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Macrophages form an important part of the immune response to cancer. In this paper,
we present a mathematical model of reaction—diffusion form, which represents the influx
of macrophages into a small avascular tumour, and their dynamics within the tumour
as it grows. The model predicts that, despite their ability to selectively kill tumour
cells, macrophages are unable to prevent tumour growth. However, significant effects on
the form of the tumour are predicted, including in particular the formation of spatial
patterns. When the model is extended to include macrophage chemotaxis, these patterns
can in some cases bifurcate to give irregular spatiotemporal oscillations, and the authors
present a detailed numerical bifurcation study which suggests a novel dynamical origin
for these oscillations. Finally, we present results of model simulations in two spatial
dimensions.

1. Introduction

Macrophages form an important part of the immune response to cancer. They
are the mature form in tissue of a type of white blood cell known as a monocyte,
and are recruited to tumour sites by attracting gradients of chemicals produced by
tumour cells. This recruitment can be very effective: for example, in many cases
of breast carcinoma, macrophages constitute over 50% of the total cell mass.3” The
role of macrophages within tumours is complex. They are known to selectively kill
tumour cells,33 but can also promote tumour growth by encouraging vascularisa-
tion.30 These various processes will be explained more fully later in the paper; for
more detailed biological reviews, see Refs. 18, 24 and 32.

In this paper, we consider the effect of macrophage-mediated killing of tu-
mour cells during the early, avascular stage of tumour growth. This process is
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initiated when a cell in the tissue undergoes a mutation, giving it a proliferative
advantage over its normal counterparts®®; mathematical models for this process were
given in Refs. 46 and 54. The avascular phase of growth terminates because of
the limited rate at which nutrients can diffuse into a solid tumour,?® and there-
after the tumour becomes quiescent; this diffusion-limited cessation of growth was
the first area of tumour biology to be modelled mathematically!'%?2 and recent
modelling has clarified the effects of tumour shape on the process.*52 Tumour
growth is then resumed via the onset of angiogenesis,?! in which tumours acquire
their own blood supply, leading to unconstrained (and potentially lethal) growth;
for models of the angiogenic process, see Refs. 13 and 14. Subsequent metasta-
sis, leading to secondary tumours, requires the development of invasive tumour cell
phenotypes; for modelling of tumour invasion, see Ref. 40.

Previous mathematical models of tumour immunology fall into two main
categories, using either generic representations of the immune response?#4:25:46 or
detailed models focussing on particular aspects of immune cell-tumour cell interac-
tions?728 (see Ref. 3 or other papers in this issue for review). Our approach falls
in between these categories of model: we focus specifically on macrophages, and
use equations that are based at least qualitatively on known details of macrophage-
tumour interactions; however, we keep our modelling sufficiently simple that we can
consider the effects of macrophages within the context of a tumour that is growing
in space. In the next section, we describe our model, and in Sec. 3, we discuss the
form of model solutions in the absence of spatial variation, including the use of the
model to study macrophage-based immunotherapy. In Sec. 4, we discuss model solu-
tions in one spatial dimension, showing that macrophages are able to induce spatial
patterning within the growing tumour. We extend the model in Sec. 5 to include
explicit macrophage chemotaxis, and show that this can induce spatiotemporal
irregularities within the tumour. Finally in Sec. 6, we present numerical simulations
of the model in two spatial dimensions. Our model has been presented previously
in Ref. 38, and preliminary results on spatial patterning were given in Ref. 39. The
central contribution of this paper is a detailed study of the development of both
regular and irregular spatial patterns.

2. Model Development

Our model restricts attention to the interactions between mutant cells, normal
tissue, macrophages, and their chemical regulators. We make the simplifying
assumption that there is a single chemical regulator responsible for activation of
macrophages, control of their proliferation, and stimulation of their influx from the
bloodstream. In reality, many different chemicals are involved, including tumour
necrosis factor,3! macrophage colony stimulating factor*! and members of the mono-
cyte chemotactic protein family!%4%; however, all these regulators derive primarily
from mutant cells, and can be treated together to a first approximation.
Activation and inhibition of mutant and normal cell growth are not included
in our model; instead we represent the proliferative advantage of mutant cells in
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terms of an increased basic growth rate. Thus the variables we consider are the
densities of macrophages, I(x, t); mutant cells, m(x, t); normal cells, n(x, t); macro-
phage-mutant cell complexes, c(x,t); and the concentration of the chemical re-
gulator, f(x,t). In the following sections we will outline the assumptions and
interactions relevant to each species, and give mathematical descriptions in terms
of differential equations.

2.1. Macrophages

Macrophages destroy tumour cells by binding to form a complex and then lysing the
mutant cell; direct cell-cell contact is an essential part of this process.?8 Quiescent
macrophages must be biochemically activated before complex formation and lysis
are possible.?4:32 We assume that the rate of complex formation is linear with respect
to chemical concentration, and macrophage and tumour cell densities. In addition
we assume that the complex returns viable macrophages after lysis of the mutant
cell.’® Note that the source of regulators is mutant cells. Schematically this can be
represented in the following form:

FHi+m et f, 251+ debris.

Here k; and k2 are positive constants. It is important to stress that there is no
definitive experimental data on the details of this tumour cell destruction; we have
considered various alternative formulations for this process, such as separating the
activation and complex formation steps, but such changes do not significantly alter
the qualitative model behaviour.

The remaining assumptions that we make with regard to macrophages are:
(i) they have spatially random motion combined with movement up gradients in
the concentration of chemical regulator; (ii) they proliferate only in the presence of
the chemical regulator,® and such proliferation increases linearly with the concen-
tration; (iii) their proliferation is limited by the crowding effect of all cell types; (iv)
there is an influx from capillaries, which, due to chemotaxis, increases linearly with
regulator concentration; and (v) they die with some constant rate per cell. In the
absence of chemical regulator, the normal background level of tissue macrophages
is maintained by a constant influx, at a rate denoted by I.

We use a term for proliferation of macrophages of the form:

(chemical concentration) x (macrophage density) x (crowding term).

The most common representation of crowding effects on cell division is the logistic
term, r(z) = (k — z), which has been used in modelling a wide range of biologi-
cal systems.?%4% In this case it is inappropriate, since the logistic crowding term
can be negative, which does not make sense when it is multiplied by the chemical
concentration — macrophage death should not be promoted. Therefore we use the
term r(z) = (N + N¢)/(N + z), where N, is the equilibrium cell density in normal
tissue and V is a measure of crowding response. There is no particular significance
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in this choice of functional form; in the absence of detailed biological data, only the
qualitative form of the function is known.

Combining these terms gives the following conservation equation for macro-
phages:

. proliferation
cell migration influx lysis death

s m—
N+1+m+n+1(1+‘7f)—k1flm+kzc al . (1)
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2.2. Mutant and normal cells

Most tumours arise initially from a mutation that affects the control of cell division,
giving the mutant cell a proliferative advantage over its peers.>® Such mutations
have been the subject of previous detailed models,6:3* but here our focus is on the
role of macrophages during the early stages of tumour growth, and thus we use a
very simple model. Specifically, we assume that the dynamics of mutant and normal
cells are alike except for the removal of mutant cells by macrophages, and a scaling
of the mutant cell growth rate by £ > 1 to model their proliferative advantage. We
use the same crowding term as discussed above, and a growth rate in normal tissue
of 4, balanced by an equal rate of cell death, so that combining these elements
with diffusion to simulate random cell migration gives the following conservation
equations for mutant and normal cells:

proliferation

&n cell migration Tﬁ\ death lysis
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2.3. Chemical regulation and cell lysis

Chemotaxis, macrophage proliferation, and mutant cell lysis are the important
interactions considered in this model, and all are stimulated by chemicals produced
by mutant cells, which we are representing as a single generic regulator f(x,t),
whose sole source is mutant cells. We assume a constant secretion rate 8 per unit of
mutant cell density, and a linear natural decay with rate d;. The complex density
is also assumed to decay linearly, with rate §.. Including random motion and the
binding and lysis terms discussed above completes the derivation of our model:

a diffusion prod" dec&y
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.4. Non-dimensionalisation

Equations (1)-(3) are non-dimensionalised using the following rescalings, where L
is half a typical cell length, and fg is a typical concentration of chemical regulator:

t* =dt, z‘=%, l‘=1—\lr;, m‘=1%1;, n'=%, C'=Fc', f'='}f;,
D=k, xi=Xh, pr_Dn pi=ln p=D2f pi=r
a‘=an°, N‘=-1-vly:, I‘.—-NICJ, o* = foo, k;:ﬁ—fg-l-y-e-,
s=%, g-% §-% a-% r-2%

Recall that N, is the equilibrium cell density in normal tissue. Applying these
rescalings, and dropping the asterisks for notational simplicity, gives:

al 2 afl(N +1)

5 = DVl —xaV(IVf) +N+l+m+n+1(1+af)—klflm-*-kzc——6;!, (4a)
5 = D,V m+N+l+m+n—m—-k1flm, (4b)
on 2 n(N+1)

o DVt N iiaman (4c)
of 2

E=va f+ﬂm_6ff1 (4d)
3t = D.V%c + ky flm — kac — dcc. (4e)

The experimental data available for parameter estimation is limited, but enables
order of magnitude estimates to be obtained for most of the parameters, and details
of this were given in Ref. 38 for the kinetic parameters, and in Ref. 39 for motility
parameters.

3. Spatially Independent Solutions

The majority of this paper is focussed on spatially varying solutions, but as an
essential precursor to this work, we discuss in this section solutions of the spatially
homogeneous system given by setting D = xi = D = Dy = Dy = D, = 0. In the
resulting system of ordinary differential equations, there are four types of steady
state to consider. The first two are somewhat trivial: & macrophage-only state
l=1/6,m=n=f=c=0, and the normal tissue state, consisting of normal
cells and macrophages: [ = I/&;, m =0, n=1-1/§;, f = ¢ = 0. Straightforward
linear stability analysis shows that both these steady states are unstable to the
introduction of mutant cells.
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The third type of steady state is that of a turnour with no normal cells remaining,
denoted the mutant-only steady state, and the fourth steady state is of mixed type,
with all cell species coexisting. Real tumours certainly contain a variety of cell
types,32 and other models*®>* also predict this type of solution. If the growth
advantage of mutant cells is too high, coexistence is not possible, and steady states
of this type cannot exist. Figure 1 illustrates the way in which these last two
steady states change with o, the macrophage influx parameter. We have identified
a number of bifurcation points, at which the number and stability of steady states
change. This is discussed in some detail in Ref. 38; for the purposes of this paper the
key result is that, with respect to homogeneous perturbations, at least one tumour
steady state is stable, and that for realistic parameter ranges there is only a very
small region of parameter space in which both coexistence and mutant-only steady
states are stable.

Numerical simulations of the ordinary differential equation model given by
setting D; = x; = Dy, = Dp = Dy = D = 0 suggest that when only one steady
state is locally stable, it is also globally stable for positive solutions; in the small
regions of parameter space where two tumour steady states are both locally stable,
solutions evolve to one or the other of these, depending on initial conditions. In
particular, this implies that introduction of a small mutant cell density to the nor-
mal tissue state causes the solution to evolve to a tumour steady state. This occurs
despite the presence of cytotoxic macrophages, because the macrophage immune
response is second order in the density of mutant cells. By this, we mean that as
well as having an explicit dependence on the mutant cell density m, the immune

Fig. 1. Schematic representation of the bifurcation structures for the homogeneous tumour steady
states of the dimensionless model (4). Solid lines indicate stability, dashed lines instability. The
bifurcation parameter o is the measure of the increase in macrophage influx from the bloodstream
in response to chemoattractants secreted by tumour cells. Tumour steady states of the model
(4) are of two types: (i) mutant-only (n = 0), where no normal cells survive, indicated by the
horizontal lines in the diagram; (ii) coexistence (n 7# 0), where normal cells continue to proliferate
along with mutant cells, indicated by the curves. We do not consider coexistence steady states
with negative cell densities, corresponding to those in the shaded area n < 0. There are two types
of bifurcation structure, which depend upon the nature of the coexistence steady state at o = oc:
(a) ﬂlqgac > 0, (b) n|0=0¢ <0.
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response term —k; flm also depends on the concentration of chemical regulator f,
whose production rate is itself dependent on the mutant cell density.

Before we go on to discuss spatially varying solutions, we mention briefly the
application of the temporal (ordinary differential equation) model to macrophage
based immunotherapies, which have been used in a number of trials, and are of two
main types. Some current adoptive treatments remove circulating blood monocytes,
mature and activate them in culture with interferon-vy, and re-introduce what are
now macrophages into the patient.” Our model would need to explicitly include
activated macrophages to be applicable here. The second main type is the local or
systemic administration of macrophage activating chemicals, such as MTP-PE,!? a
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Fig. 2. Model simulations of the effect of exogenous addition of chemical regulator. Solutions
are shown for the control case and for two different rates of chemical addition. The dimensionless
treatment start time is 50. When the treatment level is sufficiently high, the tumour regresses. The
solutions are obtained by solving the ODEs given by putting Dy = xi = Dm = Dn =Dy = Dc =0
in (4), and adding a constant to Eq. (4d). The parameters are a = 0.01, § = 5.0, §; = 0.5, 5y =
20, 6 =01, N=1, I =0.01, k; =100, k3 =0.2, 0 =25, { = 2.0, and the initial conditions
are (I, m,n, f,c) = (0.1,0.001, 0.9, 0, 0).
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synthetic analogue of a component of the bacterial cell wall, and lymphokines, such
as® interleukin-2 and interferon-v.® Our model is able to directly simulate this latter
type of therapy, by adding a constant to the right-hand side of the f in Eq. (4d),
representing exogenous addition of chemical regulator. Crucially, this change results
in the macrophage removal of tumour cells becoming first order in mutant cell
density, since the production of chemical regulator f now has a component which
is independent of that density. When the rate of chemical addition is sufficiently
large, the steady state structure of the model changes so that both normal tissue
and tumour steady states are stable. This is illustrated in Fig. 2, where we plot
model solutions without exogenous chemical addition, and with such addition at
two different rates; at the larger rate of addition, the macrophage cytotoxicity is
sufficient to eliminate the mutant cells. A significant prediction of such simulations
is that the time at which treatment is started is a key factor in its efficacy. One
important role for the type of mathematical modelling we describe is to enable
prediction of optimal therapeutic regimes in particular cases; however, more detailed
parameter estimates would be required to make this possible.

4. Wave Front Solutions and Spatial Patterns

Real tumours in vivo are nearly always spatially heterogeneous, often with no
apparent order whatsoever. This should be no surprise given the varied environment
in which tumours grow, and the wide variety of interactions with different cell types
and tissue structures. Such spatial variations can arise from a variety of biological
mechanisms, which include convection and mechanical stress due to movement of
the underlying tissue structures, and heterogeneities in the underlying tissue itself.
These features do not relate specifically to the macrophage-tumour interaction, and
are not considered in our model, although they may be very significant. However, we
will show that spatial variations can arise simply as a consequence of cell movement
and chemical diffusion, within the context of the macrophage-tumour interaction.
In this section, we discuss the implications of purely random motility of cells and
diffusion of the chemical regulator, that is we assume x; = 0; we demonstrate the
existence of travelling wave solutions, and the possibility of spatial patterning within
the tumour. In Sec. 5, we go on to consider the effect of nonzero ;.

We are concerned with the evolution of model solutions following a spatially
localised introduction of mutant cells to an infinite domain on which the system is
at the normal tissue steady state. In a wide range of numerical simulations, we have
found that provided the chemical diffusion coefficient Dy is sufficiently small, this
results in a travelling wave solution originating from the site of mutation, with either
the coexistence or mutant-only tumour steady state behind the wave, depending
on the kinetic parameters. Figure 3 illustrates such a simulation, with parameters
such that the stable homogeneous steady state, and hence the state behind the wave,
is of coexistence type. Linear analysis of the travelling wave ODEs corresponding
to (4) suggests that the wave speed is given by 2[D,,(€ — 1)]1/2,%® and extensive
numerical simulations of the PDEs support this. Using our estimated parameter
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Fig. 3. Numerical simulation in one dimension of the dimensionless model (4), with no macrophage
chemotaxis (x; = 0), showing the evolution from a localised mutation at the centre. The initial
conditions were the normal tissue steady state [ = 0.1,m = 0,n = 0.9, f = 0,c = 0 on the whole
domain, apart from the mutation ! = O,om = 1,n = 0,f = 0,c = 0 for —-0.5 < z < 0.5. A
travelling wave is established as the tumour grows, with the composition behind the wave front
that of the homogeneous stable steady state, which depends on the kinetic parameters. In this case
the coexistence steady state is stable. The solution is plotted at intervals of 10 dimensionless time
units, up to a final time of 100, at which point the numerically calculated wave speed = 6.007 38,
compared to the predicted speed of 2[Dm (¢ — 1)]!/? = 6, a difference of less than 0.005%. This
corresponds to a dimensional speed of 1.2 x 1071% ms~! x5 0.01 mm day—!. The parameters are:
Dy = Dm = Dp =5, Dy = 30, Dc = 2.5, =0.01, 8 =5.0, dc =0.5, 6§y =2.0, §; =01, N=
1, I =0.01, k; =100, k3 =0.2, 0 =58, { =28.

values, this gives a dimensional wave speed of the order of 1019 ms—!, indicating
that it would take about 100 days for a tumour to grow to a size of 1 mm.

These results show that the macrophage population has no effect on the speed
of tumour growth; however, the macrophages do have a significant effect on tumour
composition, because of their effect on the homogeneous steady states. Moreover,
when the chemical diffusion coefficient D; increases above a critical value, numeri-
cal simulations of the model predict a much more significant effect on tumour
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composition, with a spatial pattern developing behind the advancing wave front, as
illustrated in Fig. 4. Note that the pattern is stationary behind the wave, growing in
extent but not changing in form or location. Such regular patterns are of course not
observed in the stochastic inhomogeneous environment of a real tumour, but their
observation in model solutions suggests that the macrophage-tumour interaction
may be a first step towards the more irregular spatial inhomogeneities seen in the
real situation.

This pattern formation is an example of a Turing mechanism.*¢ However, there
is no prepattern involved: in this case the mutant cells are the local activator, and

-
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Fig. 4. Numerical simulation in one dimension of the model (4), with no macrophage chemotaxis
(x1 = 0), showing the evolution from a localised mutation at the centre. The initial conditions
were the normal tissue steady state [ = 0.1,m = 0,n = 0.9, f = 0,c = 0 on the whole domain,
apart from the mutation l = 0,m = 1,n =0,f = 0,c = 0 for —0.5 < z < 0.5. The solution is
shown at intervals of 20 dimensionless time units, from 20 up to 100. A stationary spatial pattern
forms behind the leading wave front, whose wavelength is approximately 33 dimensionless units,
i.e. 33 typical cell lengths. The wave front remains well defined, with a wave speed of 6.004 36,
within 0.005% of the predicted speed. The parameters are: Dy = Dy, = Dy, =5, Dy =100, D¢ =
2.5, a =0.01, 8 =5.0, 0c =0.5, 6y =2.0, § =0.1, N=1, I =0.0L, k; =10.0, k3 =02, 0 =
58, £ = 2.8.
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Fig. 5. An intuitive explanation for the development of spatial inhomogeneities within a tumour,
due to interactions with macrophages. A locally elevated mutant cell density is reinforced by the
consequently elevated chemical regulator production (step 1) - if the chemical diffuses sufficiently
fast (step 2), then local macrophage recruitment and activation will be suppressed (step 3), and
hence mutant cell growth enhanced (step 4). Correspondingly, nonlocal recruitment and activation
of macrophages will be enhanced, and mutant cell growth suppressed.

the chemical regulator is the long-range inhibitor. Thus, an intuitive explanation
for this spatial instability, illustrated in Fig. 5, is that given a local perturbation
increasing the density of mutant cells, chemical regulator production will also in-
crease locally. Then if the chemical diffuses fast enough, it will act nonlocally to
activate macrophages to the tumouricidal state and to stimulate an additional influx
of macrophages. This will suppress nonlocal mutant cell growth, whilst enhancing
local mutant cell growth, due to the relative suppression of local macrophage acti-
vation, so that the original perturbation will grow in time. Thus it is the inclusion
of chemical diffusion, which occurs at a much faster rate than random cell migra-
tion, that is responsible for this diffusion driven instability. The diffusion coefficient
Dy for the chemical regulator is expected to be substantially larger than the ran-
dom motility coefficients for cells, but we are not aware of data enabling precise
values to be calculated. Such data would in fact be relatively easy to obtain via
in vitro experiments, and our results suggest that this would be a valuable line of
experimental investigation.

4.1. Analytical study of pattern formation

The first step to an analysis of the patterning phenomenon is to linearise the model
(4) about the stable homogeneous steady state. A general perturbation can then be
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0.8

Fig. 6. Numerically calculated dispersion relation for the model (4), showing Re()\) as the wave
number x varies. The different curves are for different eigenvalues. For x between 0.09 and 0.345
the real part of one of the eigenvalues is positive, indicating that the homogeneous steady state is
unstable to perturbations with those wave numbers. The fastest growing mode is approximately
x = 0.2, corresponding to a wavelength of 31 cell lengths, which compares well with the actual
wavelength of 33 seen in the numerical simulation with the same parameters, shown in Fig. 4. The
dispersion relation is calculated by finding the real part of the eigenvalues of the linearised system
for x varying upwards from zero in increments of 0.005.

expressed as a linear combination of spatial modes, and so substituting solutions
proportional to e**+At into the linearised equations and looking for nontrivial
solutions gives the dispersion relation for the real part of A (i.e. the growth rate) as
a function of wave number k. The homogeneous steady state is then stable to all
spatial perturbations if Re(A) < 0 for all x € R, while if Re(\) > 0 for some x,
then the mode corresponding to that wave number will grow exponentially in time,
destabilising the homogeneous steady state.

Figure 6 illustrates the numerically calculated dispersion relation for a parameter
set for which a range of wave numbers are unstable; Fig. 4 shows the corresponding
numerical simulation of the partial differential equations. Although the wave front
is moving, the pattern which grows behind the front is stationary in space, with a
wavelength of 33 cell lengths. The wave number of the fastest growing mode in the
dispersion relation is approximately x = 0.2, giving a wavelength of 31 cell lengths,
in good agreement with the above observation from numerical simulations.

To study the mechanisms underlying pattern formation in more detail, we consi-
der a caricature model with only two variables. Such systems are more amenable to
analysis, and an analytical expression for the critical diffusion coefficient for spatial
instabilities can easily be derived.3® Since the pattern formation is driven by the
much faster diffusion of chemical regulators, it is essential to include the chemical
explicitly in any caricature, and so the second variable should be equivalent to either
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macrophages, or mutant cells. We consider a caricature model with mutant cells
m and chemical regulator f, derived from the full equations by setting 0l/8t =
On/dt = 0c/dt = 0, and D; = D, = D, = x; = 0, and then solving for I,n
and c in terms of m and f. Such a simplification is made considerably easier in
this case by assuming the steady state is one of coexistence, so that I + m + n =
1. Indeed, without this assumption a quadratic would have to be solved for I,
negating the algebraic simplicity of a caricature. The result is a simple model with
mutant cell growth inhibited by the chemically regulated immune response, whose
effect is modulated by terms representing macrophage influx, growth, death and
the formation of complexes:

Om _ D, Vim + M(m, f)
ot
influx
kiI(1+of)fm
= DpV2m+m(f —1) - —= TR (58)
G-el+ k2 + 0,
death growth )
complex
af = DyV3f + F(m, f) = D;V3f + fm — &;f . (5b)

This model has an unstable “normal tissue” steady state (m, f) = (0,0), and two
coexistence steady states which correspond precisely to those discussed in Sec. 3. As
before, only one such coexistence state is non-negative, except within a very small
region of parameter space. We denote the non-negative steady state, which is stable
to homogeneous perturbations, by (m, f) = (m., f.). Differentiating M (m, f) with
respect to f shows that the strength of the immune response is an increasing func-
tion of the chemical regulator concentration, supporting our intuition that rapid
diffusion of regulator away from regions of elevated mutant cell density causes a
local reduction in the immune response, allowing mutant cell levels to rise further,
whilst causing a nonlocal increase in mutant cell killing, reinforcing the perturba-
tion. Other kinetic terms combine to give a Jacobian matrix which indicates a pure
activator-inhibitor model, so that m and f will have solutions in phase, at least
close to the primary pattern forming bifurcation at Dy = D$.15

This critical value of the chemical regulator diffusion coeﬂicxent for diffusion
driven instability of the steady state (m, f) = (m., f), is given analytically3® by

. (M Fy — 2MF,) + \/(2M,Fm — M Fy)? — M2 F?
#=Dm M2 (6)
m

and the critical wave number at the onset of instability is

D‘ZMm + D, Fy @
2D$Dm, !

where My, = 8M(m,, f.)/0m and similarly for M, F,, and Fy.

K =
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To investigate the validity of our caricature it is interesting to compare the values
given by (6) for the caricature model, with D} for the full model; this comparison
is illustrated in Fig. 7. For the particular parameters used in this figure, the curves
of D%, for the caricature model and the full model, match almost exactly for small
o, but diverge significantly for o greater than about 74. We studied this by plotting
%, the wave number at the onset of instability, and we found that the divergence
in Dj is due to the full and caricature models becoming unstable to perturbations
of different wave numbers, as illustrated in Fig. 7.

It is to be expected that whenever the real part of an eigenvalue for the cari-
cature model passes through zero, the same will be true for the full model, but the
opposite is not necessarily the case. This means that the first eigenvalue of the
full model to pass through the imaginary axis (in the complex plane) may or may
not coincide with a similar transition for the caricature. Hence, the curves of D5
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critical diffusion coefficient and wave number for the full model are calculated numerically, with
the range of wave numbers discretised with an interval of 0.05. The corresponding values for the
caricature model are given by (8) and (7). The parameters are: Dy, =5, a = 0.01, 8 =5.0, 6 =
0.5, 8y =20, §; =0.1, N=1, I =0.01, k; = 10.0, k3 = 0.2, £ = 2.8, D; = Dy = D¢ = 0.
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match exactly when these transitions do coincide, but diverge otherwise. Figure 8
illustrates how, for o such that the full model and caricature Dj curves are distinct,
the full model initially becomes unstable to perturbations at a smaller value of D Ji
than the caricature, but as the caricature model bifurcates to patterned solutions,
the full model, as expected, also has an eigenvalue with zero real part at that point.
Of course, this has no implications for the stability of the full model.

We have shown that the caricature model is a good approximation to the full
model for the purposes of studying bifurcations to spatial instability, at least for
small 0, but differences in the nonlinear terms mean that, away from the bifurcation,
the comparison breaks down. In particular, the absence in the caricature model (5)
of terms limiting mutant cell growth (modelling crowding) means that initially small
spatial oscillations continue to grow, and become unbounded. Thus the caricature
model is a useful tool only in the linear regime.
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model initially becomes unstable to perturbations at a smaller value of Dy than the caricature,
but as the caricature model bifurcates to patterned solutions, the full model, as expected, also has
an eigenvalue with zero real part. The dashed vertical line indicates the critical wave number for
the initial instability in the full model, and the dotted line indicates the critical wave number for
the caricature model. The other model details and parameters are as in Fig. 7, with Dy = 85.
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5. Including the Effects of Chemotaxis

In 1983, Bottazzi et al.!0 identified a monocyte chemoattractant which is released by
various human and mouse tumours. Subsequent work has demonstrated a number
of chemoattractants, %! and the ability to synthesise and/or purify these and other
macrophage chemoattractants has enabled detailed quantitative comparisons of in
vitro chemotactic activity.#® It is to be expected that tumours inducing high levels of
chemotactic activity in vitro would correspond to in vivo tumours with high levels
of macrophage infilitration, and this has indeed been shown to be the case.3® More-
over, the majority of monocyte chemotactic activity does not derive from stromal or
lymphoreticular cells (i.e. non-malignant cells),’ and is independent of specific
T-cell immunity,?® so that the main source of chemoattractants in vivo is tumour
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Fig. 9. Numerical simulation of the model (4) including chemotaxis. A travelling wave evolves
from a seed of one mutant cell at the origin, but behind the wave front the solution is irregular,
compared with the regular patterns seen without chemotaxis in Sec. 4. The magnification shows the
individual grid points of the finite difference numerical scheme, illustrating the spatial resolution
of the solution. The parameters are: D; = Dy = Dn = 0.01, Dy = 5.0, D = 0.005, x; =
0.5, a =0.01, 8 =50, é =05, &y =20, §§ =01, N=1, I =001, ky = 10.0, k3 =02, { =
2.0, o = 58.
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cells themselves. In this section we discuss the effect of including macrophage
chemotaxis in our model.

The basic solution form, in which a tumour grows from an original mutation
site, is not changed by the introduction of chemotaxis. Thus if the steady state
behind the wave is stable to spatial perturbations, then the solution is unchanged
except for minor alterations in the shape of the wave front. However, the inclusion
of chemotaxis in the model can stabilise the spatially homogeneous steady state
when this is unstable to perturbations in the absence of chemotaxis. Numerical
investigation shows that as the chemotaxis coefficient is increased, the peak in
the dispersion relation moves down, so that wave numbers whose corresponding
eigenvalues had a positive real part no longer do so. This means that as X1 increases,
the value of the chemical diffusion coefficient at which spatial instabilities appear,
denoted D%, also increases.3®

In contrast to these relatively minor effects, the inclusion of chemotaxis can
in some cases give a qualitatively new type of behaviour, namely irregular spatio-
temporal oscillations behind the wave front. Figure 9 shows the result of one such
simulation. Behind the wave front the solution does not settle down in time or space.
Initially we wondered whether these results were simply due to numerical instability,
but refining the spatial mesh retained the same qualitative form, and the resolution
was sufficiently high that what may have looked like noisy spikes were seen to be
smooth curves. This is clear in Fig. 9 where individual points have been plotted in
a magnified section, to show how clearly resolved the solution is.

Although there is ample evidence of spatial heterogeneity in tumours, detailed
spatio-temporal data is unavailable. Nevertheless, it does seem plausible that spatio-
temporal variations will occur given the dynamic nature of the various processes
involved in tumour progression. Simulations such as that illustrated in Fig. 9 ob-
viously exclude many processes occurring in real tumours, making detailed correla-
tion between simulations and data unrealistic; however, our results do suggest that
spatiotemporal irregularity should be expected in practice for appropriate levels of
macrophage chemotaxis.

5.1. Bifurcation routes to spatiotemporal irregularity

In order to gain insight into the mathematical nature of this phenomenon, simu-
lations were carried out on small finite domains with random initial conditions.
Domain length is often a useful bifurcation parameter: for example on a finite
domain the wavelength of a Turing pattern is determined by its length, and there
have been extensive studies of transitions to irregularity as the domain size is varied,
including work on the Ginzburg-Landau equation®*” and oscillatory reaction-
diffusion equations.*® The application of such ideas to wave fronts is motivated by
the idea that the front can be seen as a moving boundary, changing the domain size.
In terms of the tumour biology, the patterning and oscillations of the model only
occur on the domain of the growing tumour, so that treating the invading front of
mutant cells in this way has a clear interpretation.
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It is the long-term behaviour of the solutions behind the wave that is of interest,
and this technique enables the detailed characterisation of the types of solution that
may be expected. We describe this study for one specific parameter set: D; = D,, =
D, =001, Dy =5, D, = 0.005, x; = 0.5, a = 0.01, 3 = 5.0, é. = 0.5, 0f =
20,8, =01, N=1, I =001, ky =100, k3 = 0.2, ¢ = 58, £ = 2.0. Note that
the choice of this particular set of parameters is purely arbitrary within the scope
of our order of magnitude estimates, which were given in Refs. 38 and 39. However,
less detailed numerical investigations confirm that irregular solutions still arise for
other parameters.

At small domain lengths (we started at a domain length of 2.5), solutions evolved
from random initial conditions to a stationary spatial pattern. As the domain size
was increased, the solution changed in parallel; this is expected since the domain
size dictates the allowable wave numbers of the spatial instability. Finally, at a
size of 5.0 the solutions failed to settle down to steady patterns, oscillating instead
with a period of about 864 dimensionless time units. The natural next step is
to determine precisely where the transition from stationary to oscillating solutions
occurs. However, this is not so straightforward, since any change of grid size will
slightly alter the dynamics of the simulation, and change the results. The first
simulations on a finite domain were done with a grid spacing of 0.025, dictating
the same smallest step in domain size to avoid compromising the results. It was
while attempting to find the transition that we found that both the oscillatory
and the steady solutions could stably coexist, possibly indicating a subcritical Hopf
bifurcation. In addition to this we found that upon a further increase in domain
size to 5.2, the oscillations no longer occurred. At this point it became clear that
a primitive form of parameter continuation was needed to follow the bifurcating
branches of solutions as the domain length was changed. This was achieved by
substituting the solution from the previous simulation and scaling it to fit the new
domain length, so that by starting close to what was stable, the solution should
remain on the same stable branch. The results of this continuation are shown in
Figure 10. This suggests that one stationary pattern is always stable, but that
as the domain size increases an oscillatory state also becomes stable, until what
appears to be a Hopf bifurcation point is passed, and the oscillatory state becomes
steady; this new steady pattern is different to the original steady pattern, which
still stably coexists itself. Following the continuation from (a) to (f) in the figure
illustrates how this leads to hysteresis, and Fig. 11 shows how the nature of the
pattern differs, according to which solution branch is followed. Figure 12 shows
temporal solutions at four of the labelled points, clearly illustrating the regular
periodic nature of the oscillatory solutions, and the coexistence at the same domain
length of distinct oscillatory and stationary states.

It is interesting to note that, for our particular choice of parameters, the os-
cillations are not due to the spatial modes of the original solution having nonzero
imaginary parts, which would also lead to oscillations — this is clear from careful
checking of the dispersion relation. For some other parameter sets, growing spatial
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Fig. 10. The structure of the first bifurcation as the domain length increases. The period of
oscillation, as calculated from numerical simulations, is plotted against the domain length. Starting
at (e), L = 5.2, with a stable steady pattern, as the domain length is decreased, it seems that
there is a supercritical Hopf bifurcation between 5.175 and 5.15, causing the steady pattern to
start to oscillate as at (c), L = 5.1. Decreasing further through (b), L = 4.95, the period of
oscillation increases, until the continuation of the oscillatory solution becomes unstable, and a
steady pattern, as at (a), L = 4.85, becomes stable. Upon increasing the domain length again,
however, the solutions do not return to the oscillating branch. Instead the steady pattern remains
stable, for example at (d), L = 5.1. At (f), L = 5.2, the stable steady pattern is different from
the initial pattern at (e), indicating hysteresis. A primitive parameter continuation was used, by
rescaling the previously calculated stable solution to fit the new domain length, adding a small
perturbation, and then using the result as the initial condition. Note that the details of the
simulation such as grid size can affect the point at which oscillations appear, so that they must
be kept constant.

modes do have complex eigenvalues, but the above observation indicates that this
is not a requirement for oscillatory solutions. Such solutions are also not due to
any oscillatory behaviour in the kinetics, in contrast to work by others such as
Dunbar,!® Sherratt et al.,*** and Merkin,3 which is concerned with reaction—
diffusion systems whose kinetics are oscillatory in the absence of spatial variations.
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Fig. 11. Numerically calculated solution at time 5000 showing spatial structure as the domain
length varies, illustrating two types of pattern which coexist stably, one of which can oscillate.
The letters correspond to the points on the bifurcation diagram of Fig. 10. In particular, (e) and
(f) illustrate the coexistence at the same domain length of two types of steady pattern, the first
of which bifurcates to give oecillations, and the second remains stable. The domains are rescaled
to 1 for ease of comparison.

In this model for the macrophage-tumour interaction, it is the pattern itself which
becomes unstable, apparently through a Hopf bifurcation, to a new solution branch,
while the homogeneous steady state from which the pattern bifurcated remains
stable to homogeneous perturbations. It seemed plausible that this bifurcation may
repeat at integer multiples of the critical domain length, and numerical solutions
provided evidence for this.

With regard to the simulations of tumour growth on infinite domains, as already
discussed, the wave front can be regarded as a moving boundary, so that effectively
the domain is a finite but growing one. This could explain the irregular wakes
seen behind travelling wave fronts in simulations on large domains — as the wave
progresses, oscillatory solutions continually appear and disappear as the effective
domain length moves through a series of bifurcation points. Note that the long-
term behaviour of the solutions on a finite domain is not irregular, but rather is
oscillatory with a fixed period. In contrast, when considering the travelling wave
situation the behaviour observed is in effect permanently transient.
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Fig. 12. Examples of numerically simulated spatially heterogeneous solutions, for four different
domain lengths corresponding to the labelled points in the bifurcation diagram of Fig. 10. The
macrophage density is plotted against time for three different points in the domain. For (a) and
(d) the solution quickly settles down to a steady pattern, but the regular temporal oscillations
indicated in the bifurcation diagram are clear for cases (b) and (c). Note that (c) and (d) clearly
demonstrate the coexistence at the same domain length of distinct oscillatory and stationary states.

6. Numerical Simulations in Two Dimensions

So far we have considered solutions in one space dimension only, but of course
real tumours reside in a three-dimensional tissue. For any mathematical model,
the range of potential solution behaviours is much greater in higher dimensions,
and while numerical solution of the equations in three dimensions would be too
computationally intensive for our current resources, two-dimensional simulations
are feasible, and show a number of features of interest. Perhaps a central theme in
the biological background to this work, and indeed in much of tumour biology,
is the heterogeneity between and within tumours. It is that within tumours that
is the focus of this paper, and we have demonstrated a possible mechanism for the
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development of spatial heterogeneity. The more realistic two-dimensional setting
and the possibility of still greater complexity, such as an instability of the wavefront
itself, is the focus of interest in an investigation of two-dimensional solutions.

The dispersion relation as calculated in Sec. 4, and illustrated in Fig. 6, is still
valid, so that whenever patterns appear in one dimension they will also appear
in two, but the precise nature of those patterns requires investigation. In one
dimension the unstable wave number « is a scalar, and a corresponding instability
can only give rise to a single pattern, but in two dimensions the corresponding wave
number (5, Ky) is two-dimensional, with & = {s2 + x2}!/2. If one of £, and &y is
zero, then the pattern will be just simple stripes, but if they are both nonzero, then
the pattern will be two-dimensional, tiling the plane. This introduces the possibility
of more than one pattern being stable for a given parameter set, depending on the
domain and initial conditions.

The model equations were solved in two dimensions using an alternating di-
rection implicit method. This means that each time step consists of an explicit
half-time step in the z direction and an implicit half-time step in the y direction,
and then similar half-time steps exchanging explicit for implicit and vice versa.
Figure 13 shows a shaded plot of the macrophage density that develops following a
localised introduction of mutant cells into normal tissue, in a case in which there
is no macrophage chemotaxis (x; = 0). A circular travelling wave is established,
behind which the tumour steady state is unstable to spatial perturbations, which

T=80 _ T=200

[ 1:7:

Fig. 13. Numerical simulation in two dimensions, showing the macrophage density after 80 and 200
dimensionless time units of evolution from a single unit seeding region with a mutant cell density
of 1, located at the centre of the domain. Macrophage density is represented on a grey scale, with
darker colouring indicating lower cell density. Behind the wavefront a spatial perturbation grows
to form a target pattern, although at the centre this pattern has broken down. The structure at
the centre is invariant in time, and is likely to be due to the effect of high curvature. The domain
size is 2000 x 2000, and the parameters are D; = Dm = Dn = 5, Dy = 500, Dc = 2.5,x; =
0, a=0.01, 8=25.0, éc =0.5, 5! =20, 6 =01, N=1, I =001, k; =10.0, k2 =0.2, 0 =
40, £ = 2.0.
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Fig. 14. Numerical simulation in two dimensions, with macrophage chemotaxis. In contrast to
Fig. 13, the solution behind the wavefront is irregular in space and time. The domain size and
parameters are as in Fig. 13, except for D; = 40, Dy = 10000, x; = 2000,0 = 58, and £ = 2.8.

leads to the formation of a stationary target pattern. The concentric rings in the
circular geometry of the simulation correspond to stripes in a planar geometry; the
break up of the pattern at the centre seems likely to be due to curvature effects.
Numerical simulations for the same parameters, but on a finite rectangular domain
with randomly generated initial conditions, indicate that for the parameters used
in the figure, both spotted and striped patterns stably coexist, with the initial
conditions determining which state is reached. This is a well-known phenomenon
away from a primary Turing bifurcation®; note that sufficiently close to a Turing
bifurcation, only one of the striped and spotted patterns can be stable.’” However,
our simulations indicate that, for the parameters in Fig. 13, stripes always develop
in the simulation of the growing tumour.

As expected from the results on one-dimensional behaviour, the inclusion of
macrophage chemotaxis (x; # 0) results in much more complex patterns developing
within the tumour; an example is illustrated in Fig. 14; however, we have not
attempted a detailed study of such patterns. In real tumours, any irregularities due
to chemotaxis would be increased by the effects of environmental noise, so that the
results illustrated in Figs. 13 and 14 are not expected to represent real situations
that might arise in practice. The essential implication of our results is rather that
macrophage-tumour cell interactions can act as a first step in the initiation of both
spatial and spatiotemporal heterogeneity.

7. Discussion

The ability of the immune system to spontaneously eliminate tumours was widely
debated in the ’50s and '60s. In more recent years, attention has switched to the
more complex regulatory effects of the immune system on tumour progression. Qur
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work suggests that these two philosophies are not separate, but rather have an
important overlap. Our model predicts that macrophages are unable to sponta-
neously eliminate whole tumours, in keeping with the conventional view that with-
out intervention, the immune system is an ineffective weapon against the majority of
cancers. Nevertheless, our model predicts that the ability of macrophages to selec-
tively kill tumour cells has an extremely significant effect on tumour development,
since it is able to induce spatial inhomogeneities. This new prediction is consistent
with observations of Leek et al.,2? which demonstrate the existence of macrophage
hot-spots within breast carcinomas, in a manner highly reminiscent of our results.
Moreover, the work of Leek et al.?? suggests that these hot-spots may play a key
role in inducing tumour angiogenesis. This implies that high macrophage densities
actually favour tumour progression, despite their anti-tumour activities, an obser-
vation made previously by Lewis et al.3° Our work suggests that this anti-tumour
activity may nevertheless be crucial in establishing the spatial structure that is able,
later, to induce angiogenesis.

At appropriate levels of macrophage chemotaxis, we have demonstrated spatio-
temporal irregularities in the model solution. Our numerical bifurcation study
suggests that the mechanism by which these occur is that a stationary spatial
(Turing) pattern becomes unstable via a Hopf bifurcation, while the homogeneous
equilibrium from which the Turing pattern bifurcated remains kinetically stable. To
the best of our knowledge, this is a new mechanism, which can only occur far from
Turing bifurcation, making analytical investigation an extremely hard challenge.

Experimental investigation of the predictions of our model is potentially possible
using cell spheroid assays, which could in principle be seeded with macrophage
cells. This line of inquiry provides the exciting possibility of providing a detailed,
quantitative link between the results of a model of the type we are considering, and
experimental data. This would provide a natural route towards detailed applications
of our model to in vivo tumour dynamics.
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