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ABSTRACT

Mechanochemical models based on the Oster-Murray continuum framework
have been applied to a variety of biological settings to obtain an understanding of
the morphogenesis of living tissues. Wound-healing in mammalian skin is an impor-
tant example, because a complex sequence of biochemical and biomechanical
responses are orchestrated to close a wound by a combination of new tissue
formation and wound contraction. Mechanical interactions between dermal fibro-
blastic cells and the collagen-rich extracellular matrix are crucial in the development
of a contracted wound state. We and others have previously proposed
mechanochemical models for wound repair to gain a greater understanding of both
normal and abnormal healing. In the present work, the existence of spatially varying
equilibria of these models is investigated by using a small-stain approximation and
phase-plane techniques, with numerical simulations to confirm the analytical predic-
tions. These results are sources of novel insight into the roles of key biological
parameters in determining the mechanical properties of a contracted wound. These
methods may also be relevant to other morphogenetic scenarios for which similar
mechanochemical models have been proposed. © 1998 Elsevier Science Inc.

1. INTRODUCTION AND BACKGROUND

The healing of full-thickness excisional skin wounds in adult mam-
mals entails a complex sequence of interregulatory biological processes
—see [1] for review—which may be subdivided into the following three
temporal phases.
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1. Inflammation: Platelets and proteins from damaged blood vessels
coagulate to form a clot; platelets also release active enzymes and
growth factors that attract inflammatory cells into the wound site to
degrade necrotic tissue and bacteria.

2. Proliferation: Growth factors also attract dermal fibroblasts into
the wound site, which proliferate, release further growth factors, and
synthesize new extracellular matrix (ECM)—notably fibrillar collagen,
the predominant dermal protein. Fibroblastic cells also generate forces
on their substrate by extending cell protrusions, forming cell-surface
attachments with collagen fibers and retracting these protrusions [2]. In
addition, new blood capillaries develop in the wound from surrounding
parent vessels, and the epidermis is healed by epidermal cell migration
and proliferation over the provisional wound matrix in the dermis.

3. Remodeling: Fibroblasts in the wound tissue continue to gradually
secrete and reorganize the ECM, thereby increasing the mechanical
strength of the resultant scar tissue. It appears, however, that this tissue
does not fully regain the resilience and architecture of normal dermis
and thus remains inferior in quality.

The cell-derived forces generated during wound healing may be
beneficial in reducing the wound size by contraction, but are also
detrimental because of the high mechanical stresses in and around the
scar that can cause pain, disfigurement, and loss of tissue function
(especially if located over joints) [3]. Moreover, excessive and perma-
nent contractile forces are characteristic of abnormal healing responses
such as keloid scarring and other fibrocontractive diseases [4]. Clinical
management of both normal and abnormal wounds may benefit from a
greater understanding of the biological mechanisms of dermal wound
contraction.

In this paper, we illustrate an analytical approach toward predicting
the existence and mechanical characteristics of equilibria of continuum
mechanical models of the type originally devised by Oster, Murray, and
colleagues for cell traction-driven tissue morphogenesis [5,6]. We have
recently proposed a detailed model for the proliferative phase of dermal
healing based on this mechanical framework, focusing on how growth
factor—mediated cell—ECM interactions lead to wound closure by new
tissue formation and contraction [7]. The analytical methods presented
in this paper may be applied to our model, thereby enhancing under-
standing of the mechanical properties of a contracted dermal wound
and the roles of key biological parameters.

2. THE MECHANICAL MODEL FRAMEWORK

Oster, Murray, and colleagues proposed a continuum model frame-
work in which the basic variables are cell density, n(r,t), and ECM
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density, p(r,t); these are locally averaged species variables that depend
on space, r, and time ¢t [5,6]. The mechanical consequences of the
cell-ECM traction forces, the intrinsic response of the tissue and the
external resistance to tissue movement due to fibrous attachments to
underlying tissues, are encapsulated by a force—balance equation that
governs the tissue displacement, u(r,r). Specifically, in one spatial
dimension—say, x —the model equations have the form

cell movement: passive convection +

haptotaxis (biased) + haptokinesis (unbiased) celt

proliferation

on d du
Gt | xom L -p(o) | =P,
paSSiV,e ECM biosynthesis +
convection A
———— degradation by cells
dp 3 ( du
3t 3e(pG) = Bne) L @)
viscous elastic
forces forces cell-derived restoring
PR, traction forces forces
d 3*u —
% | * axar +E + 1(n,p) |=F(p,u). (3)

In the specific case of the mechanical responses in wound healing, the
model possesses the following particular features:

» Fibroblastic cells are assumed to proliferate according to the
logistic growth law: thus, P = rm(1— n), where the linear growth rate
r >0 is assumed to be independent of the collagen density, p, and the
normal dermal fibroblast density is set to unity by the scaling for n.

» We neglect the haptotactic contribution to cell movement and
assume that random locomotion is independent of p, under the proviso
that p is nonzero so that a substrate exists for cell movement; hence,
D >0 is a constant. These simplifications facilitate the analysis pre-
sented herein by decoupling p from Equation (1) at equilibrium.

e The rates of collagen biosynthesis and degradation by fibroblastic
cells are assumed proportional to n and —np, respectively, and the
normal dermal collagen density is also scaled to unity. We take the
functional form B = en(1 — p), with the parameter ¢ satisfying 0 < € <
1, to reflect the observation that the rate of ECM remodeling takes
place on a relatively long time scale compared with the proliferative
phase [5,7,8].



116 LUKE OLSEN ET AL.

* A simple linear viscoelastic model is used for the constitutive
relation of the tissue that characterizes its response to the cell-derived
traction stresses. In reality, a more detailed nonlinear or quasi-linear
stress-strain model would be more accurate for cell-collagen composite
tissues [9]. This linear form is mathematically valid only for small tissue
strains; that is, for |du(x,t)/dx| <1 [10]. The positive parameters u
and E quantify the viscous and elastic contributions, respectively.

If stress and strain are given by o and &, respectively, then linear
elasticity is modeled by the linear (Hookean) spring, giving o ~ &, and
linear viscosity by the linear (ideal) piston (or dashpot), giving o ~ &,
where ° denotes the time derivative. Note that £ =Ju/dx in one
dimension. The simplest linear viscoelastic models are a combination of
a linear spring and a linear dashpot. If the spring and dashpot are in
series (the Maxwell model), then o + o ~ &, whereas, if they are in
parallel (the Voigt model), then o ~ ¢ + £. The next simplest model is
a combination of the Maxwell and Voigt systems, known as the “stand-
ard linear model.” Fung (9] offers a detailed discussion on constitutive
relations in biomechanics. To be consistent with previous mechano-
chemical models [5,11], we use the Voigt system.

e The cell traction term, 7(n,p), is the central feature of this
framework [6]. Given that traction forces depend on adhesion between
cell surface receptors and binding sites on collagen fibers, which is a
fast process, it is reasonable to assume 7 anp [S]. Furthermore, we
propose that the ability of a cell to extend and retract protrusions within
a collagen substrate is inhibited at relatively high collagen densities; this
is supported by experimental data [12]. We therefore include a sig-
moidal inhibition term, so

Tonp

7(n,p) = R2+ p?’

where 7, and R are positive constants. An alternative approach would
be to model ECM stiffening by assuming a functional form of E that
depends on p. These different approaches cannot be effectively distin-
guished on the basis of data from collagen gel studies, and we follow
previous authors by taking E to be constant and incorporating this
effect into the active traction term.

e The external restoring forces are modeled as homogeneous linear
“springs,” with elastic modulus proportional to the ECM density: thus,
F = §pu, where § > 0 measures the strength of the ECM attachments to
underlying tissues.
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The uniform equilibrium (n, p,u) =(1,1,0) represents normal dermis
and is locally stable to small temporal perturbations. Whether this
equilibrium is stable to spatiotemporal perturbations is unclear, but
straightforward linear analysis can determine parameter values under
which it will be stable (see Appendix).

The other uniform equilibria, (0, p,0), represent a continuum of
acellular states that are always unstable to the introduction of
fibroblasts.

3. NUMERICAL SIMULATION OF WOUND HEALING

In this section, we demonstrate that the numerical solutions of
Equations (1)-(3), together with the stipulated functional forms (as
before) and subject to biological relevant end conditions, may simulate
normal wound healing.

By defining the initial wound space as —1 < x <1 and using symme-
try at x=0 (the wound center), we may restrict attention to the
semi-infinite domain 0 < x <o, The initial half-wound is set to unity by
the scaling for x. The boundary conditions are thus

an a
52 (0,0) =3§(0,t) = u(0,£) =0
and n(x,t) =p(®,t)=1, u(»,t)=0.
The initial conditions are
n(x,0)=H(x-1), p(x,0)=p+(1-p)H(x—1), u(x,0)=0,

where the initial ECM density p; inside the wound is due to the early,
provisional wound matrix, which is low in collagen and satisfies 0 < p; <
1. H(:) is the Heaviside step function.

Provided the uniform dermal equilibrium is locally stable, the numer-
ical solutions of Equations (1)-(3) subject to end conditions as before
are observed to ultimately return to this equilibrium (of which the
initial wound state is a large perturbation), as expected [7]. Further-
more, when e < 1, corresponding to slow ECM remodeling, a quasi-
steady state may evolve over a transient time scale as shown in Figure 1
and characterized as follows:

e Cell density, n, has returned to its normal dermal value (unity)
inside the wound due to proliferation and migration.

e Collagen (ECM) density, p, deviates only slightly from its initial
step function profile, owing to convection and biosynthesis, both of
which are relatively slow.
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F1G. 1. Numerical solutions of Equations (1)-(3) with functional forms and end
conditions as specified in the text, using finite differences for the spatial derivatives
and a backward differentiation formula to integrate the resulting system in time (as
implemented by the NAG Fortran Library Routine DO3PCF). Profiles of fibroblastic
cell density (n), collagen density ( p), and tissue displacement (u) are plotted as
functions of distance (x) from the wound center at times ¢ =0,2,4,...,20. A finite
domain approximation is used, with zero-gradient boundary conditions at x,, =10.
Other parameter values are based on those derived from experimental data and
theoretical arguments as given by Olsen et al. [7]: D =0.01, r =0.5, e =0.01, =1,
75=0.1, R=02, s=1, p,=0.1, and p = 20. The initial wound boundary is at x =1.
The dimensional units of the length and time scales are 1 cm and 1 day, respectively
(for a typical wound). Arrows denote the spatiotemporal evolution of the variables.
Note that cells repopulate the wound, collagen gradually fills the wound space, and
displacement initially becomes positive and then negative before slowly relaxing back
to zero (over a longer time scale—not shown). The initial wound expansion or
“gape,” is typical of experimental and clinical wounds [13,14].

e Tissue displacement, u, becomes nonzero, particularly in and
around the wound space. Significantly, u(1,¢) < 0, indicating long-term
wound contraction.

This transient time scale is evidently relevant to the proliferative
phase of healing when the wound contracts, whereas collagen accumula-
tion in the wound is more intrinsic to the remodeling phase, on a much
longer time scale [7,8]. To analyze the nature of the contracted quasi-
steady state, therefore, we seek equilibria of the model for which € =0,
so collagen remodeling is neglected. In this case, numerical simulations
are similar to the case where € is small, except that p remains
permanently close to its initial profile and u evolves to a spatially
varying steady profile that may represent a contracted wound state.

To facilitate our mathematical analysis (see Section 4), we use the
step function initial profile for p as given earlier. In reality, the initial
conditions are not of this form, and, for the numerical solution of
Equations (1)-(3) as in Figure 1, the initial profiles of n and p are
approximated by continuous functions so that the cell traction gradient,
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ar / dx, in Equation (3) is finite. For example, the sigmoidal forms

xP xP
n(x,0)=m and p(x,0)=P,~+(1_Pi)1+xp’

with p > 1 yield profiles similar to those inferred (later) for the step
function initial profiles. To see this, we set € = 0 and numerically solve
Equations (1)—(3) for different values of p. Figure 2 confirms that the
steady-state displacement (u) profile is qualitatively invariant with p,
although the minimum near x =1 becomes sharper as p increases. This
is expected, because the gradients of the initial profiles for cells (n) and
collagen ( p) become steeper about x =1 as p increases.

4. PHASE PLANE ANALYSIS

We consider Equations (1)-(3) for the case € =0 in Equation (2).
We begin the analysis by linearizing Equation (2) about the initial
profile. Setting p= p, + p*, where p* is small, we have the linear
approximation ¢ /dt( p* + p; du /dx) = 0. Therefore p*=C —
p; du / dx, where C is determined by the initial conditions. Hence

=3

p(1—-o0u/ox), 0<x<l1 (4)
1-90u/ox, x>1,

u(x) at steady-state

-0.01 s
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FIG. 2. Numerical solutions of Equations (1)~(3) showing only the steady-state
displacement profile, u(x,t,), with end conditions and parameter values as in Figure
1, except that € =0 and p=2 (dotted curve), 4 (dot-dashed curve), 10 (dashed
curve), and 50 (solid curve). Recall that p is the Hill coefficient of the sigmoidal
curves that approximate the step function initial cell (n) and collagen ( p) profiles
(see text). Here, ¢, = 40 is used to represent the ultimate steady-state profiles—these
are not discernibly different at times greater than t,. The steady-state displacement
profiles become sharper near x =1 as p increases.
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as suggested by the small-strain restriction (because the convective flux
should be small) and justified by the numerical solutions as discussed
earlier.

Equation (1) implies, for our model, that no biological realistic,
bounded equilibria exist for n(x) other than the uniform solution n=1;
this may be confirmed by seeking such solutions in the (n,n’)-phase
plane. At equilibria where n =1, Equation (3) yields the following
boundary value problem:

u'+ J(p)p’' =spu with u(0)=u(x)=0, (5)
where ' denotes d /dx, p is proportional to (1—u') as in Equation (4),

I p)=dt(n,p)/dpl.-1, 7y=7y/E, and §/E. Solutions of Equation
(5) can be studied in the (u,x’)-phase plane by casting it in the form

u'=u’ (6)
spiu(l—v)
, ) 1= pTTp(1-0)]° 0<x<1
- (7
s x>1
1-9(1-v)’ .

The nullclines are u =0, v =0, and v =1, and the origin, (u,v)=(0,0),
is the only fixed point. The eigenvalues of this system imply that the
origin is a saddle point or a center, depending on I p,) S 1/ p,, respec-
tively, for 0 <x <1 and on J(1) s 1 for x > 1.

Singularities may occur at p = p, (say) if I p,) =1/ p; or 1. At such
a singularity, which represents a line v = v, in the (u,v)-phase plane, u”
becomes infinite, whereas u and u' are finite. In fact, if a particular
solution trajectory encounters the singular line at x = x,, then there
must be a (finite) jump discontinuity in »’ with continuity of u at x,.

Focusing first on the phase plane for x > 1, we find that the origin is
a saddle point if and only if (1) <1; that is,

To(R*=1) > (R +1)". (8)

It is a center if and only if (1) > 1, as illustrated in Figure 3. Note that
the condition for the origin to be a saddle point in the (u,v)-phase
plane is also a necessary (but not sufficient) condition for the uniform
equilibrium (n, p,u) =(1,1,0) to be stable to small spatiotemporal per-
turbations (see Appendix). Also, singularities exist at p = p, given by
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FIG. 3. (a) Plot of the function U p) = 74,(R? — p?)/(R? + p?)°. (b) The bound-
ary curve 7 ={(R? +1)? /(R? —1) between the regions where the origin is a center
(shaded) and a saddle (unshaded), for x > 1, given by the inequality (8). A singularity
occurs for some positive value of p if 7, > R?, as demarcated by the dotted line.

the positive solutions of J( p,) =1, which is equivalent to

To(R: - p2) = (R* + p2)". 9)

From this, it can be shown that a positive singular value, p,, exists only
if 7, > R? (see Figure 3) and that is satisfies 0 < p; <R.

The various cases for the phase plane structure, according to the
values of the parameters 7, and R, are shown in Figure 4. The
small-strain assumption implies |v| <1 for a mathematically valid solu-
tion; yet, at a singularity, the jump in v cannot be determined a
priori—in numerical simulations, this jump depends on the discretiza-
tion and approximation methods used to integrate Equations (6) and (7)
in the vicinity of the singularity. Hence, to ensure a valid solution, 7,
and R must be chosen such that v, is not close to zero; that is, p; is not
close to unity. This is satisfied by points in (74, R*)-space away from the
boundary curve in Figure 3. ’

x>1

The boundary condition u(«)=0 implies that the origin must be a
saddle point as in Figure 4(a,b) for x > 1, with the solution converging
toward the origin along the stable manifold as x —>. If this solution
lies in the top-left quadrant of the (u,u’)-phase plane, then u <0 and
u'>0 represents a contracted tissue displacement profile for x>1
(outside the wound). Conversely, if the trajectory lies to the bottom-right
quadrant, then tissue expansion is inferred.

By tracing backward in x from infinity along the stable manifold, we
find that the solution reaches a point in the (u,u’)-phase plane corre-
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FIG. 4. Phase-plane diagrams for Equations (6) and (7) illustrating the phase
flows (arrows) and nullclines (dotted lines) for four different cases of the values of
the parameters 7, and R, indicating: (a) 910) <1, so the origin is a saddle point and
no singularities exist; (b) 710) > 1 and $(1) < 1, so the origin is a saddle point with a
singularity for which 0 < p, <1, that is, 0 <v, <1; (c) g(1)>1, so the origin is a
center with a singularity for 1 < p; < R; (d) similarly, except the singular line v = v,
is no longer within the range of the axes shown—this also shows the center at the
origin more clearly. Note that singularities actually occur in pairs for our model, at
p = +p,, but the negative root (corresponding to v, > 1) is not realistic.

sponding to x =1 where u = u,, say.

0<x<l1

Continuity of u(x) implies that the solution trajectory for 0 < x <1
must approach the line u=u, as x —1 from below. The boundary
condition u(0) =0 does not specify u'(0); rather the “initial point” on
the u'-axis is determined by the preceding continuity condition at x =1.
For 0 < x <1, it can be shown (using phase-plane arguments analogous
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Fi1G. 5. Qualitative illustration of a possible solution trajectory as described in the
text, showing a case in which the origin is a center for 0 < x <1 and a saddle point
for x > 1 with u(x) — 0 from below as x —. See also Figure 6(b). Dashed curves
denote phase trajectories, with the contracted solution curve highlighted by solid
arrows. The dotted line indicates the discontinuity in v (or u') at x=1, where
u=u;.

to those for x > 1) that the origin may be either a saddle point or a
center, depending on the values of 75, R, and p;. In either case, a
solution trajectory may exist as discussed earlier. If the origin is a saddle
point, then the solution in 0 < x <1 is expected to be monotonic either
increasing with increasing gradient or decreasing with decreasing gradi-
ent. If the origin is a center, then the solution in 0 <x <1 may be
oscillatory. Figure 5 illustrates the qualitative construction of such a
solution.

Examples of various theoretically possible forms of steady solutions
for u(x) are illustrated in Figure 6. We have obtained numerical
solutions that yield steady profiles for u resembling those in Figure
6(a—e), depending on the particular parameter values used.

5. CONCLUSIONS AND DISCUSSION

The key conclusion of this work is that, by neglecting collagen
kinetics [i.e., setting € =0 in Eq. (2)], we can derive approximations to
the collagen profile (in terms of the tissue strain) that yield a boundary
value problem governing the tissue displacement that may develop
during the proliferative phase of wound healing in excisional skin
wounds. Phase-plane techniques applied to this problem (1) inside and
(2) outside the wound reveal important details of the nature of these
solutions. In particular, a contracted steady state exists only if the
cell-derived traction term 7(n, p) is sufficiently insensitive to changes in
the ECM density p at equilibrium. In addition, the displacement profile
inside the wound may be oscillatory or monotonic, depending on



124 LUKE OLSEN ET AL.
@ ) ©

@ ©) ®

a [ L\
— [ T

FI1G. 6. Possible qualitative forms of the solution u(x) of the boundary value
problem (5), representing contracted tissue displacement profiles. The point
(u,u’)=(0,0) must be a saddle point for x >1 in the (u,u’)-phase plane, with u
increasing to zero and u’ decreasing to zero monotonically along the stable manifold
in the top-left quadrant as x — <. For 0 < x <1, the origin may be either a saddle
point, in which case the profiles for © and «' are monotonic decreasing as shown in
(a), or a center, in which case u and u’ oscillate about the origin as shown in (b—f);
within this region, any number of oscillations is possible—for example, () is
equivalent to (b) modulo one period. Note that these steady-state profiles but with
reversed signs of u and ' also are admissible solutions of the boundary value
problem (5), representing expanded tissue displacement profiles because u(1) would
be positive. Recall that x =1 is the initial wound boundary. In numerical simulations
of the full system, we have found the profiles (a)-(¢) with increasing traction
parameter.

the relative magnitudes of the initial ECM density and the traction
parameters.

In reality, the rate of fibrillar collagen remodeling, ¢, is not zero, but
the value of this small parameter is difficult to measure in vivo. Taking
larger values of € leads to results quantitatively different from those in
Figure 1 (e.g., an increase in collagen density), but the qualitative
behavior is preserved. For larger e, the accuracy of our analytic approxi-
mation decreases.

The requirement that the uniform equilibrium (», p,u) =(1,1,0) cor-
responds to a saddle point in the (u,u’)-phase plane for x > 1 implies a
restriction on the parameter values in the cell-derived traction stress
term, 7, for the existence of a nonuniform solution to the boundary
value problem (5). Specifically, if

ToRp

"(n0) =t s
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then we require

g—;(1,1) <1=71y(R*—1) <(R*+1)",

If this condition is violated, then numerical solutions of the full model
system exhibit unbounded instability. Intuitively, this can be understood
by the positive feedback effect of the high cell traction gradient around
the wound. In this case, the uniform steady state is also unstable to
perturbations of arbitrarily small wavelength and therefore model be-
havior is very sensitive to initial conditions (see Appendix).
Furthermore, singularities in the system may occur at points other
than x =1, where u(x) is continuous but u'(x) is discontinuous, for
certain values of u’. Equations (3) or (5) both illustrate the biological
phenomena occurring at these singularities: jump discontinuities in x
occur for both the cell traction and the intrinsic elastic stresses—how-
ever, these are equal in magnitude and opposite in sign, so the sum of
the corresponding forces (the stress gradients) is continuous in x and
proportional to the tissue displacement. Because the small-strain as-
sumption used to derive the force-balance Equation (3) imposes the
restriction |u'| <1, these singularities should occur only if the singular
values of u' are close to zero. This can be avoided provided that

7o P R — p?) % (R + p2)’ and 7,(R?—1) = (R>+1)’,
0V i 0

where p; is the initial ECM density inside the wound, owing to the
provisional matrix deposited during the inflammatory phase of healing.

These analytical methods do not, however, determine whether the
nonuniform solution of Equation (5) represents a contracted or ex-
panded tissue, according to u(1) S0, respectively. Neither do they
predict the nature of the spatially oscillating solution in the region
0 < x <1, which occurs if

70 p( R* — p) > (R* + p? 2.
(N o'

They are, however, sources of insight into the dependence of nonuni-
form tissue displacement profiles on the parameter values in the cell
traction term 7(n, p) and into whether these solutions exhibit oscillatory
or monotonic features inside the wound space.

Other applications of the foregoing framework may require different
functional forms and end conditions. Several authors have proposed
mechanochemical models based on cell-ECM interactions for describ-
ing morphogenetic events, particularly in embryonic development, as
discussed by Murray et al. [11], for example.
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Tranquillo and Murray [15] considered the problem of dermal wound
contraction by using a base model similar to that discussed earlier. By
imposing a steady chemical profile centered on the wound site, model-
ing growth-factor mediation of fibroblastic cell growth, traction, and
chemotaxis, the model was able to simulate realistic wound contraction.
Because of this chemical gradient, however, the analysis presented in
this work cannot be extended to their models, and numerical methods
are required to solve the nonautonomous boundary value problem for
the steady displacement profile.

The more detailed mechanochemical model of Olsen et al. [7] explic-
itly modeled the dynamics of the growth factors and of a distinct cell
population, myofibroblasts. They are phenotypically transformed fibro-
blasts that are believed to be important in wound contraction and,
moreover, in fibrocontractive diseases associated with dysfunctional
regulation of the proliferative phase of wound healing [4,16]. For the
purposes of the work presented in this paper, however, this more
complicated model can be analyzed by analogous methods.

Tracqui et al. [17] have recently proposed a novel extension of the
Oster-Murray mechanical model to include two distinct ECM types.
The first is an early, provisional wound matrix with a linear viscoelastic
rheology that is degraded by wound fibroblasts. The second is a subse-
quent, collagenous matrix with nonlinear elastoplastic properties, which
is deposited by fibroblasts and forms the scar tissue. The plasticity of
the collagenous ECM effectively “glues™ the tissue in place in response
to cell-derived traction forces, resulting in permanently contracted
displacement and residual stress profiles.

In wound healing, a greater understanding of the physical forces that
are associated with wound contraction may lead to improved treatments
in the control of scarring [3,18]. This possibility has been made more
viable by recent tissue culture bioengineering advances enabling quanti-
tative measurements of the mechanical parameters in cell-populated
collagen gel assays [19,20], which are in vitro assays that realistically
simulate wound contraction [12,18,21,22]. The analytical work pre-
sented in this paper contributes to this research effort by highlighting
explicit relations between the biological parameters that determine the
mechanical nature of a healed wound.

APPENDIX

In this appendix, we consider the linear stability analysis of the
uniform equilibrium solution (n, p,u)=(1,1,0) to Equations (1)~(3)
with € set to zero (for comparison with the version of the model
analyzed in Section 4). Rescaling 7 and s as in Section 4 and seeking
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solutions of the form (n, p,u) =(1,1,0)+ cexp(ikx + At), where ¢ is a
constant vector with |c| << 1, the dispersion relation is

2ukA(k?) = b + [b? —4ukc]'?, (10)
where

b(k2) = ;1.Dk“-i—(1+r,u,—'r1 —72)k2+ s,

c(k?)=D(1—1)k* +[Ds+r(1—1)—7]k*+7rs, (11)

and 7, = dr(n, p)/dn, v, = dr(n, p)/dp, evaluated at n=1, p=1.
The uniform steady state will lose stability if b or ¢ become negative:
b becomes negative if

T FT > 1+ +2( p,sD)l/z, (12)
whereas ¢ will become negative if

,>1, or 7,<1 and 7 —r(1-7,)— Ds>2[D(1—1,)rs]"".

(13)

Hence, a number of possibilities can arise; see Murray [23}:

o If neither of the foregoing inequalities hold, then the steady state
is locally stable.

« If inequality (12) holds but ¢ is nonnegative, then, when b(k?) =0,
the steady state undergoes a Hopf bifurcation and the prediction is that
there is no steady-state finite amplitude solution.

e If inequality (12) is not satisfied but 7, >1, then b is always
nonnegative, but there exists a range [k2,%] of k2 over which c is
negative. Hence the steady state will be unstable to perturbations of
arbitrarily small wavelengths.

e If both b and ¢ go negative, then the steady state will be unstable,
either of the above two behaviors may occur, or the steady state may
evolve to a finite amplitude spatially varying steady state.
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