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Solid tumours do not develop as a homogeneous mass of mutant cells, rather, they grow in tandem
with normal tissue cells initially present, and may also recruit other cell types including lymphatic and
endothelial cells. Many solid tumours contain a high proportion of macrophages, a type of white blood
cell which can have a variety of effects upon the tumour, leading to a delicate balance between growth
promotion and inhibition. In this paper we present a brief review of the main properties and interactions
of such tumour-associated macrophages, leading to a description of a mathematical model for the
spatial interactions of macrophages, tumour cells and normal tissue cells, focusing on the ability of
macrophages to kill mutant cells. Analysis of the homogeneous steady states shows that, for this model,
normal tissue is unstable to the introduction of mutant cells despite such an immune response, but that
the composition of the resulting tumour can be significantly altered. Including random cell movement
and chemical diffusion, we demonstrate the existence of travelling wave solutions connecting the normal
tissue and tumour steady states, corresponding to a growing tumour, and of the development of a spatial
instability behind the wave front. Numerical solutions are illustrated in one and two dimensions. We
go on to estimate macrophage motility parameters using data from Boyden chamber experiments. We
then extend our model to include macrophage chemotaxis, that is, their directed movement in response
to gradients of chemicals secreted by tumours. Solutions in one dimension indicate the possibility of
spatiotemporal irregularities within the growing tumour, which are deduced to be the result of a series
of bifurcations as the effective domain length increases, leading to a permanently transient solution.
These results suggest that tumour heterogeneity may arise, in part, as a natural consequence of the
macrophage infiltration. Recent experiments suggest that macrophages may indeed be involved in
spatiotemporal variations within some human tumours.
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1. Introduction

It has been known for many years that most solid
cancers are heterogeneous, both spatially and in terms
of their populations of different cell types. Whilst
malignant cells drive the growth of a tumour, normal
tissue cells can continue to proliferate, and the
additional recruitment from other sites of a variety of
cell types—including lymphocytes, macrophages, and
endothelial cells—is well documented. Macrophages

are the mature form in tissue of a type of white blood
cell known as a monocyte. They form an important
arm of the immune system, with the ability to
recognise and phagocytose damaged cells, cellular
debris and foreign objects. In addition, they play an
important role in the response to injury, infection,
and inflammation. In the context of the tumour
infiltrate described above, they are referred to as
tumour associated macrophages (TAM). TAM often
form a significant proportion of the total mass of a
tumour, over 50% in many cases of breast carcinoma
(O’Sullivan & Lewis, 1994), and can affect tumour
angiogenesis, growth rate, connective tissue for-
mation and dissolution, and the killing of malignant
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cells. Tumour cells and TAM both release factors
which can affect each others activity, and the details
of this regulation can have important consequences
for the survival of tumours, and for the possibility
of manipulating the balance between pro- and
anti-tumour effects to benefit patients. For detailed
reviews of these interactions and their mechanisms
see papers by Esgro et al. (1990), Hamilton &
Adams (1987), Mantovani (1989, 1990), and
Mantovani et al. (1992). It is important to stress
that macrophages form only one part of a
complex interaction between tumours and the
immune system, which can be either stimulatory or
inhibitory for tumour growth (Prehn, 1994).

Previously we used an ordinary differential
equation model for the early growth of tumours to
investigate the TAM-tumour cell interaction (Owen &
Sherratt, 1997), and in this paper we extend that work
to study the consequences for the spatial structure of
the tumour. We will concentrate on the inhibitory
effects of macrophages on the growth of an avascular
tumour—that is, a tumour small enough for its
nutritional needs to be satisfied by diffusion from
nearby blood vessels.

A number of approaches have been used to
model different aspects of such growth. Michelson
& Leith (1991), Sherratt & Nowak (1992), and
Wheldon (1975) concentrated on the regulation by
growth factors of normal and mutant cell growth.
Multicell spheroids are an in vitro analogue for
avascular tumour growth, which have been exten-
sively studied using a variety of approaches including
reaction diffusion models (Greenspan, 1972) and
the application of nonlinear elasticity theory (Chap-
lain & Sleeman, 1993). Markovitch (1993) and
Tomlinson & Bodmer (1995) considered the role
of apoptosis in tumour growth, an important
feature which has been somewhat neglected in
the development of tumour growth models. Pe-
rumpanani et al. (1996) focussed on interactions
between malignant, benign, and normal cells, and
the extracellular matrix. Yakovlev (1996) used
a stochastic framework to investigate tumour
latency.

A variety of detailed models of tumour immu-
nology have also been proposed—see Adam &
Bellomo (1997) for a review. The influence of growth
factors and modulators on the immune response to
tumour growth was considered by Adam (1993), and
Albert et al. (1980). Kuznetsov et al. (1993) focussed
on the interactions between different immune cell
types, and on the dynamics of immunogenic tumours
(Kuznetsov et al., 1994). A number of authors,
including Lefever et al. (1992), Perelson & Bell (1982),

and Perelson et al. (1984), have concentrated on the
details at the cellular level of immune cell binding and
the delivery of lethal hits.

The mechanisms we consider here are cell
proliferation, aggregation of macrophages at the
tumour site, and their killing of mutant cells.
Macrophages in normal tissue do not proliferate
significantly, but at least in some cases TAM differ in
this respect due to the production by tumour cells of
regulators such as macrophage colony stimulating
factor (M-CSF), and enhanced expression of recep-
tors for M-CSF on the surface of TAM (Bottazzi
et al., 1990). This evidence is restricted to a few
mouse sarcoma cell lines, and in humans M-CSF
seems to promote macrophage survival, but is not a
good proliferative stimulus (Mantovani et al., 1992).

The basic mechanism by which macrophages are
recruited to a tumour site is chemotaxis. Monocytes
circulate in the bloodstream, adhering to capillary
walls where the concentration of chemotactic
chemical is sufficiently high, and enter the tissue,
where they mature into macrophages. Along with
macrophages already resident, they move up chemical
gradients towards the tumour. There is a large body
of experimental work on the production by mutant
cells of macrophage chemoattractants. Results in-
clude the identification of monocyte chemotactic
protein (MCP-1) (Bottazzi et al., 1983), followed
more recently by the related proteins MCP-2 and
MCP-3 (van Damme et al., 1992), and other
chemoattractants including M-CSF (Wang et al.,
1987, 1988). An important correlation has repeatedly
been found between the extent of chemotactic
activity, as determined by in vitro assays or imposed
by genetic alteration, and the proportion of TAM
within tumours in vivo (Bottazzi et al., 1983, 1985,
1992; Walter et al., 1991).

Finally, macrophages are able to lyse tumour cells
in preference to normal cells. This is dependent on
biochemical activation (Mantovani, 1990). A two
stage activation process has been postulated, in which
newly recruited macrophages are first ‘‘primed’’ by
interferon-g, and subsequently activated to full
competence (Hamilton & Adams, 1987). Other
cytokines such as tumour necrosis factor and M-CSF
have been shown to induce or augment macrophage
activation (Mace et al., 1988; Mantovani, 1990;
Sampson-Johannes & Carlino, 1988), and recent
evidence suggests that cytokine-independent path-
ways may also be involved (Keller, 1993). Some of
these macrophage-activating factors are produced by
certain tumour cell lines (Mantovani, 1990; Manto-
vani et al., 1992). Esgro et al. (1990) note that once
macrophages have been activated and then lysed a
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tumour cell, they revert to an inactivated state ready
for reactivation.

Once activated, the first step in tumour cell killing
is the formation of a macrophage-tumour cell
complex. This direct cell-cell contact is a key part of
the lysis (Hamilton & Adams, 1987; Jonjic et al.,
1992), and may also upregulate macrophage acti-
vation (Mantovani, 1993). Many different mechan-
isms have been proposed for the actual lysis process
within the complex, all involving secretion of cytolytic
factors. In particular, a nitrogen monoxide mediated
mechanism has been determined in detail (Hibbs,
1991). A detailed review of cytolytic mechanisms is
given by Hamilton & Adams (1987).

Given this information, we describe in the next
section a model in which mutant cells, with a
proliferative advantage over normal tissue cells,
produce a generic chemical which regulates macro-
phage proliferation, influx, activation, and complex
formation. Subsequently we give the details of the
homogeneous steady states and their stability, and
then focus on model solutions with only random
motion of macrophages, i.e. without chemotaxis. In
Section 4, we demonstrate the existence of travelling
wave solutions connecting the normal tissue steady
state ahead of the wave with a tumour steady state
behind. The steady state behind the wave is shown in
Section 5 to become unstable to spatial perturbations
as the diffusion coefficient of a chemical regulator
increases through a critical value, and solutions in two
dimensions are illustrated in Section 6. Before
including macrophage chemotaxis, the macrophage
motility parameters are estimated from experimental
data using a mathematical model for the experimental
procedure, as discussed in Section 7. Finally, in
Section 8 we describe the results of simulations in one
dimension, including chemotaxis using these par-
ameter estimates. In particular we note the existence
of spatiotemporally irregular wakes behind the wave
front.

2. Modelling

As variables for our model we use population
densities of macrophages, l(x, t); mutant cells,
m(x, t); normal cells, n(x, t); and macrophage-mu-
tant-cell complexes, c(x, t). It is important to note
that the macrophage population is highly hetero-
geneous in terms of individual macrophage suscepti-
bility to activation and chemotaxis (Adams &
Hamilton, 1984), and so one could envisage a much
more extensive set of variables which would include
various macrophage subpopulations. We feel that it is
appropriate to consider the simpler case first, whilst

bearing this additional complexity in mind, with a
view to further development of the model. We also
make the simplifying assumption that there is a single
chemical regulator, of concentration f (x, t), respon-
sible for macrophage activation, proliferative control,
and stimulating their influx from the bloodstream.
This is a reasonable simplification, since the various
regulators involved all derive primarily from mutant
cells.

Quiescent macrophages must be biochemically
activated before they form a complex with, and then
lyse, a mutant cell, as described above. We assume
that complex formation is the rate limiting step, and
hence that its rate is linear with respect to the
concentration of the activating chemical, and the
macrophage and mutant cell densities. In addition, we
assume that the complex returns viable macrophages
after lysis of the mutant cell (Esgro et al., 1990).
Schematically this can be represented in the following
form:

f+ l+m :
k1

c+ f c :
k2

l+debris.

Here k1 and k2 are positive constants. We must stress
that there is no definitive experimental data on the
details of this tumour cell destruction; we have
considered some alternative formulations, such as
separation of activation and complex formation, and
degradation of the chemical, and preliminary results
suggest that these changes do not alter the qualitative
features of the model kinetics.

The remaining assumptions that we make with
regard to macrophages are: (i) they proliferate only in
the presence of the chemical regulator (Bottazzi et al.,
1990) and that such proliferation increases linearly
with concentration; (ii) proliferation is limited by the
crowding effect of all cell types; (iii) there is an influx
from capillaries, which increases linearly with
regulator concentration; (iv) they move chemotacti-
cally up gradients in regulator concentration; and (v)
they die with some constant rate per cell. In the
absence of chemical regulator, the normal back-
ground level of tissue macrophages is maintained by
a constant influx, at a rate denoted by I. Combining
these terms gives the following conservation equation
for macrophages:

cell migration proliferation
ZxxxCxxxV ZxCxV
1l
1t

=Dl92l− xl9(l9f )+
afl(N+Ne )

N+ l+m+ n

influx lysis death
ZxCxV ZxCxV ZCV

+ I(1+ sf )− k1flm+ k2c− dll. (1)
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Most tumours arise initially from a mutation that
affects the control of cell division. This can be due to
the expression of an oncogene or the loss of a tumour
suppressor gene (Fearon & Vogelstein, 1990; Volpe,
1990; Weinberg, 1989); in either case the result is a
proliferative advantage for the mutant cell over its
peers. Previous mathematical models have focused on
the different types of mutation and their consequences
(Sherratt & Nowak, 1992; Wheldon, 1975). Here our
focus is on the role of macrophages during the early
stages of tumour growth, and thus we use a
simplification in which the dynamics of mutant and
normal cells are alike except for the removal of
mutant cells by macrophages, and a scaling of the
mutant cell proliferation rate, compared to their
normal counterparts, of jq 1. We use the same
crowding term as discussed above, and a growth rate
in normal tissue of d, balanced by an equal rate of cell
death, so that the conservation equations for mutant
and normal cells are:

cell migration proliferation death lysis

ZCV ZxCxV ZCV ZCV
1m
1t

= Dm92m +
jdm(N+Ne )
N+ l+m+ n

− dm − k1flm

1n
1t

= Dn92n +
dn(N+Ne )

N+ l+m+ n
− dn. (2)

The sole source of generic chemical regulator is
mutant cells, and we assume a constant secretion rate
b per unit of mutant cell density, and a linear natural
decay with rate df . Complex density is also assumed
to decay linearly, with rate dc . Including the binding
and lysis terms discussed above completes the
derivation of our model:

diffusion prodn decay
ZCV ZCV ZCV

1f
1t

= Df92f + bm − dff

migration lysis death
ZCV ZxCxV ZCV

1c
1t

= Dc92c + k1flm− k2c − dcc. (3)

The model given by eqns (1–3) is non-dimensionalized
using rescalings that are described in the Appendix.

There is insufficient experimental data available to
determine all the model parameters for any particular
tumour type. We list in the Appendix typical order of
magnitude estimates for the parameters, with brief
justifications. All the phenomena described in this

paper occur for ranges of parameters within these
estimates.

3. Homogeneous Steady States and Stability

In this section we summarise briefly the homo-
geneous steady states of the dimensionless model
(A.1), and their stability to homogeneous pertur-
bations.

There are four types of steady state to consider. The
first two are simple to analyse, a macrophages-only
state

l=
I
dl

, m= n= f= c=0, (4)

and normal tissue consisting of normal cells and
macrophages:

l=
I
dl

, m=0, n=1−
I
dl

, f= c=0. (5)

Straightforward linear stability analysis shows that
both these steady states are unstable to the
introduction of mutant cells.

The third type is that of a tumour with no normal
cells remaining, denoted the mutant-only steady state,
and the fourth steady state is of mixed type, with all
cell species coexisting. Real tumours certainly contain
a variety of cell types (Mantovani, 1990), and other
models (Sherratt & Nowak, 1992; Wheldon, 1975)
also predict this type of solution. If the growth
advantage of mutant cells is too high, coexistence is
not possible, and steady states of this type cannot
exist. Figure 1 illustrates the way in which these last

F. 1. Schematic representation of the bifurcation structures for
the homogeneous tumour steady states of the dimensionless model
(A.1). Solid lines indicate stability, dashed lines instability. The
bifurcation parameter s is the measure of the increase in
macrophage influx from the bloodstream in response to
chemoattractants secreted by tumour cells. Tumour stady states of
the model (A.1) are of two types: (i) mutant-only (n=0), where no
normal cells suvive, indicated by the horizontal lines in the
diagram; (ii) coexistance (n$ 0), where normal cells continue to
proliferate along with mutant cells, indicated by the curve. We do
not consider coexistence steady states with negative cell densities,
corresponding to those in the shaded area nQ 0. There are two
types of bifurcation structure, which depend upon the nature of the
coexistence steady state at s= scrit : (a) n =s= scrit q 0, (b) n =s= scrit Q 0.
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two steady states change with parameters. A number
of bifurcation points have been identified, where the
number and stability of steady states changes. This is
discussed in some detail in Owen & Sherratt (1997);
for the purposes of this paper the key result is that,
with respect to homogeneous perturbations, at least
one tumour steady state is stable, and that for realistic
parameter ranges there is only a very small region of
parameter space in which both coexistence and
mutant-only steady states are stable. The bifurcations
described can be found by varying a number of

parameters, but for convenience we fix parameter sets
except for s, the macrophage influx response
parameter, which can be varied to give the full
spectrum of possible behaviours.

4. Travelling Wave Solutions

Numerical simulations of (A.1) show that a
localised mutation in normal tissue induces a
travelling wave solution originating from the site of
mutation, with either the coexistence or mutant-only

F. 2. Numerical simulation in one dimension of the dimensionless model (A.1), with no macrophage chemotaxis (xl =0), showing the
evolution from a localized mutation at the centre. The initial conditions were the normal tissue steady state l=0.1, m=0, n=0.9, f=0,
c=0 on the whole domain, apart from the mutation l=0, m=1, n=0, f=0, c=0 for −0.5Q xQ 0.5. A travelling wave is established
as the tumour grows, with the composition behind the wave front that of the homogenous stable steady state, which is dependent on the
kinetic parameters. In this case the coexistence steady state is stable. The solution is plotted at intervals of 10 dimensionless time units,
up to a final time of 100, at which point the numerically calculated wave speed=6.00738, compared to the predicted speed of 6, a difference
of less than 0.005%. This corresponds to a dimensional speed of 1.2×10−10 ms−1 1 0.01 mm day−1. The parameters are: Dl =Dm =Dn =5,
Df =30, Dc =2.5, a=0.01, b=5.0, dc =0.5, df =2.0, dl=0.1, N=1, I=0.01, k1 =10.0, k2 =0.2, s=58, j=2.8.
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tumour steady state behind the wave, depending on
the kinetic parameters. Figure 2 illustrates such a
simulation, with parameters such that the stable
homogeneous steady state, and hence the state behind
the wave, is of coexistence type.

It is usual to investigate travelling wave solutions
by introducing z= x− at as the new independent
variable, where a is the speed of the wave. This
substitution transforms the five partial differential
equations into a system of ten first order ordinary
differential equations. Experience with other reaction-
diffusion systems suggests that, ahead of the wave,
the solution will decay to the normal tissue

steady state at a rate determined by the eigenvalue
with the least negative real part; i.e. lm =
(−a+za2 −4Dm (j−1))/(2Dm ). Because biologi-
cally realistic solutions require l, m, n, f and c to be
non-negative, this eigenvalue must be purely real, so
that ae 2zDm (j−1). By analogy with the Fisher
equation, we expect a localised initial tumour
cell population to evolve to a travelling wave with
the minimum wavespeed a=2zDm (j−1), and
extensive numerical simulations support this. Note
that the predicted wavespeed is dependent only on the
growth advantage and random motility of mutant
cells, and not on the immune response.

F. 3. Numerical simulation of the dimensionless model (A.1) in one dimension, showing the evolution of a travelling wave from a
localized mutation at the centre. The initial conditions were as in Fig. 2. A stationary spatial pattern forms behind the leading wave front,
whose wavelength is approximately 33 dimensionless units, i.e. 33 typical cell lengths. The wave front remains well defined, with a wave
speed of 6.00436, within 0.005% of the predicted speed. The parameters are: Dl =Dm =Dn =5, Df =100, Dc =2.5, a=0.01, b=5.0,
dc =0.5, df =2.0, dl =0.1, N=1, I=0.01, k1 =10.0, k2 =0.2, s=58, j=2.8.
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5. Spatial Pattern Formation

Our calculations of the wavespeed, combined with
the evidence of numerical simulations, shows that the
immune response has no effect on the rate of tumour
growth, but that the parameters of the temporal
kinetics have a significant effect on the tumour
composition behind the wave front. In this section we
will show that more complicated solutions are
possible, in which the steady state behind the
advancing tumour front becomes unstable to spatial
perturbations. Figure 3 illustrates such a solution.
Note that the pattern is stationary behind the wave,
growing in extent but not changing in form or
location. Such regular patterns are of course not
observed in the stochastic, inhomogeneous environ-
ment of a real tumour, but their observation in model
solutions suggests that the macrophage-tumour
interaction may be a first step towards the more
irregular spatial inhomogeneities seen in the real
situation.

This pattern formation is an example of a Turing
mechanism, in which the mutant cells are the local
activator, and the chemical regulator is the long-range
inhibitor. Thus, an intuitive explanation for this
spatial instability, illustrated in Fig. 4, is that given a
local perturbation increasing the density of mutant
cells, chemical regulator production will also increase
locally. Then if the chemical diffuses fast enough, it
will act non-locally to activate macrophages to the
tumouricidal state and to stimulate an additional
influx of macrophages. At the same time macrophage

activation will be locally suppressed, so that the local
mutant cell growth will effectively be enhanced, and
the original perturbation will grow in time.

The first step to an analysis of the patterning
phenomenon is to linearize the model (A.1) about the
stable homogeneous steady state. A general pertur-
bation can then be expressed as a linear combination
of spatial modes; mathematically, we substitute
solutions proportional to eikx+ lt into the linearized
equations and look for non-trivial solutions, giving
the dispersion relation for the real part of l (i.e. the
growth rate) as a function of wavenumber k. The
homogeneous steady state is then stable to all spatial
perturbations if Re(l)Q 0 for all k $ R, while if
Re(l)q 0 for some k then the mode corresponding to
that wavenumber will grow exponentially in time,
destabilising the homogeneous steady state.

Figure 5 illustrates the numerically calculated
dispersion relation for a parameter set for which a
range of wavenumbers are unstable, and Fig. 3 shows
the corresponding numerical simulation of the model
equations. Although the wave front is moving, the
pattern which grows behind the front is stationary in
space, with a wavelength of 33 cell lengths
(10.33 mm). The wavenumber of the fastest growing

F. 5. Numerically calculated dispersion relation for the model
(A.1), showing Re(l) as the wavenumber k varies. The different
curves are for the different eigenvalues. The fastest growing mode
is approximately k=0.2, corresponding to a wavelength of 31 cell
lengths, which compares well with the actual wavelength of 33 seen
in the numerical simulation with the same parameters, shown in
Fig. 3. For k between about 0.09 and 0.345 the real part of one of
the eigenvalues is positive, indicating that the homogeneous steady
state is unstable to perturbations with those wavenumbers. The
dispersion relation is calculated by finding the real part of the
eigenvalues of the linearized system, for k varying upwards from
zero in increments of 0.005.

F. 4. An intuitive explanation for the development of spatial
inhomogeneities within a tumour, due to interactions with
macrophages. A locally elevated mutant cell density is reinforced
by the consequently elevated chemical regulator production (1)—if
the chemical diffuses sufficiently fast (2), then local macrophage
recruitment and activation will be supressed (3), and hence mutant
cell growth enhanced (4). Correspondingly, non-local recruitment
and activation of macrophages will be enhanced, and mutant cell
growth supressed.
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mode in the dispersion relation is approximately
k=0.2, giving a wavelength of 31 cell lengths, in
good agreement with the above observation from
numerical simulations.

The critical value of the chemical diffusion
coefficient at which the instability appears, denoted
Dcrit

f , depends on other parameters, in particular the
influx response parameter s, which as it changes will
alter the type of steady state from which patterns may
bifurcate. This dependence of Dcrit

f on s is illustrated
in Fig. 6. For small s no spatial instability appears to
be possible, intuitively because the proportion of
macrophages in the tumour becomes very small, and
so does any additional influx stimulated by diffusion
of chemical regulators, making the response to
perturbations too small to allow them to grow. For
s large enough, patterns are always possible, with the
value of Dcrit

f dependent on the nature of the
homogeneous tumour steady state.

A further point of interest is that the wave front
may be substantially altered if a spatial instability
grows very quickly, so that as the normal tissue steady
state is perturbed by the growing tumour, the pattern

appears before a significant front can establish itself.
Figure 7 shows how the wave front of the growing
tumour changes as Df is increased far beyond Dcrit

f .
For Df QDcrit

f there is a simple travelling wave with a
homogeneous tumour steady state behind the front.
As Df increases, the spatial instability appears closer
behind the wave front, until at very high Df no
unpatterned region is visible.

6. Solutions in Two Dimensions

Thus far we have considered the model only in one
space dimension, but of course real tumours reside in
a three-dimensional tissue. For any mathematical
model, the range of potential solution behaviours is
much greater in higher dimensions, and while
numerical solution of the equations in three
dimensions would be too computationally intensive
for our current resources, we have performed a series
of two-dimensional simulations. Perhaps a central
theme in the biological background to this work, and
indeed in much of tumour biology, is the heterogen-
eity between and within tumours. The former is of
particular interest at this point, since we have
demonstrated a possible mechanism for the initiation
of spatial heterogeneity. The more realistic two-di-
mensional setting, and the possibility of still greater
complexity, is the focus of interest in an investigation
of two-dimensional solutions.

The dispersion relation as calculated in the previous
section, and illustrated in Fig. 5, is still valid, so that
whenever patterns appear in one dimension they will
appear in two, but the precise nature of those patterns
requires investigation. In one dimension the unstable
wavenumber k is a scalar, and a corresponding
instability can only give rise to a single pattern, but
in two dimensions the corresponding wavenumber
(kx , ky ) is two-dimensional, with k=zk2

x + k2
y . If

one of kx and ky is zero then the pattern will be just
simple stripes, but if they are both non-zero then the
pattern will be two-dimensional, tiling the plane. This
introduces the possibility of more than one pattern
being stable for a given parameter set, depending on
the domain and initial conditions.

Figure 8 shows a shaded plot of the macrophage
density for a simulation starting with initial
conditions of a seeding region of mutant cells at the
centre, with the rest of the domain at the normal
tissue steady state. A circular travelling wave is
established, behind which the tumour steady state is
unstable to spatial perturbations, which leads to the
formation of a stationary target pattern. The
macrophage density is shown at dimensionless times
40, 60, 80, and 100 to illustrate the evolution of the

F. 6. The relationship between the influx response parameter
s and the calculated critical value Df =Dcrit

f at which the spatial
instability appears. Both the full-tumour and coexistence steady
states can become unstable to spatial perturbations, except that
below a certain value of s the full-tumour steady state with a high
mutant cell density is always stable, since Dcrit

f appears to asymptote
to infinity at s1 36.8. When macrophage chemotaxis is included
it increases Dcrit

f , so that increasing xl makes the whole curve move
up. This means that chemotaxis can stabilize the homogeneous
steady state behind the wave front. The other parameters are:
Dl =Dm =Dn =5, Dc =2.5, a=0.01, b=5.0, dc =0.5, df =2.0,
dl =0.1, N=1, I=0.01, k1 =10.0, k2 =0.2, j=2.8.
Key: —— x1 =0 ––- x1 =30 ····· x1 =100
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F. 7. Numerical solutions of the model (A.1) at dimensionless time 100 for varying Df . From top to bottom, Df =30, 50, 100, 1000.
As Df increases through a critical value the tail of the wave becomes unstable to spatial perturbations, which form some distance behind
the tail of the wave front for Df not too big, but as it increases further the pattern appears as soon as the front perturbs the solution away
from the normal tissue state. The wave front itself becomes almost non-existent, so that it becomes important to consider the implications
of very low densities in the context of a differential equation model. The other parameters are as in Fig. 5.

wave and pattern. The concentric rings in the circular
geometry of the simulation correspond to stripes in
a planar geometry, and simulations for the same
parameters do indeed give simple stripes behind a
planar wave front (omitted for brevity). In real
tumours other factors mean that any heterogeneity
would be much more irregular. Figure 9 shows
the macrophage density for a simulation where the
initial conditions are a random perturbation of
the normal tissue steady state on the whole of a
square domain. Because there is no prepattern laid
down by the travelling wave, the solution is not
forced to a particular orientation, and so even after
very long times, the solution has not settled

down, although some semblance of a striped pattern
is clear.

Figure 10 shows the macrophage density for
a simulation for different values of s and Df , where
the pattern that develops behind the wave front is one
of spots aligned like the squares on a chessboard.
Close to the pattern forming bifurcation either
spots or stripes—but not both—are stable (Ermen-
trout, 1991), but it is not possible to exclude the
possibility of more than one stable pattern when
the parameters are not close to the bifurcation.
Indeed, further simulations not illustrated here show
that different patterns such as spots and stripes can
stably coexist for certain parameter values, with



. .   . . 72

F. 8. Numerical simulation in two dimensions, showing the
evolution of the macrophage density at intervals of 20
dimensionless time units. Initial conditions were a unit seeding
region with a mutant cell density of 1, located at the centre of a
domain at the normal tissue steady state. A target patten appears
behind the wave-front of invading mutant cells. The domain size
is 1200×1200, and the parameters are: Dl =Dm =Dn =5,
Df =250, Dc =2.5, a=0.01, b=5.0, dc =0.5, df =2.0, dl =0.1,
N=1, I=0.01, k1 =10.0, k2 =0.2, s=30, j=2.0. The model
equations were solved in two dimensions using an alternating
direction implicit method. The boundary conditions used were
zero-flux in all simulations.

F. 9. Numerical simulation in two dimensions, showing the
macrophage density after 1000 dimensionless time units of
evolution from initial conditions with a random perturbation of the
normal tissue steady state throughout a square domain. The
domain size is 200×200, and the parameters are as in Fig. 8.

Chaplain, 1996; Chaplain, 1993). Simulations of our
model suggest that the tumour-macrophage inter-
action, with random cell motion, is not a mechanism
for fingering.

the initial conditions determining which state is
reached.

While one does not expect to find such regular
patterns in real tumours, we have shown that
the macrophage-tumour interaction could initiate
heterogeneity, and of course a wide variety of other
factors would affect the process so that the end result
could be very irregular. Indeed, there is scope
for further work which could incorporate the effects
of noise and parameter variations, physical differ-
ences in the tissue structure, and other cellular
interactions.

The shape of the tumour boundary is an important
indicator of the capability of a tumour to invade
the tissue surrounding it. Clinical diagnosis has
relied upon a subjective assessment of the complexity
of the boundary, but the application of techniques
from fractal geometry has begun to provide a
more formal basis for diagnosis (Landini & Rippin,
1996). The projection of ‘‘fingers’’ of cells from the
tumour mass into the surrounding tissue indicates
an invasive tumour, and mathematical models
for tumour growth have been used to investigate
possible mechanisms for tumour fingering (Byrne &

F. 10. Numerical simulation in two dimensions of the model
(A.1), showing the macrophage density after 200 dimensionless
time units of evolution from a unit seeding region with a mutant
cell density of 1, located at the centre of the domain. Behind the
wavefront a spatial perturbation grows to form a chessboard type
tiling of the plane. The domain size is 2400×2400 dimensionless
units, and the parameters are as for Fig. 8 except for Df =750 and
s=58.
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7. Macrophage Chemotaxis: Estimation of Motility
Parameters

In the preceding sections we have discussed only the
implications of random cell movement for spatial
tumour growth in the presence of macrophages. In
this section we describe the estimation of the
parameters governing macrophage chemotaxis, using
experimental data, before proceeding to describe the
types of solutions seen when chemotaxis is included
in the model equations. The terms for macrophage
movement in the full model are of Keller–Segel form
(Keller & Segel, 1971a,b). It is well known that
chemoattractants often stimulate random as well as
directed cell movement, in a concentration—as well as
gradient—dependent fashion, so that it is to be
expected that the diffusion and chemotaxis par-
ameters will vary with chemical concentration. A
particularly common type of in vitro system used to
test such effects is the Boyden chamber (Bignold,
1988; Boyden, 1962), consisting of two wells
separated by a filter. The cells under test are induced
to move through this filter by filling the upper and
lower wells with varying concentrations of chemoat-
tractant, thereby setting up a gradient. Random cell
motion can be isolated by making the concentrations
in both wells the same, so that there is no chemical
gradient across the filter. After a suitable period, the
filter is removed and the number of cells that have
migrated across the filter is counted. It is important
to note that there may be significant differences
between such in vitro experiments and the in vivo
situation, since a polycarbonate filter is a very
different material from in vivo extracellular matrices.
The key property of macrophage motility is the
relative contributions of random and directed
movement, and we assume that this property will be
approximately conserved in a variety of different
environments.

Following work by Sherratt et al. (1993), the
Boyden chamber assay is modelled by two equations,
for the migration of macrophages l(x, t) and the
diffusion of the chemical f(x, t):

1l
1t

=
1

1x $Dl ( f )
1l
1x%−

1

1x$xl ( f )l
1f
1x% (6a)

1f
1t

=Df
12f
1x2. (6b)

Note that macrophage movement is again formulated
with the Keller–Segel approach. Cell migration is
limited to the filter, which has width a, but the
chemical diffuses throughout the upper and lower

wells, giving a much larger domain, which can be
considered infinite to a good approximation. Note
that we neglect cell division because the duration of
the experiments is much less than typical cell cycle
times. The other parameters for the system are the
filter area A, and the area Acount in which migrated cells
are counted; macrophage length L; initial number of
cells added M0, and initial cell density l0; initial
concentration in the lower well fL , and upper well fU ;
and final time T. Assuming the cells form a
monolayer of thickness L on the upper surface of the
filter, l0 =M0/AL. The initial conditions are therefore
l=0 on 0E xQ a and l= l0 at x= a. Cells adhere to
the surface of the filter and do not drop off, so that
the surface densities change at a rate corresponding to
the cell flux. Thus, the following boundary conditions
hold:

1l
1t bx=0

=
Dl

L
1l
1x

−
xl

L
l
1f
1x

,

1l
1t bx= a

=−
Dl

L
1l
1x

+
xl

L
l
1f
1x

, (7a)

f(−a, 0)= fL , f(+a, 0)= fU . (7b)

The diffusion equation for f is straightforward to
solve analytically. Note that the concentration at the
bottom of the filter is constant: f(0)= ( fU + fL )/2.
Since f varies by less than 1% across the filter within
2 minutes of the start of the experiment, we take Dl

and xl to be constant for a given experiment.
Similarly, the change in gradient across the filter is
negligible, giving the approximate expression:

1f
1x

1 fU − fL

2zpDft
. (8)

Numerical simulations of the model (6) were carried
out, using this approximation to the chemical
gradient, and a comparison of model predictions and
experimental data was used to determine the motility
parameters. A common pattern of experimental data
which is ideally suited to such a determination is a
checkerboard analysis, where a range of chemical
concentrations is tested, using every possible combi-
nation in the upper and lower wells. This will then
include cases where the upper and lower concen-
trations are equal, so that the random motility
coefficient may be isolated. The data considered here
is from Sozzani et al. (1991), which is reproduced in
Table 1. Note that the data is for the migration of
monocytes obtained from blood donors. Monocytes
are the precursors in blood of macrophages, and we
are not aware of any data on the differences there may
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T 1
Calculated mobility parameters for macrophages responding to MCP-1

MCP-1 (×10−10 M)
Cells Dl xl xl ×filter

Lower Well Upper Well Filter counted (m2 s−1) (m2 s−1 M−1) concn (m2 s−1)

0 0 0 202 3 4.61×10−15 0 0
1 1 1 572 8 1.04×10−14 0 0
5 5 5 362 6 6.82×10−15 0 0

10 10 10 122 1 3.54×10−15 0 0
1 0 0.5 482 3 7.51×10−15 0.00622 3.11×10−13

5 0 2.5 622 7 9.06×10−15 0.00198 4.95×10−13

10 0 5 752 4 6.82×10−15 0.00259 12.95×10−13

Dl was first estimated for the cases with equal concentrations in the upper and lower wells by finding the value for which
numerical simulations predicted the correct number of cells counted. Dl can be isolated in this way because in these situations
there will be no chemical gradient and hence no chemotaxis. Using these calculated values, xl can be estimated in the same
way. The experimental data is taken from Boyden Chamber experiments of Sozzani et al. (1991), showing the number of
migrated monocytes counted in five oil fields, for different concentrations of recombinatant MCP-1 in the upper and lower
wells. 50 ml of cell suspension (1.5×10 monocytes ml−1 ) was seeded in the upper compartment. The polycarbonate filter
had a pore size of 5 mm and we assumed the standard width of 10 mm, and area of 7×10−6 m2. The chambers were incubated
at 37°C in air with 5% CO2 for 90 min. Filters were then removed, fixed, and stained with Diff-Quik, and five high power
oil-immersion fields were counted. Note that the molecular weight of MCP-1 means that 1 ng ml−1 1 10−10 M.

be between monocyte and macrophage migration. We
assume that although the actual values of their
motility parameters may change, the relative contri-
butions of random and directed movement will be
similar.

The experiments used the monocyte chemoattrac-
tant MCP-1, discussed in Section 1—its diffusion
coefficient in aqueous solution is estimated using
standard Stokes–Einstein theory, using

Df =
kT
6ph

·$4pNA

3Mv%
1/3

.

Here k is the Boltzmann constant; T is absolute
temperature, and h is the viscosity of water that
temperature; v is the specific volume and M is the
molecular weight of the solute; and NA is Avogadro’s
number. There are a number of different values
quoted in the literature for the molecular mass of
MCP-1, ranging from 10 to 16 kD (Bottazzi et al.,
1985; Graves et al., 1989; Mantovani, 1990; van
Damme et al., 1992; Walter et al., 1991). Bearing this
in mind, the formula gives an approximate value for
Df of 2×10−10 m2 s−1.

Estimates for the monocyte motility parameters
were made by varying the model parameters to match
the predicted monocyte density at the bottom of the
filter with the actual number of cells counted in
experiments. Dl was first estimated for the cases with
equal concentrations in the upper and lower wells by
finding the value of Dl for which numerical
simulations predicted the correct number of cells
counted. Dl can be isolated in this way because in
these situations there will be no chemical gradient and

hence no chemotaxis. Using these calculated values,
xl can be estimated in a similar fashion. The results are
presented in Table 1, and Fig. 11 shows an example
of a numerical simulation of monocyte migration
across the filter.

F. 11. Numerical simulation of the migration of monocytes
across a polycarbonate filter in response to a chemical gradient of
the chemoattractant MCP-1, using the model (6). Estimates for the
monocyte motility parameters were made by varying the model
parameters to match the model’s predicted monocyte density at the
bottom of the filter (x=0) with the actual number of cells counted
in experiments. The solution is plotted at intervals of 9 minutes, up
to a final time of 90 minutes. The parameters were
Dl =6.82×10−15 and xl =0.00259, which gives a predicted
number of migrated cells of 75, compared with the experimental
count of 752 4 cells.
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Using the calculated values from Table 1, we fix
ranges for the dimensionless values of Dl and xl . The
random motility coefficient varies from 4.61×10−15

to 1.04×10−14 m2 s−1, and applying the non-dimen-
sionalization in the Appendix gives Dl $ [23, 52].
Similarly the calculated range for the chemotaxis
coefficient was from 0.00198 to 0.00622 m2 s−1 M−1,
giving xl $ [990, 3110]. Kuratsu et al. (1993) measured
MCP-1 levels in a number of patients both with and
without tumours, finding a range of concentrations

in vivo of 0.2–6.3 ng ml−1, which compares well with
the range for the in vitro experimental data of
0.5–10 ng ml−1. Thus, the dimensionless motility
parameters we have calculated are appropriate for
our model of in vivo tumour growth.

8. Simulations with Macrophage Chemotaxis

An important feature of the inclusion of chemo-
taxis in the model is the possibility that it can stabilise

F. 12. Numerical simulation of the model (A.1) using motility parameters estimated from the Boyden chamber data of Sozzani et al.
(1991). The solution in space is shown after 1200 dimensionless time units of evolution from initial conditions corresponding to a mutation
at the left hand boundary of the domain. Macrophage chemotaxis causes the previously regular pattern behind the wave front to become
irregular in both space and time (not illustrated here). The magnification shows the individual grid points of the finite difference numerical
scheme, illustrating the spatial resolution of the solution. The parameters are: Dl =40, Dm =Dn =5, Df =10000, Dc =2.5, xl =2000,
a=0.01, b=5.0, dc =0.5, df =2.0, dl =0.1, N=1, I=0.01, k1 =10.0, k2 =0.2, j=2.8, s=58.
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the spatially homogeneous steady state when this is
unstable to perturbations in the absence of chemo-
taxis. Examination of the dispersion relation shows
that as the chemotaxis coefficient is increased the peak
in the dispersion relation moves down, so that
wavenumbers whose corresponding eigenvalues had
a positive real part no longer do so. This means
that as xl increases, the value of the chemical
diffusion coefficient at which spatial instabilities
appear, denoted Dcrit

f , also increases. This is
demonstrated in Fig. 6 which shows Dcrit

f as s varies,
for xl increasing from zero. As the chemotaxis
coefficient is increased, the whole curve of critical Df

is moved up, demonstrating the effect over a range of
parameters which includes both types of tumour
steady state.

In contrast, some simulations with chemotaxis
show more complicated dynamics behind the wave
front, with irregular spatiotemporal variations.
Figure 12 shows the result of such a simulation, for
macrophage motility parameters within the ranges
calculated in the previous section. Behind the wave
front the solution does not settle down either in time
or in space.

A mathematical discussion of the mechanism
responsible for these irregular solutions will be
presented elsewhere, but we will summarise a few
points here. The oscillations are not due to any
oscillatory behaviour in the kinetics, in contrast to
work by others such as Dunbar (1986), Sherratt et al.
(1995), and Merkin et al. (1996), which is concerned
with reaction-diffusion systems whose kinetics are
oscillatory in the absence of spatial variations. Using
the domain length as a parameter, we found that it is
the pattern itself which becomes unstable through a
bifurcation to a new oscillating solution branch. We
hypothesised that this bifurcation would repeat at
integer multiples of the critical domain length, and
numerical solutions provided evidence for this. This
explains the irregular wakes seen behind travelling
wave fronts in simulations on large domains—as the
wave progresses, oscillatory solutions continually
appear and disappear as the effective ‘‘domain
length’’ moves through a series of bifurcation points.
Note that the long-term behaviour of the solutions on
a fixed finite domain is not irregular, but oscillatory
with a constant period.

9. Discussion

Travelling waves in models of tumour invasion
have been demonstrated previously, but there has
been little investigation of spatial instabilities within
growing tumours. We have shown that the rapid

diffusion of chemical regulators in comparison to cell
movement, combined with the anti-tumour effects of
macrophages, can lead to the onset of instability and
the appearance of hot-spots of tumour cell density. In
real tumours a variety of other factors mean that the
regular patterns seen in one and two dimensional
simulations do not occur. However, there is evidence
for the existence of dense clusters of macrophages,
whose location is thought to be related to the
tumour-cytotoxic role of macrophages (Kerrebijn
et al., 1994). This supports our view that the
interaction between macrophages and tumour cells is
a potential mechanism for generating spatial hetero-
geneity. In the 1950s and 1960s, the potential of the
immune system to spontaneously eliminate tumours
was widely debated—e.g. Baldwin (1955); more
recently, this ‘‘immune surveillance hypothesis’’ has
been widely disputed and remains controversial. In
recent years, attention has switched to more complex
regulatory effects of the immune system on tumour
progression (Matzinger, 1994), including the tumour-
promoting role of immune system cells—for example,
recent evidence that macrophages promote angiogen-
esis in breast carcinomas (Lewis et al., 1995). Our
work provides a link between these old and new
philosophies. We have shown that while the
tumouricidal activity of macrophages is insufficient to
eliminate tumours, it can have important implications
for their structure.

Note that, in contrast to some other models for
biological pattern formation, there is no prepattern
involved, and no mechanical interactions are in-
cluded. We expect that the simple combination of
chemical diffusion and the much slower movement of
cells will generate similar phenomena in a variety of
biological situations.

It is important to consider the role of very low
population densities within the context of a partial
differential equation model. When high chemical
diffusion causes the wave front to be extremely small,
as illustrated in Fig. 7, it could be argued that such
low densities should be considered to be zero. Other
models have used a threshold below which densities
are taken to be zero (Mollison & Daniels, 1993),
which would have considerable implications on the
biological interpretation of our model. For example,
if such a threshold were applied then for sufficiently
high chemical diffusion coefficients only the first peak
of a pattern would appear, and then the wave of
invading mutant cells would be halted. Intuitively, if
the chemical regulator did diffuse fast enough, it
would always activate macrophages outside the
tumour boundary, preventing further outgrowth.
This represents a situation where tumour growth is
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held in check by the immune system, although the
tumour itself is not eliminated.

In Section 7 we described the estimation of the
parameters governing macrophage motility using
Boyden chamber data from a paper by Sozzani et al.
(1991). Data from different in vitro systems will yield
different values for motility parameters, but the key
issue is not the precise numbers but the relative
contributions of random and directed cell migration.
Although it can be argued in this way that different
assays will preserve the ratios of certain coefficients,
there may be further differences between the in vivo
and in vitro situations that are dependent not on the
experimental system but on the cells being tested
themselves. Phenotypic changes may be induced by
the transition to an in vitro environment, so that the
behaviour of cells can be markedly different from
in vivo. A simple example of such an effect is found
in a different context, the fibroblast-populated
collagen lattice (Grinnell & Lamke, 1984), which is an
in vitro representation of wound contraction. Here,
dermal fibroblasts change phenotype, when placed in
an in vitro collagen gel, to resemble the contractile
‘‘myofibroblast’’ found in real wounds.

In the final section we demonstrated that
chemotaxis can stabilise the homogeneous tumour
steady state behind the wave, but can also initiate
spatiotemporally irregular solutions. These results
raise a key question about the effect of chemotaxis in
the more realistic two and three dimensional settings.
What kind of irregular patterns may we expect to see?
Can chemotaxis affect the stability of the wavefront?
We believe this work is important because this is the
first explicit model mechanism which leads naturally
to irregularity in tumour composition.

Do solutions showing these spatiotemporal irregu-
larities have any biological relevance? There is ample
evidence of spatial heterogeneity in tumours, but
detailed spatiotemporal data is unavailable. Recent
biological developments indicate that the proportion
of macrophages in a tumour is closely correlated with
prognosis, and that macrophages may be linked to a
complex spatiotemporal variation in blood supply
and tissue oxygenation. Macrophage hot spots are
situated away from regions of high vascular density,
implying that macrophages actively migrate away
from the blood vessels (Leek et al., 1996).
Macrophages themselves promote angiogenesis
(Lewis et al., 1995), so that they will encourage new
vascular hot spots to develop. If the macrophages
then move away or die, then we have the ingredients
for a constantly changing spatiotemporal picture.
Although the model described in this paper does not
include interactions with the tumour vasculature,

future research will depend upon an understanding of
the patterning and irregular behaviour that we have
described.
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APPENDIX

Non-dimensionalization and Parameter Estimation

The model given by eqns (1–3) is non-dimensional-
ized by rescaling time by the normal cell death rate d;
space by L, a typical cell length; cell densities by
the equilibrium density Ne ; and chemical regulator by
f0, a typical concentration of MCP-1 in human
tumours (taken as 1×10−10 M):

t*= dt, x*= x/L, l*= l/Ne , m*=m/Ne ,

n*= n/Ne , c*= c/Ne , f*= f/f0,

D*l =
Dl

dL2, x*l =
xlf0

dL2, D*m =
Dm

dL2,

D*n =
Dn

dL2, D*f =
Df

dL2, D*c =
Dc

dL2,

a*= af0/d, N*=N/Ne , I*= I/(Ned),

s*= f0s, k*1 = k1f0Ne /d,

k*2 = k2/d, d*l = dl /d, d*f = df /d,

d*c = dc /d, b*= bNe /( f0d).

Applying these and omitting the asterisks for
notational simplicity gives the dimensionless model:

1l
1t

=Dl92l− xl9(l9f )+
afl(N+1)

N+ l+m+ n

+I(1+ sf )− k1flm+ k2c− dll

1m
1t

=Dm92m+
jm(N+1)

N+ l+m+ n
−m− k1flm

1n
1t

=Dn92n+
n(N+1)

N+ l+m+ n
− n

1f
1t

=Df92f+ bm− dff

1c
1t

=Dc92c+ k1flm− k2c− dcc. (A.1)

There is insufficient experimental data available to
determine all the dimensionless model parameters.
We list here generic order of magnitude estimates,
with brief justifications. All the phenomena described

in this paper occur for ranges of parameters within
these estimates.

a−10−2: macrophages are a mature form of blood
monocyte, which reside in tissues and do not normally
proliferate. With certain stimuli, including some
tumour-derived chemicals, they may proliferate, but
at a low level (Bottazzi et al., 1990), particularly in
humans (Mantovani et al., 1992).
N−101: N is a measure of initial growth rate, and of
subsequent response to crowding, and should be of
the same order of magnitude as the normal cell death
rate.
I−10−2: IQ dl must hold for the normal tissue steady
state to be non-negative. In addition, the proportion
of macrophages in normal tissue is relatively small.
s−100 −102: s varies with the response of
macrophages to chemoattractants, which will change
for different cell lines.
k1, k2 −100 −102: activation, complex formation,
and lysis have time scales of hours (Hamilton &
Adams, 1987), and hence a rate one or two orders of
magnitude larger than the death rate of normal cells
(a typical cell cycle time is of the order of 100 hours).
dl −10−1: macrophages survive in tissue for weeks or
months, compared to a turnover time of days for
normal cells, so that macrophage death rate is
expected to be at least an order of magnitude smaller
than that for normal cells.
j−101: j represents the growth advantage of mutant
cells, and thus must be greater than one; however
mutant cell growth should still be of the same order
of magnitude as for normal cells.
b, df −100 −101: The dimensionless chemical pro-
duction and decay rates should be of the same order
of magnitude, and the chemical regulator is expected
to decay at a faster rate than normal cells die.
dc −10−1 −100: The complex death rate is expected to
be of the order of magnitude of the death rates of its
component cell types, macrophages (10−1) and
mutant cells (100).

The coefficients governing random motility of
macrophages, mutant cells, normal cells, and
complexes, are assumed to be constant, having no
dependence on any of the variables. In fact it is to be
expected that such coefficients will vary with density,
and possibly also the local concentration of
regulatory chemicals. In addition the different cell
types are assumed to have the same typical order of
magnitude of 10−15 m2 s−1 for their random motility
coefficients. We need estimates for the normal cell
death rate d and a typical cell length L in order to
nondimensionalise these values. Equation (2b) gives a
cell cycle time of log 2/d, and so assuming a normal
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cell cycle time of 100 hours gives d=log 2/
100 h=2×10−6 s−1. A typical cell length is
L=10 mm, and using these figures gives dimension-
less coefficients Dl =Dm =Dn =5. Df is expected to
diffuse substantially faster than cells random motion,
but since increasing Df leads to a pattern forming
bifurcation, we leave it as a free parameter.
Concerning the random motion of complexes, it is not
clear whether the formation of a complex may render
the cells immobile, or at least substantially reduce

random movement. Since two cells are bound
together in the complex, we halve the value for the
random motility coefficient of unbound cells, giving
Dc =2.5. This choice is based purely on our intuition,
but in fact the qualitative nature of the solutions does
not depend on the particular value, even if it is set to
zero. Regarding macrophage chemotaxis, in Section 7
the parameters for random and directed motion of
macrophages in response to MCP-1 are estimated
from experimental data.


