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Oscillatory and chaotic wakes behind moving
boundaries in reaction—diffusion systems

Jonathan A. Sherratt

Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry
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(Received February 1996; final version Fune 1996)

Abstract. Oscillatory wakes occur in a wide range of reaction—diffusion systems,
consisting of either periodic travelling waves or irregular spatiotemporal oscillations, behind
a moving transition front. In this paper, the use of a finite boundary moving with an
imposed speed to mimic the transition front is considered. For both \—w systems and
standard predator—prey models, the solutions behind these moving boundaries agree very
closely with the behaviour behind transition fronts, provided suitable end conditions are
used on the moving boundary. This confirms that the transition front can be regarded as
determining the solution, by forcing a particular periodic wave at the boundary of the
wake region. In the case of \—® systems, a detailed numerical study of solutions on a
fixed-length finite domain with a periodic wave solution forced at the boundaries is
performed. As the domain length is varied as a parameter, the long-term temporal
behaviour undergoes bifurcation sequences that are well known as routes to chaos in
ordinary differential equations. This suggests that irregular wakes actually have the form
of a perpetual transient in a progression towards chaos. Finally, the way in which the
moving boundary results can be used to design an experimental verification of the
oscillatory wakes phenomenon in a chemical system is discussed.

1 Introduction

Oscillatory reaction—diffusion equations have been used to model many biological
and chemical systems. Here, ‘oscillatory’ means that the kinetic ordinary
differential equations (ODEs) have a stable limit cycle, reflecting the intrinsic
oscillatory behaviour in many real systems, such as the Belousov—Zhabotinskii
reaction (Field & Burger, 1985), the intracellular calcium system (Atri et al., 1993;
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Sanderson et al., 1990) and a number of predator—prey interactions (Breitenmoser
et al., 1993; Nisbet & Gurney, 1982). These real systems have a wide range of
spatiotemporal behaviours, which have been most widely documented in two
spatial dimensions, and include spiral waves, target patterns and spatiotemporal
chaos. These are all reflected in two-dimensional solutions of corresponding
reaction—diffusion models (Chakravarti ez al., 1995; Paullet ef al., 1994). However,
many questions on the one-dimensional behaviour of oscillatory reaction—diffusion
equations remain unanswered, in particular concerning the types of initial data that
will evolve to periodic waves and other solution forms, and the possible generation
of spatial or temporal chaos. This paper is concerned with a one-dimensional
solution form which provides partial answers to both of these questions, and which
is here referred to as an oscillatory wake.

Oscillatory wakes arise from very simple initial conditions. Every oscillatory
reaction—diffusion system has a homogeneous steady state from which the limit
cycle in the kinetics has bifurcated. This steady state is of course unstable, and if
a small perturbation is applied, localized in space, this perturbation grows and
expands throughout the domain. For simplicity, I consider throughout this paper
the case of a semi-infinite domain, with the initial perturbation applied at the finite
boundary. The perturbation then induces a transition front moving across the
domain, leaving in its wake either regular or irregular spatio-temporal oscillations
(Fig. 1). These are the ‘oscillatory wakes’ that are the subject of this paper. In the
case of regular oscillations, the visualizations of the solutions in space-time
plots such as in Fig. 1 suggest that these oscillations are in fact periodic travelling
waves, and this is confirmed by detailed numerical study (Sherratt, 1994a; Sherratt
et al., 1995). The formation of regular or irregular oscillatory wakes in response to
localized perturbation occurs in a wide range of oscillatory reaction—diffusion
systems, including standard models for intracellular calcium signalling (Sneyd &
Sherratt, 1996) and predator—prey interactions (Sherratt ez al., 1995). The solution
illustrated in Fig. 1 is of a standard reaction—diffusion model for predator-prey
dynamics, with different kinetic parameters used in (a) and (b); full details of the
equations and parameters are given in the figure legend.

Oscillatory wakes occur behind a leading transition wave front. In this paper, I
consider replacing this leading front by a finite boundary moving with an imposed
speed, on which a periodic wave solution is forced as a function of time. I begin
(Sections 2 and 3) by considering this for ‘4-w’ type reaction—diffusion equations,
which are simple prototype oscillatory systems. In previous papers, I have
presented a detailed analytical study of oscillatory wakes in A-w systems; the
purpose of considering the moving boundary simulations for these systems is to
determine the extent to which the moving boundary solutions reflect the full
semi-infinite-domain behaviour in a case in which this latter behaviour is already
well understood. I will show that the similarity between the two solution types is
very good, provided care is taken with the end condition on the moving boundary.
In Section 4, I continue with A-w systems, and discuss the observation of
bifurcations to chaos as the length of a finite solution domain is varied as a
parameter; these results, in combination with those for moving boundaries, have
implications for the nature of the oscillations in irregular wake regions. Finally, in
Section 5, I move away from A-w systems to describe the application of moving
boundary computations to the less well understood case of oscillatory wakes in
more general reaction—diffusion systems.
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Fig. 2. An illustration of oscillatory wakes in a A—w system. The solution plotted is for the system (1)
with (a) A(n)=2—7r% w@®=4—r% (b) A(r)=2—r, w(r)=4—1r*. The solution domain is 0 <x<co with
zero flux boundary conditions at x=0, and the initial conditions are u(x, 0) =v(x, 0)=0. le~%* with (a)
E=3, (b) £=1. In (a) a space-time plot for u(x, ) with 35.6 <r<44.5 is shown, and the solutions for
r(x, £) and 0x(x, 7) as functions of x at equally spaced times is also shown. The solution has the form of
simple transition fronts in r and #_. In (b) r is plotted as a function of x at t=38; in this case, there is
a transition to unstable periodic waves, which degenerate into irregular oscillations. The solution for 0,
is qualitatively similar to that for r. The equations were solved numerically using the method of lines
and Gear’s method.
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2 /- Systems on growing domains

The A-w class of reaction diffusion systems are equations with the form

2
%;:%:—:+/1(r)u—w(r)v (1a)
dv 0%
5;=5P+w(r)u+l(r)v (1b)

Here u and v are functions of space x and time z, and r= (1> + v?) /2. I will consider
only the case in which A(r) and w(r) are monotonically decreasing, with A(-) having
a simple zero at r=r, and w(0) #0. These are standard simplifying assumptions for
A-w systems, and in their absence the oscillatory wake structure can be much more
complex (Sherratt, 1993). In fact, there is no additional complication if w(-) is
monotonically increasing rather than decreasing, but it is convenient to fix on one
of these cases. Under these assumptions, the kinetics of (1) have a globally stable
circular limit cycle of radius r,. Moreover, (1) has a one-parameter family of
periodic travelling wave solutions, given by

u=7cos [w(F)t+ A(F) %x] (2a)

v="~sin [w(F)t+ AF)/%x] (2b)

with 0 <7<r,. Any oscillatory reaction—diffusion system has a one-parameter family
of periodic travelling waves (Kopell & Howard, 1973), but the ability to write this
solution family down in a simple closed form makes 1-w systems particularly easy
to work with, and for this reason they have been used by many authors as prototype
oscillatory systems (e.g. Ermentrout, 1980; Koga, 1982). Each of the periodic
waves (2) traces out a circular path in the #—v plane, and in fact additional
simplification is given by working in polar coordinates r and O =tan " '(v/x) in the
u—v plane. In terms of these coordinates, the equations (1) become

r,=rA(r) +r,, —rf? (3a)
0,=w(®+0,,+2r6Jr (3b)

and the periodic travelling waves are
r=f,  §=w@®r+i®"x “

In (3), the subscripts x and ¢ denote partial derivatives.

Systems of the form (1) exhibit both regular and irregular oscillatory wakes, as
illustrated in Fig. 2, and the simplicity of the equations enables the wakes to be
studied analytically. I will summarize here the results of this work, which is
described fully elsewhere (Sherratt, 1994b). In a case such as that illustrated in Fig.
2(a), in which oscillations in the wake are regular, the solution has a very simple
form, namely transition wave fronts in r and 6, (illustrated in Fig. 2). These fronts
can be written as r(x, £) =f(x—ct), 0,(x, 1) =|/7(x—-ct), where c is the front speed.
Substituting these solution forms into (3) gives

M 4o AR — P2 =0 (5a)

U 4o+ 28+ o) =k (5b)
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where x is an arbitrary constant of integration. Ahead of the fronts, r=0,=0
(=>u=v=0), so that k=w(0), and behind them, r and 0, have non-zero values,
which are the (unique) non-trivial homogeneous equilibria of (5), given by

6, =[w(0) —w(n}/c (6a)

A = [0() — 0(0)]? (6b)

Recall that ¢ is the speed at which the leading transition front moves across the
domain. I am considering initial conditions consisting of a small, finite perturbation
to the zero steady state near the x=0 boundary, and for such initial conditions,
simple linearization of (3) about r=0,=0 suggests that

c=24(0)? (6¢)

I have confirmed this in a detailed numerical study (Sherratt, 1994b). My
monotonicity assumptions ensure that (6b) has exactly one solution on (0, r,),
which I denote by r=r*. In some cases, the periodic waves given by (6) are in fact
unstable as solutions of reaction-diffusion equations; an analytical stability
condition was derived by Kopell and Howard (1973). It is in precisely these cases
that numerical simulations show irregular oscillations. Thus, in these cases, there
is a transition front behind which there are periodic waves whose amplitude is given
by (6b); however, these waves are unstable and thus further back from the front
they degenerate into irregular spatio-temporal oscillations. An example of this is
illustrated in Fig. 2(b).

Intuitively, one might expect that when (6) predicts an unstable periodic wave,
there would be a second transition, behind the leading front; to a stable periodic
wave. One can see in an intuitive way why this does not happen by considering the
possibility of such a transition, in the form of a travelling front in solution
amplitude. Such fronts have been considered previously by Howard and Kopell
(1977). Ahead of this conjectured front, r—#* and 6,—y* = [w(0) —w(™))/c, and
behind the front r—r**, § —y** = + . /A(r**), corresponding to a different (stable)
periodic wave solution. Assuming that the conjectured front moves with some
constant speed a, it will be a function of x—ar, which can be studied using the
ODEs given by replacing ¢ by a in (5).

Using these ODEs, the conditions ahead of and behind the conjectured
transition front imply that a* + o (**) = ay** + 0 (***), so that a= [@(**) —w(*)]/
[y* —y**]. Since A(-) and () are monotonically decreasing, ¥** must be greater
than 7* in order that the new periodic wave (of amplitude r**) is stable, so that
w(**) <w(r®); also Y*>[y**|>0. Together, these imply that a is necessarily
negative. Thus, the conjectured second transition front would actually move into
the region of stable waves, preserving the unstable region, so that such a front will
never occur. A similar argument applies when w(-) is monotonically increasing.
Note that there is an explicit spatial polarity in this calculation—the direction of
movement of the conjectured front would be the same if the lower amplitude waves
were behind the front. This spatial polarity is provided simply by the direction of
motion of the periodic waves.

In this discussion of the formation and stability of oscillatory wakes in A-w
systems, I have referred to the wake region almost as a separate entity. However,
this is clearly not the case: the wake is a part of the whole reaction—diffusion
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solution, and to treat it separately is just an intuitive device. Searching for a way
to explore the validity of this device, I consider solving the reaction—diffusion
system on a finite but growing domain, 0 <x <cCyn4,f; Where ¢4, is a positive
constant. This finite domain is intended to represent the wake region in isolation,
and thus I take the boundary condition on the stationary boundary x=0 to be the
same as in the semi-infinite-domain solutions, namely «,=v,=0; however, the
boundary condition on the moving boundary requires careful consideration.

The basic hypothesis that I have made in the preceding discussion of oscillatory
wakes is that the behaviour in the wake region is forced by the rear of the advancing
transition front. Thus, it is natural to consider boundary conditions on the moving
boundary which force a particular periodic plane wave. Since a periodic wave is
determined uniquely by the (constant) value of 6., it is natural to use boundary
conditions

r,=0 and 0,=A(")'? at x=cyn4! @)

which converts to a simple condition on u, and v,. This boundary conditions forces
periodic waves of amplitude * moving in the negative x direction. There are, of
course, other boundary conditions which would force periodic waves and I will
consider some of these alternatives in Section 3.

Figure 3 illustrates the numerical solution of this moving-boundary problem for
three different sets of functions A(-) and w(-); the numerical methods used are
discussed in the appendix. Here the amplitude r* at the moving boundary is
calculated using (6), with ¢y, taken as the wave front speed c¢=24(0)"/?, and in
Fig. 3, the moving-boundary solutions are compared with the solutions of the
corresponding semi-infinite-domain problem. The comparison between the
solutions is extremely good. In Fig. 3(a), the periodic waves of amplitude r* are
stable and, as one would expect intuitively, the moving-boundary solution consists
of these periodic waves, as does the wake region of the semi-infinite-domain
solution. For the A(:) and w(-) used in Fig. 3(b), waves of amplitude r* are
unstable, and in this case both solutions consist of a band of periodic waves, with
irregular oscillations further back. Remarkably, the width of the band of regular
oscillations in the moving-boundary solution is the same as in the oscillatory wake
region of the semi-infinite-domain solutions.

An equally good comparison is shown for a wide range of forms for A(+) and w(-);
however, the analytical description of the semi-infinite-domain solutions for A—w
systems in terms of travelling fronts in r and 6, means that this good comparison is
entirely expected. More surprising are the results illustrated in Fig. 3(c), in which
irregular oscillations occur immediately behind the leading transition front in the
semi-infinite-domain solution, without any intermediate band of regular oscillations.
This also occurs in the moving-boundary solutions, even though periodic waves of
amplitude given by (6) are forced on the boundary; the explanation is that these
periodic waves are highly unstable. The quality of the comparisons in all three parts
of Fig. 3 provides strong evidence that the oscillatory wakes in solutions such as those
illustrated in Fig. 2 are indeed induced by a forcing of a periodic wave at the rear of
the leading transition front, even when the wake region is entirely irregular.

The details of the irregular oscillations are, of course, different in the two
solutions shown in Fig. 3(b), and also in Fig. 3(c). This is entirely expected. I will
present evidence (in Section 4) suggesting that these irregular oscillations in fact
become genuinely chaotic as t— o0, which implies that a numerical solution will
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Fig. 3. A comparison between semi-infinite-domain (marked ‘full soln’) and moving-boundary
solutions for 1« systems (1) with A(r)=a(l -, w(=3—br and (a) a=b=1; (b) a=1, b=3; (¢}
a=0.2, b=10. The boundary condition on the moving boundary is (7) with ¢, _ o= 2, which is the speed
22(0)'/2 at which the transition front moves in the semi-infinite-domain solution (Sherratt, 1994b). The
value of r* is taken from (6) and is indicated by dashed lines; the location of the moving boundary is
shown by a solid line. The solutions are piotted as a function of x at two times . The equations were
solved numerically using a Crank-Nicolson finite difference scheme, as discussed in the appendix.

never be a good approximation to an exact solution, whatever the accuracy of the
numerical method. Thus, in these cases, numerical solutions give only qualitative
information about the form of the true solution.

In the semi-infinite-domain solutions, the speed of the leading front and the
amplitude of the periodic waves behind it are linked by the equation (6b).
However, in the moving-boundary case there is no such relationship, and the speed
Congy Of the moving boundary can be varied independently of the wave amplitude
7. When the waves of amplitude r* are stable, this variation has no significant
effect on the solution, but in an unstable case, the effect is marked, as illustrated
in Fig. 4. As the boundary speed decreases, the width of the band of periodic waves
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Fig. 4. The effect of the boundary speed ¢, | ndy O the moving-boundary solution. The solutions shown
are for (1) with A(r) =1 —* and w(r) =3 — 3r*. The boundary condition on the moving boundary is (7),
with r* calculated using (6) (this is independent of ¢, _ oy ). As the boundary speed decreases, the width
of the band of periodic waves immediately behind the moving boundary also decreases. The equations
were solved numerically using a Crank-Nicolson finite difference scheme, as discussed in the appendix.

also decreases, and disappears altogether at low speeds. Similar results are obtained
for a range of forms for A(+) and w(-). In the same way, a wave amplitude other
than r* can be used in the moving-boundary condition (7); the wake region consists
of periodic waves of whatever amplitude is imposed at the boundary, with irregular
oscillations further back if these waves are unstable.

The idea of reformulating wave propagation problems in reaction-diffusion
systems as moving-boundary-value problems is not new. Norbury and Stuart
(1988, 1989) used this technique to study porous medium combustion, by
restricting attention to the region of finite (but time-varying) length in which the
reaction occurs. The essential difference between their approach and mine is that
Norbury and Stuart’s reduction is exact; it is made possible by the details of their
equations. In contrast, I am using moving-boundary solutions as an intuitive device
to aid understanding of qualitative behaviour.

3 Other conditions on the moving boundary

The relation (7) is a natural candidate for a boundary condition that forces periodic
waves. However, there are some other intuitively plausible candidates, and I will
discuss two of these in this section. Recalling the form (4) for a periodic wave
solution of a A-w system, one possible condition on the moving boundary is r, =0,

0,=A(r)'2. This is a generalization of (7), which forces the solution to have the
form of a periodic wave, but does not select a particular periodic wave. Numerical
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Fig. 5. An example of the moving-boundary solutions with condition (10) on the moving boundary,

and ¢, o= 2. The value of r* is calculated using (6), and is indicated by dashed lines. The solution has

the form of periodic waves with amplitude r__, given by (12), which is significantly greater than r*. In
this simulation, A(N)=1—-r> and w(r)=3—4r>. The equations were solved numerically using a
Crank—Nicolson finite difference scheme, as discussed in the appendix.

solutions of the moving-boundary problem with this boundary condition at
X =Cpnq,t for a wide range of A(-) and w(-) simply give spatially homogeneous
oscillations in u and v, so that r=r, and 0= A(r,) =0. This is simply the limit cycle
solution of the kinetics. Therefore, oscillatory wakes cannot be generated simply
by a moving-boundary condition that is consistent with periodic waves; a particular
wave must be forced on the moving boundary.

With this in mind, I consider a second alternative condition on the moving
boundary, in which the values of ¥ and v are imposed as functions of time,
specifically

u=r*cos [@(r*)z+A(*)**x] and v=r*sin [@(*)t+A(0*)*x] at x=cyne,t (8)

As one might expect, this condition successfully forces periodic waves of amplitude
r*, and gives results that are essentially identical to those obtained with (7) (not
illustrated for brevity). Of course, when irregular oscillations occur, there are
differences in the detail of these, as expected. Thus, the boundary conditions (7)
and (8) both give solutions with the same form as the oscillatory wake in the
corresponding semi-infinite-domain solution.

Another natural case to consider is the use of conditions on the moving boundary
which force periodic waves moving in the positive x direction, that is either

u=r* cos [0(r*)t+A(*)*x] and v=r*sin [W(*)t+A(*)*x] at x=cpue,t (9)

orr,=0 and 0,=—A(r)'? at x=cyu4,t 10)

I must stress immediately that these conditions do not correspond to any
semi-infinite-domain computations. Numerical simulations with conditions (9) or
(10) on the moving boundary give the same results, but these results have a rather
unexpected form. Periodic waves do form behind the moving boundary, but their
amplitude is significantly greater than r* (Fig. 5). Moreover, the waves move in the
negative x direction, opposite to the direction that is forced at the boundary,
although this cannot be seen in Fig. 5.

This initially surprising result can be explained by a detailed consideration of (9).
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solved numerically using a Crank-Nicolson finite difference scheme, as discussed in the appendix.

This boundary condition imposes r=r* and also specifies § as a function of z. Is it
possible that more than one periodic wave has the same form for 6 as a function
of ¢t on the moving boundary? To answer this, we must look for solutions of

o) A llzcbndy =aw(r*) — () llzcbndy an

Clearly, r=r* is a solution, but there may be others. The number of solutions in
fact depends on A(-) and w(-) and to be specific I focus on the case A(r)=1 —r,
w(r) =3 — br?; the solutions in Figs 3(a), 3(b), 4 and 5 are all for functions of this
form, with different values of b. In this case, (11) can be solved exactly, giving one
solution in addition to r=r*, namely

2 cbndy 2 cbndy 172
r=feun=| (™) +_b— 2/1—=(™) b (12)

This is exactly the larger periodic wave amplitude in the solutions illustrated in Fig.
5, and waves of this amplitude are also induced by boundary condition (10).

As cyq,/b increases from zero with fixed r*, r,,,, initially increases from r*,
reaching a maximum value of 1 at ¢,,,,/b=A(*)"/?. The value of r,,, then starts
to decrease, reaching the value 7* again at cy,q,/b=2A(*)"/?, and becoming zero at
Congy/0 =1+ A(*)/?. This variation is illustrated for one particular value of r* in
Fig. 6. Also in this figure is plotted the periodic wave amplitude observed in
numerical solutions of the moving-boundary problem with boundary condition (9)
for b=3, as ¢y, is varied. For all values of cy,q,/b, the observed amplitude is the
larger of * and r,,,,,. I have experimented numerically with a number of different
forms A(-) and w(-), and in all cases the same rule applies: the observed solution
consists of periodic waves, whose amplitude is given by the largest root of (11) on
(0, 7). I have no formal argument as to why this should be so, although if one
conjectures an amplitude transition front between r* at x = ¢4, and r,,,, at smaller
x, the argument used in Section 2 shows that this front will move in the negative
x direction (away from the front) unless r,,,,, >r*; thus, one does not expect waves
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of amplitude r,,,,, when r,,., <7*. I must emphasize that when an amplitude other
than r* is selected, there is a boundary layer at the moving boundary, since for (9),
r=r* on the boundary, and for (10), 6, <0 on the boundary.

Finally in this section, I should comment that in the light of the preceding
discussion, it will come as no surprise that the condition

u=cos[w(@)z] and v=sin[w(™*)i] (13)

at the moving boundary does not induce periodic waves of amplitude r*. This
prescription of the temporal form of the periodic wave is effective at forcing waves
on a stationary boundary, but once the boundary moves, this movement must be
taken into account. In fact, numerical simulations suggest that (13) forces periodic
waves whose amplitude is given by the largest root of

@ (r) £ A(r) 2 eypay = 0(1%)

This equation will always have at least one root in (0, ry) provided A(-) and w(-)
are monotonic.

4 Bifurcation studies for /- systems

In Sections 2 and 3, I have presented evidence indicating that oscillatory wakes
behind transition fronts in A-w systems can be well represented by corresponding
solutions on growing domains, provided a suitable boundary condition is used on
the moving boundary. I will now use this fact to gain a preliminary insight into the
nature of the spatio-temporal irregularities observed in some wake regions. The
first step in this process is to consider solutions on a fixed-length, finite domain,
say 0<x<L; I will return to growing domains in due course. I consider such
solutions with the boundary condition (7) applied at both boundaries; since these
boundaries are stationary, (7) is in fact equivalent to (10), via the transformation
X —Xx.

I have previously considered the way in which the long-term behaviour of such
solutions varies as r* is varied with a fixed domain length L (Sherratt, 1995).
However, the moving-boundary results suggests that it may be more appropriate
to fix 7* and consider varying the domain length. I must stress that here the domain
length is a parameter which I am varying, and is not a function of time. For any
given r*, the periodic wave solution r=r*, .= A(r*)'/* will be stable as a solution
of (1) on 0 <x <L subject to (7) at x=0 and x=L, provided L is sufficiently small.
I have previously outlined a method enabling calculation of the value of L at which
the stability changes (Sherratt, 1995). My interest here is in the long-term
behaviour that results when L is increased above this critical value. This is entirely
a numerical study, and the fact that I am concerned with long-term behaviour
means that it is computationally very expensive. For this reason I have focused
almost exclusively on one set of A(-) and w(:), namely A(r)=1—r* and
w(r) =3 —r? (chosen arbitrarily), and I will describe the results for this case only.
In contrast to the numerical results in Section 2 and 3, I have little evidence
concerning the generality of the results presented in this section.

When L is just above the critical value for stability, the form of the long-term
solution can actually be calculated from linear analysis of (3), and has the form of
periodic temporal oscillations in r and 6, at all space points. The subsequent
change in long-term behaviour as L is increased further is illustrated in Figs 7 and
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Fig. 7. Bifurcations in the long-term behaviour of /- solutions on a finite domain. The solutions
illustrated are for equations (1) with A()=1—r%, w()=3—r* on 0<x<L, subject to boundary
condition (7) at x=0 and x=L, with ¥*=0.8075. The solution for r is plotted as a function of time ¢
at x=L/11. The long-term behaviour is essentially independent of initial conditions. As L is increased,
the long-term temporal behaviour changes from r constant (corresponding to periodic waves in ¥ and
v, not shown) to periodic temporal oscillations in r. The period of the oscillations then doubles several
times before the behaviour becomes irregular. The various transitions appear to occur synchronously
in space, but the amplitude of r variations decreases with x; thus, for maximum clarity the plotting is
at a position close to the x=0 boundary. The equations were solved numerically using the method of
lines and Gear’s method.

8 for ¥*=0.8075 and 0.535 respectively. In the former case, the simple temporal
oscillations in r and 6, become unstable at L 29, via period doubling. This is the
onset of a period-doubling cascade (I have observed two further doublings
numerically), and for L greater than about 31, the long-term behaviour consists of
irregular temporal oscillations. This period-doubling sequence appears to occur
synchronously at all space points, and in Fig. 7 I plot the solution for one value of
x only.

For r¥*=0.535, the sequence of bifurcations (Fig. 8) is rather different. Here the
periodic wave solution loses stability at Lx5, again giving temporal oscillations in
r and 6, at all space points. These in turn become unstable at L~ 24, but this is
not through period doubling, but rather through what appears to be a bifurcation
to a torus. As L is increased, this transition leads gradually to irregular temporal
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oscillations. However, in contrast to the case described above, this behaviour does
not occur synchronously in x. Rather, the bifurcation occurs initially near x=0, and
then a ‘wave of bifurcation’ moves across the domain, as illustrated in Fig. 8. Thus,
for some values of L there are irregular oscillations in r near x=0, but regular
oscillations near x=L.

For other values of r* that I have investigated, the progression to irregular
oscillations has one of these two forms, although in some cases I have been unable
to detect any intermediate steps between simple periodic oscillations and
irregularities. I assume that this is because the transition occurs very rapidly as L
is increased, and that I have failed to select an L value in the transition region.

The key implication of these results is that the observation of period-doubling
cascades and quasi-periodicity, which are standard routes to chaos in ODE
systems, strongly indicate that the irregular temporal oscillations observed in these
finite domain computations for large L are genuinely chaotic. This is a new
observation for reaction—diffusion equations, although the approach of taking the
domain length as a bifurcation parameter in a route to chaos has been used
previously for the complex Ginzburg-Landau equation, demonstrating transitions
to chaos via two- and three-tori (Keefe, 1985; Moon et al., 1983; Sirovich et al.,
1990). Chaos in the complex Ginzburg-Landau equation has of course been very
well studied (e.g. Shraiman et al., 1992; Van Saarloos & Hohenberg, 1992). The
key difference between this equation and (1) is that the complex Ginzburg-Landau
equation is studied in a parameter region in which the spatially homogeneous
oscillations (corresponding to the limit cycle of the kinetics) are unstable due to
high cross-diffusion; this results in quite different dynamics.

My initial motivation for using domain length L as a bifurcation parameter was
that the length of the wake region grows as an imposed function of time, so that
one can think of the bifurcation having an imposed variation with time. However,
there is an additional complication in the case of oscillatory wakes, namely that the
boundary condition (7) does not apply at both ends of the growing domain, but
rather only at the moving boundary. In fact, the zero-flux boundary condition at
x=0 is not significant in the solutions, and if it is replaced by condition (7), there
is no significant change in either the moving-boundary or semi-infinite-domain
simulations (not illustrated for brevity); rather there is just a localized difference
near the x=0 boundary. However, there can be significant differences in the
behaviour on fixed-length domains, such as that illustrated in Figs 7 and 8, if the
boundary condition at x=0 is changed to zero flux. If the bifurcations are
occurring at relatively large values of L, the sequence of long-term temporal
behaviours near the x=L boundary is barely altered by changing to a zero-flux
condition at x=0; for example, for the parameters used in Fig. 8, there is still a
progression to temporal irregularity via quasi-periodicity. However, the sequences
for small values of x are changed significantly, and in particular the progression to

Fig. 8. Bifurcations in long-term behaviour of i-w solutions on a finite domain. The solutions
illustrated are for equations (1) on O<x<L with A()=1—r% w(r)=3—r* subject to boundary
condition (7) at x=0 and x=L, with ¥*=0.535. The solution for r is plotted as a function of time ¢ at
four different x values. In this case, the irregular oscillations arise through apparent bifurcations to tori
in the long-term temporal behaviour; however, in contrast to the case shown in Fig. 7, the transitions
do not occur synchronously in x, but rather through a ‘wave of bifurcation’ moving across the domain
in the positive x direction. The equations were solved numerically using the method of lines and Gear’s
method.
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temporal irregularity does not occur through bifurcation sequences that are
recognizable from ODE dynamics. Moreover, when bifurcations occur at smaller
values of L (e.g. Fig. 7), the sequence of long-term temporal behaviours is altered
significantly throughout the domain, and again recognizable bifurcation sequences
are often lost. This is unsurprising since the periodic travelling wave itself does not
satisfy the zero-flux conditions, so that even for very small values of the domain
length L, the long-term solution for r is spatially varying.

Within this proviso, the results described in this section indicate that one can think
intuitively of the wake region as being in a perpetual transient on the way to temporal
chaos. A useful analogy is an ODE system in which a bifurcation parameter has an
imposed variation with time: the long-term behaviour passes through a sequence of
bifurcations leading to chaos, but the solution never has the chance to settle down to
this long-term behaviour because the parameters are continually changing.

5 Predator—prey dynamics on growing domains

In this section, I move away from A-w systems to consider the application of the
growing domains idea to more general reaction—diffusion systems. I focus on the
example of predator—prey interactions, although the choice of this as opposed to
another oscillatory phenomenon is essentially arbitrary. I am really using the
predator—prey case simply as an example of a non-i-w system, and I will discuss
the ecological implications of oscillatory wakes only briefly (in Section 6), since
these are described at length elsewhere (Sherratt er al, 1995, 1996).
Reaction—diffusion models for predator-prey interaction have the general form

op D,o*
B e (14
oh D,0%h
@ o TR (149

(Murray, 1989). Here p(x, r) and h(x, r) represent predator and prey densities, and
are functions of the one-dimensional spatial coordinate x and time z. Realistic
kinetic terms f, and f, have two non-trivial steady states: a ‘prey-only state’ in which
p=0, and a ‘coexistence state’, in which both p and % are non-zero, say p=p,
h=h,. In many predator—prey models, there are realistic parameter regions in
which this coexistence steady state is in fact unstable, with a stable limit cycle in
the kinetics, reflecting the oscillatory dynamics of many real predator-prey
systems (Nisbet & Gurney, 1982). In such cases, spatially localized perturbation of
the coexistence steady state gives rise to either regular or irregular oscillatory wakes,
as illustrated in Fig. 1.

As soon as one moves away from A-w systems, one is immediately handicapped
by the lack of a coordinate system analogous to the - representation (3).
Therefore, the moving-boundary condition (7) has no analogue for more general
systems, and the only boundary condition that can be used to force a periodic wave
is to specify the reaction—diffusion variables as functions of time, in a manner
analogous to condition (8). Moreover, again in sharp contrast to A-w systems, there
is no analytical expression for the periodic waves in the system (14); however, for
the purposes of numerical simulation this is not a major difficulty, since the
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periodic wave form can be calculated numerically to a high degree of accuracy,
using a method which I will now outline.
Periodic travelling waves correspond to a limit cycle solution of the ODE system

2
Dd‘zizp adb | P HY=0 (152)
D,d*H  adH
<hizz — HHP H)=0 (15b)

Here h(x,t)=H(z;a) and p(x,t)=P(z;a) are the travelling wave solutions;
z=x-—at is the travelling wave coordinate, with a the wave speed. The periodic
travelling waves arise from a Hopf bifurcation in these ODEs, which occurs at
some critical value, a,,, say, as a is increased with all other parameters fixed
(Kopell & Howard, 1973). It is this Hopf bifurcation to periodic waves that enables
their form to be calculated numerically. The bifurcating branch of periodic waves,

P,..(2; a) and H,,(2; @) say, can be found numerically in a standard way, and then
tracked by numerical continuation; I have used the package AUTO for this
(Doedel ez al., 1991).

The purpose of the moving-boundary simulation for predator—prey systems is to
represent in a simpler way the oscillatory wakes such as those illustrated in Fig. 1.
In this case, I have been unable to determine a formula for the speed or period of
the regular periodic waves immediately behind the invasive front; however, this
speed c,,,, and also the front speed c,,4, can be calculated easily from
semi-infinite-domain simulations (see the legend to Fig. 9 for details). The
combination of a value for this speed together with the numerical form for the
periodic waves enables the boundary condition

P=P, (Conayt + Copwhs Copw)  @NA  A=H, (Cypa,t + Cppwl3 Cppw) (16)

to be imposed at the moving boundary. In Fig. 9, I compare the solution of the
moving-boundary problem subject to condition (16) with the oscillatory wake
behind invasion, for one particular predator—prey model; details of the equations
and boundary conditions are given in the figure legend. The comparison is
extremely good, both in this case and for a range of other parameter values.
Moreover, as for /- systems, as the boundary speed c,,,4, is increased with fixed
Cppws the length of the band of regular oscillations increases (not illustrated for
brevity).

In the 2-w case, I was able to link these moving boundary simulations to simple
bifurcation sequences on stationary domains. Unfortunately, this is not possible for
more general systems such as predator-prey models. There are two basic
difficulties. The first is that there is no analogue of the periodic wave amplitude r
that can be plotted to study bifurcations. This may seem a minor problem, but in
fact the temporal oscillations in amplitude that occur when the periodic wave
becomes unstable have a frequency that is quite unrelated to the frequency of the
initial periodic waves. This makes it almost impossible to detect bifurcations from
plots of numerical solutions of the original partial differential equation (PDE)
variables. In fact, I have been able to get around this difficulty by calculating
numerically the shortest distance between the current solution point and the
projection of the periodic wave limit cycle on to the #—p plane. Even though I only
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Fig. 9. A comparison between semi-infinite-domain (marked ‘full soln’) and moving-boundary
solutions for the predator-prey system (14) with  f(p, )=h(1—hK)—p(1—e~ M),
fp( p> h)=Bp(A—1—Ae~ "), which is a standard predator-prey model and has oscillatory kinetics for
suitable values of the parameters A, B and C (Murray, 1989). The case illustrated is A=1.5, B=0.05,
C=5, DF=D,,= 1. In the semi-infinite-domain solution, the initial conditions are that the system is in
the coexistence steady state h= hs.=_ (1/C)logl{A/(A—-1)], p= ?, .=.Ah_‘(1 — h;) everywhere except near the
x=0 boundary, where a small, localized perturbation is applied. In the moving-boundary simulation,
the condition (16) is used on the moving boundary, with the periodic wave forms Ppﬁ( -) and Hp"( )
calculated as described in the main text. The speed ¢, of the moving boundary is taken to be the
speed of the front in the semi-infinite-domain simulations, which can easily be found numerically.
However, when D, =D , the linearization about the coexistence steady state shows that the front speed
has a minimum value of [23f,/0h +20f, /op] l ZI( p=poh=hy 0d in numerical simulations it is this minimum
front speed that is observed. For the parameters used in the figure, this gives a front speed x~0.313.
The speed ¢ ow of the periodic waves forced on the boundary is determined from the
semi-infinite-domain simulation, and here ¢ =1.504 is used. The simulations are very sensitive to the
pW
value of Copw? particularly the length of the region of regular oscillations. A preliminary estimate of Cow
can be calculated as the ratio of the space and time periods of the regular oscillations in the
semi-infinite-domain simulation, but this is not sufficiently accurate. Therefore the practice has been
adopted of refining this estimate by plotting the regular oscillations in the 2—p plane, and comparing
the resulting loop with the projection of the periodic wave limit cycle. Even a visual comparison of these
two loops typically enables Copw 10 be calculated to three or four significant figures. The prey density
h(x,t) only is illustrated, but the predator density p(x, t) has a qualitatively very similar form. The
equations were solved numerically using a Crank-Nicolson finite difference scheme, as discussed in the
appendix.

have a numerical representation of the limit cycle, this procedure is quite easy to
automate.

However, I was unable to circumvent the more serious difficulty of not having
suitable boundary conditions to use in a bifurcation study. As I have discussed,
there is no analogue of the condition (7) used in the A-w case, and the only
possibility is the condition (16). However, this imposition of the reaction—diffusion
variables as functions of time on the boundaries does not give a recognizable
bifurcation sequence, either in the predator-prey or - cases.

Nevertheless, the moving-boundary results for predator—prey systems do have
important implications for the oscillatory wakes phenomenon. In the case of 1-w
systems, there is a strong mathematical basis for the idea that the rear of the leading
front effectively imposes a boundary condition on the wake region, namely the
structure of the solution as a transition wave in r and 6,. In more general
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reaction—diffusion systems such as the predator-prey model (14), I have previously
conjectured that the same mechanism applies (Sherratt, 1994a), and the
moving-boundary results strongly suggest that this conjecture is correct. That is,
the strong similarity between the moving-boundary solutions and the oscillatory
wakes behind invasion provides good evidence that the invasive front really can be
regarded as determining the solution in the wake region by forcing a particular
periodic wave at its boundary. :

6 Discussion

In this paper, I have described the way in which the solution of oscillatory
reaction—diffusion equations on growing domains can be used to mimic oscillatory
wake phenomena. This has provided strong evidence that the advancing wave front
can correctly be thought of as forcing a particular periodic wave at the boundary
of the wake region. For A-w systems, this had already been established for regular
wakes, but the work represents a new result for the case of wholly irregular wakes
in A-w systems and more generally for other reaction—diffusion systems. In
addition, for A-w systems, the combination of moving-boundary results and
bifurcation studies suggests that irregular wakes have the form of a perpetual
transient in a progression towards chaos.

Many real biological systems are oscillatory, and I will now briefly review the
application of the oscillatory wakes phenomenon to the specific cases of
intracellular calcium signalling and predator—prey invasion. Further details are
given elsewhere (Sherratt ez al., 1995, 1996; Sneyd & Sherratt, 1996). Calcium is an
important intracellular second messenger, and exhibits a wide range of spatial and
temporal oscillations in response to different extracellular signals (see Tsien &
Tsien, 1990, for a review). The essential biological sequence is that external
stimulation causes cells to produce a regulatory molecule known as IP;. This in
turn induces calcium release from intracellular stores, through channels that are
IP,-sensitive. Subsequent calcium release is then auto-regulated by the extracellular
calcium level. The dynamics of this process has been extensively modelled (see
Sneyd et al., 1995, for a review). Typically, depending on the IP, concentration
(which can be regarded as a parameter), models are either excitable or oscillatory,
and in the oscillatory regime, simulation of calcium signalling waves reveals exactly
the oscillatory wake structure. That is, a leading wave front moves across the
domain (speed about 2 um s~ '), behind which are periodic waves moving in the
opposite direction, and with a much greater speed (about 30 um s~ ).

The invasion of prey populations by a predatory species has been extensively
studied, both theoreticaly and in field studies (for example, Kot, 1992; Lehman &
Caceres, 1993). However, until very recently, invasion had not been simulated
theoretically for predator-prey systems with oscillatory population kinetics; many
real predator—prey systems are in this category. With co-workers, I have shown
(Sherratt et al., 1995, 1996) that for a range of standard predator—prey models, of
both reaction—diffusion and other types, localized introduction of predators into a
prey population leads to an invasive wave front, behind which there is an oscillatory
wake, with either regular or irregular oscillations, depending on kinetic parameters.
This invasive solution is fundamentally different from that illustrated in Fig. 1,
which is also a solution of a predator—prey model, because in Fig. 1 the system is
in the mixed prey—predator steady state ahead of the leading front, whereas ahead
of an invasive wave front, the system is in the prey-only steady state. Nevertheless,
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the phenomenon is the same: in invasion, the solution approaches the mixed
prey-predator equilibrium transiently, and the oscillatory wake arises as a direct
consequence of this transient.

Many chemical systems are also oscillatory, including the famous Belousov—
Zhabotinskii reaction, and these systems provide the most feasible situation for
detailed experimental observation of oscillatory wakes. In such systems, it is not
possible to apply spatially localized perturbations, because the system can never be
started exactly at the unstable equilibrium state. However, in this context, the
moving boundary approach that I have used in this paper has an additional
application, quite different from the mathematical aspects on which I have focused.
Namely, moving boundaries provide a feasible method of observing oscillatory
wakes in chemical systems, because it is possible to reproduce oscillating boundary
conditions experimentally. This was done recently by Stdssel and Minster (1995),
for the Belousov-Zhabotinskii reaction in a silica gel. The details of their
experimental scheme mean that the system is in fact excitable rather than
oscillatory in the reaction vessel, but otherwise their method is directly applicable
to the observation of oscillatory wakes. Specifically, they use an effectively
one-dimensional reaction vessel at the ends of which temporal oscillations are
imposed in the concentraiton of reactants. If this method were amended so that
the system were oscillatory in the reaction vessel and one of the boundaries was
moveable, then the work I have presented predicts that oscillatory wakes will be
observed. Specifically, I predict a transition from spatio-temporal irregularities to
periodic travelling waves in the unstirred part of the reaction vessel, as the speed
of the moving partition is increased.
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Appendix: Numerical methods

There are two basic approaches to numerical solution of the moving-boundary
problems discussed in this paper, namely either to incorporate the moving
boundary directly into the numerical scheme, or to change variables to give a fixed
domain, and solve in these transformed coordinates. I have used both approaches
to verify my numerical results, and I now describe the methods in more detail.
Explicit inclusion of the moving boundary in the numerical scheme can be done
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most conveniently with a simple finite difference numerical method, and I have
used a semi-implicit Crank-Nicolson scheme, in which the diffusion terms are
represented by central differences, with their values at the current and previous
time steps averaged. For a system of the form (14), this gives

Pt —pl_D,plii—2pl""+plii Dpplii—2pi+pl,
ot 2 ox? 2 . Ox?

+f, (0l B

and similarly for (14b). Here p! denotes the variable at space-point ¢ and
time-iteration j, and &z and dx are the time and space steps, which I take to be
constant. This gives a tridiagonal system of linear algebraic equations to be solved
at each time iteration. I have found that this is more efficent than a fully implicit
scheme in which the kinetics are also evaluated at the new time step, because even
though larger time steps can then be used for a given accuracy, this does not
compensate for the extra time required to solve nonlinear algebraic equations at
each iteration. Within the context of this finite difference scheme, I include the
moving boundary in a very simple way, by restricting solution to the mesh points
1 <z<zm,{—int(cl,,,‘ly j0t/0x), with the moving-boundary condition applied at mesh
point i=1,,,.

A quite different numerical approach is to start by changing variables to give a
stationary domain. The appropriate transformation is X =x/(cyaqy?)> T=2, under
which a system such as (14) becomes

op__D, ’p Xop

oT c,,m,yT2 X2

and similarly for (14b). The appropriate solution domain is then 0 <X<1, and
boundary conditions involving spatial derivatives must be transformed appropriate-
ly. This transformed system could be solved by a number of numerical methods,
including the finite difference scheme described above, but to maximize the
difference between my two methods I have instead used the method of lines and
Gear’s method, which is implemented in the NAG library. The method of lines
simply converts the PDEs to a system of coupled ODEs using a simple spatial
discretization, which I take to be uniform; Gear’s method is a variable-order,
variable-step ODE solver, based on backwards differentiation formulae (for details,
see Dew & Walsh, 1980). Of course, solution of these transformed equations must
be started at a small finite value of T, rather than at =0, but details of the initial
solution used appear to have only a transient influence on the solution.

These two numerical methods have no relationship but give the same results,
which is strong evidence that the numerical solutions are good approximations to
the true solutions. The finite difference and Gear methods can also both be used
to solve the semi-infinite-domain problem, which is rather more straightforward
numerically, and again the methods agree.



