Appl. Math. Lett. Vol. 10, No. 2, pp. 1-5, 1997
Pergamon Copyright(©1997 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0893-9659/97 $17.00 + 0.00
PII: S0893-9659(97)00001-3

A Comparison of Two Numerical Methods
for Oscillatory Reaction-Diffusion Systems

J. A. SHERRATT
Nonlinear Systems Laboratory, Mathematics Institute
University of Warwick, Coventry CV4 7AL, U.K.
jasOmaths.warwick.ac.uk

(Received September 1996; accepted December 1996)
Communicated by W. Alt

Abstract—Reaction-diffusion systems whose kinetics contain a stable limit cycle are an estab-
lished class of models for a range of oscillatory biological and chemical phenomena. In this paper, the
author compares two numerical methods for calculating the oscillatory wake solutions generated by
spatially localized perturbations for one particular reaction-diffusion system, of A-w type. The two
methods are a semi-implicit, or implicit-explicit, finite difference scheme based on the Crank-Nicolson
algorithm, and the method of lines with Gear’s method. Though both solutions ultimately converge
to a common solution, the approach to this final solution is very different in the two cases. The results
provide a clear illustration of the care required in numerical solution of oscillatory reaction-diffusion
equations.
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1. INTRODUCTION

Reaction-diffusion systems whose kinetics contain a stable limit cycle are an established class
of models for a range of oscillatory biological and chemical phenomena, including the Belousov-
Zhabotinskii reaction [1], the intracellular calcium system [2] and a number of predator-prey
interactions [3]. Such oscillatory reaction-diffusion systems have a wide range of solution types,
including periodic waves, spiral waves, and spatiotemporal chaos {4]. This paper is concerned with
the one-dimensional behaviour that results from a spatially localised perturbation to the unstable
steady state inside the kinetics limit cycle. Such an initial condition induces a transition wave
front moving outwards from the initial perturbation site, behind which is an oscillatory wake. In
some cases, this wake region contains only regular oscillations with the form of periodic traveling
waves, while for other equations there are spatiotemporal irregularities behind a leading band of
regular oscillations. A typical example of this latter case is illustrated in Figure 1.

I have described the details of this behaviour previously [5,6]; in the present paper, I consider
methods of numerical solution. For this purpose, I will focus on the particular equation
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Figure 1. An illustration of the solution of (1). The solution for u is plotted as a
function of space x at successive times ¢, with the vertical separation of the solutions
proportional to the time interval.
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where u and v are functions of space £ > 0 and time t > 0, and are subject to end conditions

@=@=0, at £ =0 and

Jdr Oz

u=uv=0.01, at T =0, (1c)
u=v=0, forz >0, at t =0.

This system is in the A-w class of equations, which are a commonly-used prototype for more
general oscillatory reaction-diffusion systems [7,8]. Figure 1 illustrates the solution of (1); the
localised perturbation to ¥ = v = 0 induces a transition front, moving across the domain with
constant speed. Immediately behind this front are periodic traveling waves, and further back
there are irregular spatiotemporal oscillations.

2. NUMERICAL METHODS

The purpose of this paper is to compare two different numerical methods for calculating the
solution illustrated in Figure 1. The methods are based on the Crank-Nicolson and Gear al-
gorithms, and I will show that although they converge to a common solution, the details of
convergence are quite different in the two cases. I will begin by describing the methods, starting
with the Crank-Nicolson scheme. This is a simple finite difference method in which a uniform
discretisation is used in both space and time:
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and similarly for (1b). Here uf denotes the solution for u(z,t) at space point ¢ and time iteration j.
I use an uniform space-time grid, with space interval §x and time step &t; I have not investigated
the use of adaptive grids.

A method of type (2) is known as semi-implicit because the terms on the right-hand side are
evaluated partly at the new time step j + 1 and partly at iteration j. Such methods were intro-
duced by Crank and Nicolson [9], and for the scalar, linear diffusion equation exact convergence
conditions can be derived quite easily. In this case, the value § = 1/2 gives particularly high
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accuracy, and I have used this value in my computations. For reaction-diffusion equations, nu-
merical schemes of the form (2) are in widespread use, although convergence results are restricted
to a few specific cases [10,11].

The second method I consider is the method of lines and Gear’s method. The “method of lines”
simply converts the PDEs into a system of coupled ODEs, using a central difference representation
of the second derivative:
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and similarly for (1b). Here u;(t) denotes the solution as a function of time ¢ at space point i;
again I use a spatial grid with uniform separation éz. Together with an appropriate representation
of the boundary conditions, this gives a system of 2N coupled ODEs, where N is the number
of space points. I solve these using Gear’s method, which is a variable order, variable step-size
scheme for stiff ODE systems, that was proposed by Gear [12]. The term “stiff” refers to the
fact that there are typically a range of different time scales involved in the solution of (3), with
rapidly decaying transients forcing very small time-steps for stability in simple numerical schemes.
I use the implementation of the method of lines and Gear’s method in the NAG library, which
is described in detail by Dew and West [13]. Of particular importance is that this code contains
a parameter ¢ which bounds the estimated local error at each step of the time integration; the
method of estimation of the local error is described in [14].

3. NUMERICAL SOLUTIONS

I have used both of these numerical methods to calculate the solution of (1). The problem (1)
is posed on an infinite domain, but of course numerical solution must be done on a finite domain,
and I solve numerically on 0 < £ < L with u = v = 0 imposed at £ = L; provided L is sufficiently
large, its value has no significant effect on the solution. As éx and either 6t or ¢ are decreased,
the solutions of the two numerical methods converge to the same form. That is, in both cases the
solution has the qualitative form illustrated in Figure 1, and the speed of the front, the form of
the regular oscillations, and the position at which the behaviour becomes irregular all converge to
values that are common to the two methods. However, the form of the irregular oscillations does
not converge in either case. This is entirely expected: I have presented evidence elsewhere [15],
that the region of irregular behaviour is, in fact, temporally chaotic, so that a numerical solution
cannot represent more than its qualitative form. However, we can expect the numerical solution
to represent quantitatively the point at which the oscillations become irregular, as well as the
details of the regular part of the solution.

To measure convergence of the solution, it is convenient to represent the solution not in terms
of u or v, but rather in terms of r = (u? 4+ v?)/2. In a system of the form (1), standard theory [8]
shows that periodic traveling waves have constant amplitude r. Replotting the solution illustrated
in Figure 1 in terms of r shows a simple transition front, with irregular oscillations behind this
(Figure 2). In Figure 1, the values of éz, §t, and ¢ are sufficiently small that the two numerical
methods agree very closely; however, lower accuracy solutions have rather different qualitative
forms in the two schemes. Figure 2 illustrates the way in which the solutions change as 6t and ¢
are decreased, with fixed 6z. Here, I plot r as a function of z at time £ = 76, and I use this time
point (chosen arbitrarily) in all my numerical tests. In the finite difference scheme, the various
aspects of the numerical solution converge at approximately the same rate. That is, the speed of
the leading front, the amplitude of the regular oscillations, and the point at which these become
irregular all approach their final values at approximately the same rate. In contrast, for the Gear
code, the front speed and amplitude of the periodic waves converge rapidly, at relatively low
values of €, while the transition point between regular and irregular behaviour converges much
more slowly.
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Figure 2. An illustration of convergence in the two numerical schemes. The solutions
for r are plotted as functions of z at ¢t = 76, with L = 250, which is a suitable value
for the finite domain length in numerical solutions. In all cases, 6z = 0.4. For the
Crank-Nicolson scheme, 6t = (a) 0.01; (b) 0.002; (c) 0.0004, and for the Gear method,
€ = (a) 107%; (b) 10=%; (c) 10~8. Only a limited portion of the r-axis is used, in
order to show clearly the convergence of the periodic wave amplitude.

To investigate this difference in convergence further, I have calculated two numbers from each
numerical solution. The first of these, 7, represents the periodic wave amplitude, and is
calculated by using linear interpolation to determine the value z = x4 at which r = 0.4; r¢est is
the value of r at x = 1.4 — 15. The second quantity I calculate is Ziest, which represents the point
at which the oscillations become irregular, and is defined as the largest value of x < g4 — 15
at which |r — riest| > 0.02; again this is determined by linear interpolation. The details of
these definitions are quite arbitrary, but together they give a good representation of these two
basic properties of the numerical solution. Table 1 lists the values of rest and ziesy for the two
numerical methods, for a range of values of 6z, ét, and £. The difference in convergence between
the two schemes can also be seen clearly in this table. In the finite difference scheme, 7yt and
Tyest CONverge at approximately the same rate. In contrast, in the Gear code convergence of s
is very rapid, with the error primarily dependent on éz, while ze converges much more slowly,
as a function of both éz and e. This difference between the methods can be made precise by
calculating the product-moment correlation coefficient between riest and ziest; for the Crank-
Nicolson method this correlation coefficient is 0.69 while for the Gear scheme it is 0.40.

4. DISCUSSION

Scientific computing plays a fundamental role in the study of oscillatory reaction-diffusion
systems, for which analytical study is restricted to particular solution forms. The results I have
presented underline the great importance of careful tests of numerical methods for such systems.
In particular, I have shown that although the Gear scheme gives very good accuracy in the
amplitude of the periodic waves, it is significantly worse than the Crank-Nicolson method at
calculating the point at which the oscillatory wake becomes irregular. This may be because the
variable time-step of Gear’s method is chosen to limit the estimated local error at each iteration,
but provides no mechanism for controlling the growth of these local errors, which will grow
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Table 1. The values of rtest and ztest for the Crank-Nicolson and Gear schemes as
bz, 6t, and ¢ are varied. The definitions of riest and Ttesr are given in the main text.
All results are for the system (1) at t = 76.

riest for Crank-Nicolson code Ziesy for Crank-Nicolson code

6t = 10—2 2x 1073 4x10"% 8x10°5 1072  2x107% 4x10~*% 8x10-3
éx = 1.60 | 0.73539 0.72560 0.72357 0.72317 82.94 83.55 83.73 83.75
6z = 0.80 | 0.71329 0.70288 0.70075 0.70032 69.21 71.96 72.12 72.19
6z = 0.40 | 0.70698 0.69641 0.69424 0.69381 66.08 67.74 68.09 68.15
Sx = 0.20 | 0.70537 0.69476 0.69258 0.69215 66.00 67.81 68.21 68.29
éx = 0.10 | 0.70501 0.69440 0.69223 0.69179 63.99 65.72 66.07 66.15
éx = 0.05 0.70499 0.69438 0.69221 0.69177 61.67 65.80 66.19 66.27

Teest for Gear code Ttest for Gear code

€= 10~4 10~ 10-8 10-10 104 10~6 10-8 1010
éx =1.60 | 0.72323 0.72307 0.72306 0.72306 125.10 95.63 83.82 83.76
éx = 0.80 | 0.70058 0.70022 0.70021 0.70021 110.90 85.64 72.12 72.21
Sz = 0.40 | 0.69423 0.69370 0.69370 0.69370 103.25 82.93 67.98 68.16
ér = 0.20 0.69175 0.69204 0.69204 0.69204 106.21 82.11 66.26 68.33
ér =0.10 | 0.69204 0.69170 0.69168 0.69168 102.21 77.00 66.11 66.16
éx =0.05 | 0.69206 - 0.69167 0.69166 0.69166 101.67 75.14 65.62 66.32

to

eventually dominate the solution in a case such as (1) in which the long-term behaviour is

temporally chaotic. However, from a practical viewpoint, the difference in convergence between
the two numerical schemes I have described is, in fact, rather beneficial, since the methods only
agree when they have both converged. Thus, comparison of the solutions given by the two
methods provides a simple test for convergence.
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