (4.5)

I will solve (4.1) subject to (4.2)—(4.4) using the method of Laplace transforms, and this is made easier by
defining

2
w = exp [% + (a_4_ - ko) r— ia)ot] (u +iv), (4.6)
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where i = +/—1. 1 also write ¢ = —§g + %a +ivgand 8 =& + %a + iv. In terms of this notation, the problem
becomes

w; = wy,;, subjectto w,, =aw atz, =0, (4.7a)

w = n(t) exp(Bzq) asz4 — X, (4.7b)

w =exp(Bz,) att =0, 4.7¢)

where 7 (-) is an arbitrary function of time. Taking the Laplace transform with respect to time ¢ gives a simple ODE,
with the following unique solution satisfying the boundary and initial conditions:

1 [ﬁ+a B—« 28 ] g, P
- - e Vi 4 .
2B+ ) L/s+B 5s—B Jsta s — p2

Here I use capital letter to denote Laplace transform, and s is the transform variable. This can be inverted using
standard transforms [32], to give

W(zg,5)

o expl—za’/(4n)] Za s Za
w(zg, 1) = BT [2af(a«/7+2ﬁ)+(ﬁ+a)f( Bt zﬁ)

Za
+(ﬂ—a)f~(—ﬂft+ ﬁ)] (4.8)

where F(y) = exp(yz) erfc(y).

4.2. The value of a

My first application of (4.8) is to determine the speed a of the amplitude transition front moving in the positive
x-direction. The key to this lies in the behaviour of the solution at the z, = 0 boundary. Substituting z, = O into
(4.8) gives

B

[0
wza =0,1)= mf(aﬁ) ot ﬁ)]—'(—ﬁ«/?)
2exp(B2t) — 1/[Bv/7t] ifa =0,
~ 49
(azfﬁ) exp(ﬂzt) otherwise “9)

ast — oo. Here I am using standard asymptotic expansions for the complimentary error function [32], which imply
that

F(z) ~

: + 2exp(z*)Z[Re(z) < 0] ast — oc, (4.10)
/T

where Z denotes the indicator function, defined by Z[TRUE] = 1, Z[FALSE] = 0. Note that (4.5) implies that
Re(a) > 0. Substituting this asymptotic form for w into (4.6) gives

2exp(B% + iwg)t — exp(—iwgt)/[BV7t] ifa =0,

U+ iv|z, =0 ~ 2 ] ast — oC.
20 P exp[(ﬂ2 + Ag — a2/4 + iwp)t]  otherwise
(@+8)
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Therefore, if ¢ # 0,

expl(a — cfronc)€?] (4.11a)

rlZaZO ~

B
(a+B)

ast — oo, while if @ = 0,
Flzy=0 ~ [2€xp[(2hg"> — cront) (€ + i)t + iwot] — 1/[B/H]| ~ 1/[8v/71] (4.11b)

ast — oc, using (3.6). Here I have substituted 8 = £ + %a + iv, and replaced & and v by the expressions in (3.4);
recall that r = (u? + v*)V/2 = |u + iv).

In the framework 1 am considering, the z, = 0 boundary represents a fixed point on the right-moving amplitude
transition wave. Therefore, it is necessary that r approaches a constant on that boundary at large times; this is in
addition to the constancy of ¥ and ¢, which is implied by the boundary condition (4.4). Eq. (4.11) implies that
r(zq = 0,1 — 00) is constant at large times in two possible cases:

Case (i): a = cfrom. This implies that & # 0, using (3.6). This would mean that the right-moving amplitude
transition wave moves in parallel with the invasive front, a fixed distance behind it. Such a solution of the caricature
problem (4.1) subject to (4.2)—(4.4) exists for any & and vg satisfying (4.5). However, I have never observed this
situation in numerical solutions of (3.1) subject to (3.2) and (3.3). I have no quantitative argument for why this is,
but intuitively one expects that amplitude transition waves moving faster than the minimum speed ZA(I)/ 2 will only
arise when &y and vy are imposed by the initial data, which is not the case here.

Case (ii): a = 21(1)/24 This is required for @ = 0, and implies that & = A(l)/z and vg = 0. Further, this is the case
observed in numerical simulation. Eq. (4.11) actually implies that » — 0 as # — oo in this case, but this approach
to zero is only algebraic, with r being proportional to #~'/2. This decay can be corrected by subtracting a factor
proportional to (logt)/t (— Oast — 00) from the wave speed: such a correction is familiar from Fisher’s equation,
for which compactly supported initial data have exactly this weak convergence to a travelling front [33]. The easiest
way to see this is to consider the large time behaviour of the solution at z, = —% log ¢ rather than at z;, = 0;
although I have solved the equations on 0 < z, < oc, the solution is well defined for negative values of z,. This
has no affect on the large time form for w, which is still given by (4.9); i.e. w(z, = —% logt, t) ~ w(z, =0, 1)
as t — o0o. However, conversion to « + iv has the effect of multiplying the large time behaviour at z, = 0 by r'/2;
thus r(z, = —% logt, 1) ~t'2r(za =0, 1) ~ 1/ [B+/7 ] ast — o0, a non-zero constant as required.

4.3. Large time solution for ¥ and ¢

I now consider the large time behaviour of (4.8) at other values of z,. Although the previous calculation implies
o = 0, Ileave « general, to highlight that in fact the long time behaviour of ¢ and y is independent of . Specifically,
[ will determine the behaviour as t — oo with z, ~ 2yt; here y is an arbitrary, strictly positive constant. Applying
(4.10) to (4.8) gives

w(za, 1) ~ exp{—y 21} [exp{(ﬂ + )2t} + g :LZ exp{(—B + ¥)2t)I[y < Re(B)]
20 5 K
. _ i 4.12
+a iy exp{(a + y)“t} - Zly < —Re(a@)] + JH] (4.12)

ast — oo with z; ~ 2yt. Here x = y(8 — a)/[(a + y)(y2 — ;32)]. Note in particular that since I am assuming
y > 0, it follows that « # 0; the case y = 0 would correspond to points with z, fixed, i.e. to a frame of reference
moving with the left-hand boundary.
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As mentioned above, (4.5) implies that Re(a) > 0, so that the final term in (4.12) never makes a contribution.
Note that Re(8) = & + %a and is thus strictly positive. Moreover, Re[(8 + y)z] > Rel(—8 + y)2], since Re(B)
and y are both strictly positive, with y real. Thus (4.12) implies that to leading order,

K
Tt

ast — oo with z, ~ 2y¢. In this expression, the first term in the square brackets will dominate if Re[(8+y)?] < 0,
and the second term will dominate otherwise. Note that Re[(8 + y)z] <0 %y <y*= Im(8) — Re(B), since
v, Im(B) and Re(B) are all positive.

I am principally interested in ¢ (= 6,) and ¢ (= r,/r), rather than « and v as such. These are easily related to
w, however, since

w(za, 1) ~ exp{—y*t}) [ + exp{(B + y)zr}] (4.13)

1 9
O +iv = (s, /w) — @/D) = ~(@/2) + 57— = (4.14)

tw 3)/ t constant

Substituting (4.13) into (4.14) and simplifying implies that, to leading order as t — oo,

V(B +y)expl(B + v)*t)
k +/mrexp{(B +v)*)
V(B4 y)A
kexp{=2iIm(B)[y + Re(®)1t} + /7wt A’
where A = exp{(y — y*)[y + Re(B) + Im(B)l¢}; recall that y* = Im(8) — Re(8). Since y + Re(B) + Im(B)

is strictly positive, the large-time behaviour depends on the sign of y — y*:
ify > y*:

¢+iy~—(a/2)-y+

=—(a/2) —y + (4.15)

p+iy~—@/2)—y+B+y)=§5+iv, ie. o~ Y~
ify <y*
o+iy ~ —(a/2)—y = —(za +at)/(2t) ie. ¢~x/2, ¥ ~0.

It is exactly the transition between these two limiting states that is illustrated in Fig. 6. Note that the behaviour for
y > y* implies that w,, ~ Bw at 7, = (cfront — @), in accordance with condition (3.3). It is this that justifies by
replacement of the moving boundary at z, = (cfont — @)t with a boundary at z, = oo in the present calculation.

To understand the transition in more detail, I consider the behaviour for y = y* in more detail; specifically, I
take 7o = 2y*t + ¢ + o(t) ast — oc. Thus ¢, which is O5(1) as r — o0, is a lower order correction to z, in the
specific case y = y*. Here I am using the notation X = O;(Y) & X = O(Y) and ¥ = O(X). Replacing y by
y* + 3¢/t in (4.15) gives

¢+iy~—(@a/2) —y* —1¢/t
. VLB +y* + Se/nexpl(Ge/olie/t + 2Im(B)1r)
k exp{—2iIm(B)[ ¢/t + Im(B)] 1} + V/mt exp{(5¢/D)[5¢/t + 2Im(B)]¢}
Ve (B + y*) exp{Im(B)¢)
K exp{—iIm(B)[¢ + 2 Im(B)t]} + /7t exp{Im(B)¢}
(v +1iv +a/2) exp{(1 +i)v¢ + 5 log 1}
(k) /) exp{—2iv21} + exp{(1 + )v¢ + L logt}

~—(a/2)—y* +

=—(a/2)—y*+ (4.15a)
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Here
=2ty —y") =24 = 2[Im(B) — Re(B))t =z, — [2(v — &) —a]t; (4.15b)

recall that 8 = £ + %a + iv. The log? term in the exponentials is clearly a lower order correction at large times,
and thus to leading order the solution (4.15) is a function of both ¢ and time ¢, with the explicit 7-dependence
being periodic, with period 77 /v?. The variable ¢ is a travelling wave coordinate, corresponding to the wave speed
[2(v — &) — a] in a z,-frame, and thus to the speed 2(v — £) in an absolute (x-) frame.

A solution such as (4.15), which is temporally periodic in a particular moving frame, is known as a “modulated
travelling wave”. Modulated waves were first studied by Rand [34] in the context of rotating waves in fluids; more
recent work has also been primarily in fluid dynamics [35,36], although an interesting application to spiral waves
in forced excitable media has recently been published [37]. The modulated travelling waveform (4.15) agrees very
closely with the solution form determined in numerical simulations of (3.1), such as that illustrated in Fig. 6. In
particular, both the wave speed and temporal period compare well for a wide range of parameter sets; this confirms
the relevance of the various approximations used to derive (4.15).

Itis clearly important to consider how the speed 2(v —&) compares with the various other wave speeds in the prob-
lem, notably the invasion speed ¢frone, and ZA(I)/ 2, which is the speed of the right-moving amplitude transition front. Us-
ing (3.4), itis straightforward to see that 2(v—§) is always strictly positive, and also strictly less than cfron . Moreover,

1/2
2v—¢&) > 2)‘(1]/2 - [(szront —4ro) + \/(Cgrom —4x0)* + l6w§:|

1/2
_ [—(cfiom —4x0) + \/ (ko —4h0)2 + 16w(2)] <2 (cfmm - 2\/%)

— I:(cfzront —4x0) + \/(Ctgront —4r0)? + 16608‘]

+ [_<cgmm — 420+ /(R oy, — 41007 + 16w5] — 800 < 2 (ctront — 2\/5)2
and  Cfon > 2\/%
= \/ (cZ o — 440)% + 1603 < dwp + (cfmm - 2\/5)2 and  Cront > 2v/A0
= (o = 41077 < 800 (crom —~ 2/70) + (eron — 20k0)'

and  Cfone > 24/ A0
&= Cfront < wo/v Ao and  Cgont > 24/ Ag.

These two conditions are just (3.5) and (3.6), which [ am already assuming to hold. Thus the modulated travelling
wave moves in the positive x-direction, at a speed that is greater than that of the right-moving amplitude transition
front but less than the invasion speed cfron.

An interesting property of the solution (4.15) is that it has a singularity once in each time period. Specifically, ¢
and ¥ are both infinite whenever

Kexp{—2iv2t} +exp{(l +i)vz} =0

(here [ am neglecting the log 7 term, which is appropriate at large times). This complex equation can be rewritten as
two real equations, which determine ¢ uniquely, and determine ¢ up to an arbitrary multiple of 77 /v2, the temporal
period of the wave; thus
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x=x0+n-2(v—§)rr/v2, t=t0-}—n-ﬂ/u2 (nel?)

for some xg and 79 depending on initial data. At these points, u and v are both instantaneously zero, so that the
solution passes through the origin of the u—v plane. These points are thus “phase singularities”, since the phase 6
is undefined, and in fact 6 has a jump of & as one follows the solution through such a point, as a function of either
space or time; this is exactly as expected for a solution passing through the origin.

At large times, I have found that my numerical calculations of the transition in ¥ and ¢ break down, giving
irregularities indicative of numerical noise, rather than the modulated wave observed at small times (such as in
Fig. 6). The solution (4.13) actually explains this phenomenon, since it implies that a typical value of the solution
amplitude r, at the location of the modulated transition wave, decreases exponentially in time, according to r «
exp[—{(v — £)% — Ag}z]. Thus although ¢ and ¢ are temporally periodic in an appropriately moving frame, r is not.
Clearly r will in due course decrease sufficiently that its value, and consequently the calculated values of ¢ and ¢
become dominated by truncation errors. Specifically, one expects this to occur at time ¢ ~ In E/[(v — £)* — A¢l,
where £ is the truncation error. Using an estimate of the truncation error for my numerical methods, I have found that
this predicted time agrees well with the time at which noise begins to dominate the calculated transition in ¢ and ¢.

5. Discussion

In this paper, I have studied the phenomenon of oscillatory wakes, in which periodic wave trains develop behind
invasive wavefronts. In fact I have not considered the full invasion problem at all, but rather, I have used a series of
caricature problems to predict the details of the solution behind the invasive front. Because of the form of caricature
problems used, the work applies only when the reacting variables have the same diffusion coefficients, and only
close to a supercritical Hopf bifurcation in the kinetics; however, there are no restrictions on the functional forms
of the kinetics. Within these constraints, my results make the following predictions:

(1) The oscillatory wake phenomenon depends centrally on the solution being close to the invading equilibrium for
a significant distance behind the invading front. This imposes the condition cfront > 2A(1)/ 2, and when the front
speed is below this value, different mechanisms apply.

(2) Itis also necessary that the invasion speed is sufficiently slow that there are no periodic wave trains solutions
of that speed; this requires cfront < @g/ )»(l)/ 2.

(3) When these two conditions are satisfied, and when the kinetics are sufficiently close to Hopf bifurcation that the
A—w form is a good approximation, the behaviour behind invasion will have the form determined in this paper.
The invading front decays exponentially towards the invading equilibrium; this decay moves with constant
shape and constant speed cgon- However, it is interrupted by a modulated travelling phase resetting wave,
which includes periodic phase singularities, and which moves with speed 2(§ — v), where & and v are defined

in (3.4). Behind this phase resetting wave, the phase evolves gradually to a point at which 8, = —A(])/ 2, which

is at the foot of an amplitude transition front. This transition front itself moves with speed Zk(l)/ 2,

(4) Behind this transition front is a periodic wave train, which is that observed behind invasion. Its amplitude R is
given as the unique solution of

4xp(ho — A1 R?) = w?RY,

which is the appropriate version of (2.9), with unique positive solution

1/2
220
R:{;%— (,/A%er%—xl)} . (5.1)
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This prediction of wave train amplitude behind invasion is one of the central results of this paper. Of particular
interest is that (5.1) is independent of the invasion speed cfront, and is a function only of the form of the reaction
kinetics near the invading equilibrium. The fact that (5.1) is independent of wy is expected, since this parameter
affects only the phase of the solutions, not their amplitude.

It is important to emphasise that I have not in any sense proved that (5.1) gives the amplitude of periodic wave
trains behind invasion; rather, I have studied a number of caricature models, both analytically and numerically,
which suggest that (5.1) applies close to Hopf bifurcation. With this proviso, expression (5.1) is a valuable tool in a
number of applications, enabling a number of key aspects of the behaviour behind invasions to be related to model
parameters. In particular:

— Speed and direction of the wave train behind invasion. The speed of the periodic wave train whose amplitude is
given by (5.1) is

-1
cr = o (B/VATR) = 2/ + 2921 (,/x% roi- xl) .

This expression passes through zero as parameters are changed so that the direction of the wave train changes:
determining the appropriate sign of ¢, shows that the wave train moves in the same direction as the invasion if
and only if

@0 A=At e?
—_— < ——

2X0 w1

Note that while the parameter wp does not affect the amplitude of the wave train, it does affect the velocity of the
corresponding waves.

— Stability of the wave train behind invasion. Substituting (5.1) into condition (2.3) for wave train stability in A-w
systems implies that periodic waves behind invasion will be stable if and only if

2 2 )‘?
M dw?—ny < 1
! ! A%—i—w%
= (2) e (5) - () -0
— — ) -—) -3<
1 Al Al
| |
— < 1.0714...,
Al

since the cubic polynomial has a unique positive real root. Note that this result is independent of Ag, and therefore

both stable and unstable wave trains are possible arbitrarily close to Hopf bifurcation in kinetics.

The latter condition for stability is particularly important in application to ecological invasions, because it enables
the space of ecological parameters to be divided into cases of stable and unstable wave trains behind invasion. I
have shown previously that when an unstable wave train is selected, the result is spatiotemporal irregularity behind
invasion [12], and in the context of ecology, preliminary evidence indicates that the selection of either regular or
irregular oscillations is the major determinant of the long-term behaviour after an entire domain has been invaded
[20]. The results also have important applications to intracellular calcium signalling, where the “invasion” of regions
of low calcium density by higher densities is a key mechanism in the coordination of the behaviour of an individual
cell or a group of cells [2,38]. In this case, the relationship between the invasion speed and the behaviour behind
invasion is an important benchmark for testing, against experimental data, the various mathematical models in
current use [39].
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The work described in this paper applies only close to a standard supercritical Hopf bifurcation in the kinetics. It
is important to emphasise that more complicated kinetic bifurcations do often arise in applications, and an example
of this is provided by the recent work of Merkin and Sadiq [40]. They consider the behaviour behind invasive
wavefronts in a cubic autocatalysis system, modelled as two coupled reaction—diffusion equations. These equations
do have a standard supercritical Hopf bifurcation in one region of parameter space, but elsewhere the kinetics are
more complex, including supercritical Hopf bifurcations, periodic orbit bifurcations and the co-existence of nested
stable and unstable limit cycles. These very rich kinetics give a wide range of different spatiotemporal behaviours
behind invasion, which are explored in detail (numerically) in [40]; the present paper is relevant to only one parameter
region for this model. Another recent study focussing on a different type of oscillatory reaction-diffusion system
is that of Ermentrout et al. [11]. They consider wave train generation and interaction close to a subcritical Hopf
bifurcation point, demonstrating a wide range of behaviours, including transition fronts between wave trains and
homogeneous oscillations, and spatially localised oscillations. All of these complex behaviours are due to complex
bifurcation structures in the kinetics. The results in this paper provide a detailed understanding of the generation of
periodic wave trains behind invasion in the simpler case of a system close to supercritical Hopf bifurcation, a case
with a range of important applications in biology and chemistry.
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