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Abstract
A haptotaxis-dominated model of cell invasion is considered for small cell
diffusion and fast protease adjustment to the cell–collagen matrix interaction.
A simplified limit model has travelling wave cell invasion profiles that are
blunt, that is end with a ‘shock-like’ step, and that evolve stably from initial
data that lie to one side of some initial plane. In common with diffusion-
dominated systems, the travelling wave which evolves from such initial data has
the minimum wavespeed permissible in the model. This minimum wavespeed
is not, however, determined by the local stability of the steady states in the
travelling wave phase plane, but by a novel combination of singular behaviour
within the phase plane and hyperbolic shock conditions. It is shown that more
accurate models including the detailed fast dynamics of the protease require
small amounts of diffusion (of the same order as the fast dynamics timescale)
in order to remain stable. However, small diffusion and fast protease adjustment
then give physically relevant and interesting solutions that evolve from semi-
compact initial data and stably invade at speeds well predicted by the simple
model.

Mathematics Subject Classification: 34E05, 35L65, 70K05, 92C17

1. Introduction

Perumpanani et al [9] devised a three-variable model of malignant invasion with the aim of
determining a relationship between the speed of invasion of the malignant cells into connective
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tissue and the biological parameters in the model. In a previous study [7] we were able to
approximate analytically the invasion speed of solutions to a two-variable limit model of
Perumpanani et al’s model. These solutions had a novel structure which could be investigated
within a highly singular phase plane. In this paper we investigate whether or not these solutions
are a valid approximation of solutions to the full model.

The dominant motility mechanism in Perumpanani et al’s model is haptotaxis, the directed
motion of the malignant cells up the gradient of connective tissue. This gradient is created
by proteases, a group of enzymes emitted by the tumour cells which then degrade the
connective tissue. Under the assumption that the protease operates on a faster time-scale
than the malignant cells or connective tissue the three-variable model may be reduced to a
two-variable limit model. In [7] we discovered a novel family of travelling wave solutions
to a simplified or reduced model of this malignant invasion. Of particular interest was the
slowest member of this family of waves which was seen to evolve from semi-compact initial
data (where the initial level of the invading cells falls to zero for x large enough), and was
therefore considered to be the most biologically relevant since the invading cells are not
present far in front of the invading interface. The invading cells, of concentration u(x, t),
have a shock at the front of their wave profile which formed a blunt interface between u > 0
and u = 0 (figure 1). By transforming to travelling wave coordinates the nature of these
solutions can be studied in a two-dimensional phase plane which exhibits interesting singular
behaviour.

The wavespeed of this biologically relevant solution is used as a measure of the tumour’s
invasiveness. Following non-dimensionalization the model contains only one parameter,
namely ĉ the scaled concentration of connective tissue in the absence of the tumour. A
relationship between this parameter and the wavespeed a can be approximated within the
phase plane.

The behaviour of travelling wave solutions for systems where the dominant motility
mechanism is diffusion has been well studied [4]. Such systems have been used to model many
types of invasive behaviour, examples include the progression of epidemics, the dispersal of
insects, chemical concentration waves seen in the Belousov–Zhabotinskii reaction, the influx
of healthy cells into wounded tissue and the movement of micro-organisms into a food source.
A review of these examples and the techniques used in analysing the corresponding travelling
waves is given by Murray [8]. The generic example of a diffusion-dominated process exhibiting
travelling waves is the Fisher equation [3]

∂u

∂t
= u(1 − u) + D

∂2u

∂x2
(1)

with positive diffusion coefficient D. This was suggested as a deterministic version of a
stochastic model for the spatial spread of a favoured gene into a population, where u(x, t)

is the proportion of the population expressing the gene at time t and position x. Semi-
compact initial data for this equation are known to evolve to travelling waves of speed
2
√
D [4]. This wavespeed, the minimum wavespeed of travelling wave solutions of (1), is

determined by investigating the local stability of steady states in the corresponding travelling
wave phase plane. Semi-compact initial data for our reduced haptotaxis model similarly
evolve to the travelling wave with the slowest wavespeed. In this case, however, the
minimum wavespeed is determined by novel singular behaviour within the travelling wave
phase plane [7].

In this paper we look at the full three-equation system that models the biological behaviour
more accurately, rather than the reduced two-equation system, based upon letting a small
physical parameter tend to zero, studied in [7]. We discuss whether or not the ‘blunt interface’
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Figure 1. A typical numerical solution of the reduced model of malignant invasion (5) and (6)
studied in [7]. This solution evolves from semi-compact initial data. The population of malignant
cellsu(x, t) at scaled carrying capacity of unity behind the wave, invades at constant speed a into the
connective tissue, c(x, t), of density ĉ = 0.8 in front of the wave. The connective tissue is degraded
by protease p(x, t) which only exists at the interface of malignant cells and connective tissue. The
shape of these wave profiles remains fixed as they move forwards. The shock or ‘blunt interface’
at the front of the u and p profiles can be clearly seen as well as the discontinuous derivative in the
c profile. This solution was obtained using a Kurganov–Tadmor numerical solver [5].

travelling wave solutions also exist for the full model or whether they are merely a mathematical
curiosity, resulting from the forcing of trajectories onto a particular surface of the three-
dimensional travelling wave phase space. Furthermore, we investigate the validity of the
approximated relationship between ĉ and the invasion speed a derived in [7].

We find that the blunt interface solutions do not exist for the idealized three-equation
system without diffusion. Numerical results suggest that semi-compact initial data do not
evolve to a stable travelling wave. Instead there is some sort of numerical blow-up near the
interface in finite time. Stable travelling wave solutions do exist, however, when a small
quantity of diffusion is added to the system. For these solutions the shocks seen in [7] are
smoothed within a narrow rescaled inner layer which is the practical interface between the
invading u > 0 and the u = 0 states. The profiles within this layer contain oscillations, for
small diffusion coefficients, with the amplitude of these oscillations increasing as the diffusion
coefficient is decreased. A typical example is shown in figure 2. Away from this inner layer
the solution profiles are similar to those for the reduced model, and if haptotaxis dominates
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Figure 2. The solution profiles of a numerical solution of Perumpanani et al’s full model of
malignant invasion including linear diffusion (31)–(33). These profiles have evolved from semi-
compact initial data. The parameter values in this case are ĉ = 0.8, ε = 0.01, Du = 0.0025,
Dc = Dp = 0. The profiles are of a similar form to those for the reduced model shown in figure 1
except the shocks in u and p have been smoothed and oscillations exist at the top of these smoothed
shocks. Details of such a solution are contained in section 5.

diffusion the wavespeed of the solution to these equations tends to that of the reduced model.
However, as shown in figure 3, if the haptotactic flux is reduced so that diffusion is the dominant
motility process then the wavespeed tends to 2

√
Du (for positive diffusion coefficient Du), the

wavespeed associated with biologically relevant solutions of the Fisher equation (1). Hence
the reduced model gives the essential information of the more accurate model. The addition
of some diffusion to the system is realistic. It was only omitted from the original model in
order to concentrate on the effect of haptotaxis, the directed motion of cells up an insoluble
chemical gradient, and to simplify the analysis.

We conclude that the solutions described in [7] are relevant to the study of the larger
system with added diffusion in cases where the diffusion is dominated by haptotaxis. The
analytical methods described in [7] approximate the behaviour of solutions to a fourth-order
PDE (partial differential equation) system by considering a second-order ODE (ordinary
differential equation) system combined with the Rankine–Hugoniot jump conditions. This
allows an analytical approximation to the wavespeed of the solution to be derived.

Similar methods may be applicable to approximating the wavespeed of travelling wave
solutions to other systems where the dominant motility mechanism is an advection process of
hyperbolic type, rather than diffusion.
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Figure 3. A plot of the minimum wavespeed, a, of travelling wave solutions to Perumpanani
et al’s full model with diffusion (31)–(33), against the steady-state tissue concentration ĉ. The
dotted curve represents the predicted relationship between a and ĉ derived from a study of the
reduced model (5) and (6). The lower full curve shows the relationship between a and ĉ when
ε = Du = 0.01, Dc = Dp = 0. For the other full curve ε = Du = 0.05. In both cases the
curves follow the predicted relationship for large ĉ. When ĉ is small, however, the haptotactic flux
is reduced and diffusion is the dominant motility process. Therefore, for small ĉ, a ≈ 2

√
Du, as is

typical for diffusion driven travelling wave solutions. Details of this relationship are contained in
section 5.

In section 2 we describe the formulation of the model and summarize the properties of
the blunt interface solutions derived in [7]. In section 3 we attempt to find similar solutions
to the full malignant invasion model (at first without diffusion) but demonstrate that travelling
waves with a shock at the front of the invading wave profile do not then exist. The numerical
evidence detailed in section 4 suggests that, when an accurate numerical solver with minimal
numerical diffusion is used, semi-compact initial data applied to this model do not evolve to
a stable travelling wave solution. Stable travelling wave solutions may be seen, however, if
a first-order accurate numerical scheme, which adds numerical diffusion to the equations, is
used. Therefore, in section 5 we investigate analytically why the addition of small amounts
of diffusion may lead to these stable solutions, establishing the existence of a stable smooth
inner transition layer where the ‘shock-like’ blunt profile of the simple model occurs, and that
the simple model solution is a good approximation when only a small amount of diffusion is
present.
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2. Travelling shock waves

In [7] we found a novel family of travelling wave solutions to an approximation of Perumpanani
et al’s malignant invasion model formulated in [9]. The original model depends upon one
space direction x and time t and has three generic variables, namely u(x, t) the concentration
of invasive cells, c(x, t) the concentration of connective tissue (which is made of extracellular
matrix elements) and p(x, t) the concentration of protease. All concentrations are measured
per unit volume at position x and time t ; the model studies the averaged behaviour of cells
which vary in the direction of invasion only, and therefore the model ignores variations in the
plane perpendicular to the axis of invasion.

The major motility mechanism governing the behaviour of the malignant cells is haptotaxis
up the gradient of connective tissue. This is represented by an invasive flux proportional to
u∂c/∂x (and thus an invasive velocity proportional to ∂c/∂x). Perumpanani et al [9] also
include logistic proliferation of the malignant cells via the non-dimensionalized term u(1−u).
With no connective tissue gradient present (that is, ∂c/∂x ≡ 0), the malignant cells will
grow from small densities to the non-dimensionalized steady-state carrying capacity scaled to
be 1. This capacity is a result of inhibition of the division of cells by their neighbours, via
mechanisms generically referred to as contact inhibition.

Upon contact with connective tissue the invasive cells produce protease of density p(x, t)

at a rate proportional to uc. Protease dissolves the connective tissue at a rate proportional to
cp. The protease itself undergoes natural decay proportional to its own concentration.

Following non-dimensionalization which removes all but one of the parameter values, this
model is written as

∂u

∂t
= u(1 − u) − ∂

∂x

(
u
∂c

∂x

)
(2)

∂c

∂t
= −pc (3)

∂p

∂t
= 1

ε
(uc − p) (4)

where ε is a positive constant representing the relative timescale of the protease dynamics to
that of the cell growth dynamics. Here t is scaled so that u grows on the O(1) timescale to
the u scaled carrying capacity of unity, x is scaled so that the rate of haptotaxis is of the same
order, p is scaled so that c dissolves on the same timescale and, finally, c is scaled so that p and
uc are of the same order in equation (4). This leaves the p timescale relatively much faster, so
that ε is small.

The situation being considered is an invasion of malignant cells (from a large negative
x direction) at their carrying capacity density into connective tissue of some positive
concentration ĉ (at a large positive x direction). Thus ĉ is a second parameter of the
system. This model PDE system is solved on the infinite-x domain, with boundary behaviour
u = 1, c = 0, p = 0 at x = −∞ and u = 0, c = ĉ, p = 0 at x = ∞.

In [10] Perumpanani et al approximated (2)–(4) by a two-equation system. Exploiting
the small parameter ε, they approximated the protease dynamics (4) by p = uc + O(ε); this
is appropriate provided that ∂p/∂t is bounded. By setting p = uc the three-variable problem
could be reduced to the two-variable problem

∂u

∂t
= u(1 − u) − ∂

∂x

(
u
∂c

∂x

)
(5)

∂c

∂t
= −uc2. (6)
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Here the only parameter is ĉ.
In [7] we described three families of travelling wave solution to this reduced model. We

now concentrate upon the particular solution which appears to be most biologically relevant
since it evolves from the most general initial condition profiles. We refer to this solution as
the blunt interface solution since there is a blunt interface at the front of the u(x, t) profile (see
figure 1).

We look for constant shape travelling waves by setting

u(x, t) ≡ U(z) c(x, t) ≡ C(z) z ≡ x − at. (7)

The PDE system (5) and (6) is then reduced to the following third-order ODE system:

−a
dU

dz
= U(1 − U) − d

dz

(
U

dC

dz

)
(8)

a
dC

dz
= UC2. (9)

HereU → 1, C → 0 as z → −∞ andU → 0, C → ĉ as z → ∞, with ĉ a positive parameter.
The wavespeed a is unknown and determined by the C → ĉ boundary condition.

The key to our method of analysis is the fact that there are no z derivative terms on the
right-hand side of (9). This allows us to substitute (9) for dC/dz in (8), thus reducing the
system to the second-order non-standard form

dU

dz

(
−a +

2UC2

a

)
= U(1 − U) − 2U 3C3a−2 (10)

dC

dz
= UC2

a
. (11)

Travelling wave solutions are then represented by (U,C) phase plane trajectories which leave
the malignant steady stateU = 1, C = 0 and connect to the healthy steady stateU = 0, C = ĉ.
Local stability analysis of these steady states reveals that the malignant one possesses an
unstable manifold, and the healthy one a stable manifold, as required for a connection of this
type to exist.

The interesting point to note about (10) and (11) is that when 2UC2 = a2, (10) becomes
singular. We refer to this curve as the singular barrier, ‘S’. Phase plane trajectories have no
meaning on the singular barrier and cannot normally cross this curve. The one exception to
this is when the U nullcline, ‘N’,

U(1 − U) − 2U 3C3

a2
= 0 (12)

intersects the singular barrier, since at this point the derivatives may still be finite because of
the zero/zero indeterminate form. We call this point the ‘hole in the wall’. The hole in the wall
was first identified by Pettet et al [11] in a model of angiogenesis. In the following discussion
we fix a > 0 and regard ĉ as the resulting parameter to be determined. We show in [7] that a
and ĉ vary monotonically (see figure 3).

The trajectory corresponding to the blunt interface travelling wave solution which we
concentrate upon does, in fact, cross the singular barrier at the hole in the wall. Its progress
towards a healthy steady state,U = 0, C = ĉ then appears to be blocked by the singular barrier.
The connection between the steady states is completed via a hyperbolic discontinuity [2] which
allows the trajectory to jump over the singular barrier. In [7] we demonstrate that the PDE
system (5) and (6) is strictly hyperbolic and hence solutions to it may contain discontinuities.
Combining the Rankine–Hugoniot jump conditions [2] with the assumption of travelling wave
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Figure 4. A phase plane plot and a solution profile for the ‘blunt interface’ travelling wave solution
of (5) and (6). Here a = 0.5. In the phase plane a travelling wave solution is represented by a
connection between the steady state at z = −∞ (U = 1, C = 0), and the steady state at z = ∞
(U = 0, C = ĉ). This connecting trajectory crosses the singular barrier ‘S’ at the hole in the wall
(the point at which the singular barrier intersects the U nullcline, ‘N’). The singular barrier then
appears to block the trajectory from connecting smoothly to the C-axis. A hyperbolic jump may,
however, take the trajectory from the curve ‘J’ (U = a2/C2), to the C-axis. In the solution profile,
the blunt interface in the U profile can be clearly seen as can the corner in the C profile.

solutions reveals that a phase plane trajectory may jump from the ‘J’ curve UC2 = a2 to the
set of healthy steady states on the C-axis. We can show that for all values of a, there exists
one trajectory which leaves U = 1, C = 0, crosses the singular barrier at the hole in the wall
and then goes on to hit the ‘J’ curve UC2 = a2 from where it is able to jump to a healthy
steady state on the C-axis. Such a steady-state connection and the corresponding travelling
wave profile are shown in figure 4.

This particular solution has many desirable properties. The discontinuity satisfies the Lax
entropy condition and is therefore stable to added diffusion. Since the solution can be studied
in the phase plane it is simple to estimate a relationship between the parameter ĉ and the
travelling wavespeed a (by approximating the value of C = ĉ where the trajectory crosses the
‘J’ curve UC2 = a2). In [7] we show that a leading-order approximation of this relationship
for small ĉ is

a = −1 + (1 + ĉ(6 − 2
√

2))1/2

3 − √
2

. (13)

Numerical investigations show that the blunt interface solution is stable and evolves from
biologically relevant initial data for the PDEs (5) and (6) where u(x, t = 0) has semi-compact
support (that is, u(x, 0) vanishes for x greater than some x0). Furthermore, the leading-order
approximation of its wavespeed is accurate for 0 < ĉ < 3.

In this paper we consider the three-equation system (2)–(4) and discuss whether or not
biologically relevant solutions to it can be approximated by the travelling shock wave described
above. In making the p = uc + O(ε) approximation we assume that ∂p/∂t is bounded. We
have described how the solution contains a jump in u and hence in p (since p = uc) so this
boundedness assumption is not valid throughout the solution. Therefore, the discontinuous
solution does not form the leading term of a regular approximation in ε, and instead some
sort of rescaling of the space variable is required close to the shock. As ε → 0 the solutions
in the inner layer should tend to the shocks found in the reduced model (5) and (6). The
new inner solution should match with the non-jump parts of the blunt interface solution. We
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now assume that the blunt interface solution forms a valid leading-order solution of the full
model (2)–(4) and henceforth refer to it as u0(x, t), c0(x, t), p0(x, t) ≡ u0c0. We will show
that this assumption is only correct if diffusion is added to the model. In the next section we
investigate whether or not the inner layer may still contain discontinuities.

3. Looking for travelling shock wave solutions to the full equations

In section 2 we discussed how semi-compact initial conditions to (5) and (6) evolve to novel
travelling wave solutions which have a discontinuity at the front of the advancing wave of
invading cells. In this section we look at the three-equation model (2)–(4) and discuss whether
or not it possesses similar solutions and whether or not the same methods of analysis are
directly applicable.

Transforming the full PDEs (2)–(4) into travelling wave coordinates (z ≡ x − at) yields,
after manipulation to reduce the fourth-order system to third order similar to that reducing
equations (8) and (9) to (10) and (11),

dU

dz

(
a3 − aCP

) = −a2U(1 − U) + UCP 2 +
UC

ε
(P − UC) (14)

dC

dz
= CP

a
(15)

dP

dz
= 1

εa
(P − UC). (16)

Note that if dP/dz is bounded thenP = UC+O(ε), and so (P−UC)/ε may be eliminated from
(14) by using (P −UC)/ε = a dP/dz = a d(UC)/dz+O(ε), giving the reduced system (10)
and (11) to leading order in ε → 0. The boundary conditions are (U,C, P ) → (1, 0, 0) as
z → −∞ (the malignant state) and (U,C, P ) → (0, ĉ, 0) as z → ∞ (the healthy steady state).
Local stability analysis suggests that these steady states are suitable boundary conditions. For
a given a, ε we now seek an orbit from (1, 0, 0) to U = P = 0 which determines ĉ.

In common with the (U0, C0) phase plane described in the last section, the (U,C, P )

phase space possesses a singular barrier. Equation (14) becomes singular, for any ε > 0, when

a2 − CP = 0. (17)

The singular barrier of the reduced model (where P0 = U0C0) was 2U0C
2
0 = a2, thus the full

equations have a different singular barrier. In fact, in the case ε = 0, equation (17) corresponds
to the ‘J’ curve U0C

2
0 = a2, which is the curve from which U0 profiles of the reduced model

were seen to jump down to zero. We are now working in three-dimensional phase space and the
singular barrier is a two-dimensional surface. The only points on the barrier which trajectories
may approach with a finite gradient are holes in the wall, where the singular barrier intersects
the U nullcline. The U nullcline now consists of the plane and surface (respectively)

U = 0 (18)

−a2(1 − U) + CP 2 +
C

ε
(P − UC) = 0. (19)

Thus there are two curves of holes in the wall, where these surfaces intersect the singular
barrier CP = a2; however, we do not expect physically relevant trajectories to cross
U = 0, C > 0, P = a2/C.

The change in the equation of the singular barrier means that if we transform the smooth
part of our blunt solution of the reduced model to this three-dimensional phase space, the
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trajectory does not cross the singular barrier of the full equations; rather, the smooth part of
the solution ends on the singular barrier. Thus our solution for U0(z), C0(z) and P0(z) could
form a valid leading-order outer solution for the full model, which takes the trajectory from the
malignant steady state U = 1, C = 0, P = 0 to the surface CP = a2. The question we now
ask is whether the connection to one of the family of healthy steady states on the C-axis may
be completed. Note that the jump values for U0, C0, P0 = U0C0 are given by U0C

2
0 = a2, so

that this outer solution appears to jump just as it meets the singular barrier.
First we consider the possible existence of shocks which would complete this connection

in a similar manner to our solution to the reduced model. The theory used here is described
in [2]. Equations (2)–(4) may be written in conservation form

∂

∂t




u

v

c

εp


 +

∂

∂x




uv

cp

0
0


 =




u − u2

0
−cp

uc − p


 (20)

where v(x, t) ≡ cx .
This conservation law has characteristic gradients λ1 = λ2 = λ3 = 0 � λ4 = v.

Therefore, the system is weakly hyperbolic, and the λ1, λ2 and λ3 fields are linearly degenerate.
The right eigenvector corresponding to λ4 is r4 = (1, 0, 0, 0) and therefore this field is also
linearly degenerate (since λ′

4(U) ·r4(U) = 0) and any discontinuities in solutions to this model
are contact discontinuities which propagate at speed λi .

For a hyperbolic system of the form, for U = (u, v, c, εp),

Ut + Ax = B (21)

where A, B are functions of U , x and t , the Rankine–Hugoniot jump condition in the kth
field [2] is [

U
]
sk = [

A
]

(22)

here
[
U

]
denotes the jump in U ,

[
A

]
the jump in A and sk the shock speed.

We ignore the stationary discontinuities in the λ1, λ2 and λ3 fields as being inconsistent
with travelling waves, and look for contact discontinuities in the λ4 field. If we assume that
the solutions are travelling waves moving forwards in space at speed a (i.e. sk = a) then the
jump conditions become

[U ]a = [UV ] (23)

[V ]a = [CP ] (24)

[C]a = 0 (25)

[εP ] a = 0. (26)

This implies that for a, ε �= 0

[P ] = [C] = [V ] = 0 (27)

and a non-zero jump in U only exists if V = a. Therefore, unlike the ε = 0 case, the P profile
must be continuous and the shock in the p0 outer solution must somehow be smoothed in a
rescaled inner layer.

We now look at the jumps which do exist in solutions of the full equations (2)–
(4). Combining the jump conditions (23)–(26) with (15) we see that at the discontinuity,
V = dC/dz = CP/a and V = a. Therefore, CP = a2 at the jumps of travelling wave
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solutions to the full equations (2)–(4) which travel at speed a, and so jumps may only occur
at the singular barrier defined by (17). The jump conditions do not determine the length of
the jump in U , but since the singular barrier may only be approached with a finite gradient at
a hole in the wall, the jump must be between the two curves of holes in the wall. Thus one
end point will have U = 0 and the other −a2(1 − U) + CP 2 + C(P − UC)/ε = 0. In fact,
once the trajectory hits the hole in the wall curve with U > 0, a jump in U only would force
the curve to ‘slide’ down the singular surface CP = a2 to the U = 0 plane with C,P and V

remaining constant.
Such a jump inU is consistent with the travelling wave solutions with an interface between

U > 0 and U = 0 seen with the reduced model. But we also need to consider the continuous
behaviour of the P(z) profile. The basic solution we are considering is an outer solution
trajectory leaving U0 = 1, C0 = 0, P0 = 0 and connecting to a hole in the wall of the full
system for U > 0. From this hole in the wall, U(z) can jump down to zero as required to
complete a travelling shock wave. The P profile is continuous, however, so after the jump
in U(z) occurs, P(z) > 0, and according to (16) will continue to increase. Therefore, the
trajectory will fail to connect to the U = 0, C = ĉ, P = 0 steady state. Even if U did not
jump all the way down to zero, equation (16) shows that for ε small, P would have to increase
significantly more rapidly than C, and then (14) shows that dU/dz < 0 so that U would
continue to decrease while P would continue to increase. Again no connection to (0, ĉ, 0) is
possible.

Therefore, there does not exist a travelling wave solution to the full equations which is of
the same form as the blunt interface solution of the reduced model. This is because the jump
is forced to occur parallel to, and along, the singular surface. In the next section we look at
numerical solutions to the full equations in order to ascertain what form of solutions evolve
stably from semi-compact initial data.

4. Numerical solutions of the full equations

We solve equations (2)–(4) numerically using a Kurganov–Tadmor [5] scheme. The Kurganov–
Tadmor scheme is a second-order accurate solver for hyperbolic equations. Other second-order
accurate methods such as Godunov’s method [6] require the solution of the equations along
the system’s characteristics. This can be awkward to implement for nonlinear systems such as
ours. This is not the case for the Kurganov–Tadmor scheme which simply requires derivatives
within the system to be calculated componentwise.

The initial conditions used are of the form

u(x, t = 0) =




1 if x < x1

1

2
cos

(
π (x − x1)

x2 − x1

)
+

1

2
if x1 � x � x2

0 if x > x2

(28)

c(x, t = 0) = ĉ (1 − u(x, t = 0)) (29)

p(x, t = 0) = 0. (30)

This is the form of initial data which were seen to evolve to the invading profile with a blunt
interface between u positive and u = 0 for the reduced model (5) and (6). When these initial
data were given to the full equation system, however, no travelling wave solutions evolved
and numerical instabilities appeared. Interestingly travelling wave solutions did appear when
the Lax–Friedrichs scheme [6] was used to solve these equations. Typical examples of these
solutions are shown in figure 5. The u(x, t) profile is no longer monotonic and some oscillatory



1664 B P Marchant et al

Figure 5. The u(x, 25) profile from Lax–Friedrichs numerical solutions of (2)–(4) evolving from
semi-compact u(x, t = 0). Here ĉ = 1.0 and ε = 0.1. (a) �x = 0.025; (b) �x = 0.0125. This
decrease in the mesh size (and hence decrease in the amount of numerical diffusion) causes the
amplitude of the oscillations at the front of the wave to increase.

behaviour has appeared at the front of the u(x, t) profile. The amplitude of these oscillations
increases as the steps in the mesh on which the equations are solved, �x and �t , are reduced.

The Lax–Friedrichs scheme is only first-order accurate and therefore effectively solves
the equations with small diffusion terms added. The size of these diffusion terms decreases
as the mesh is refined. It therefore appears that this small amount of diffusion in some way
stabilizes the solutions. In the next section we consider the effect of adding a small amount of
diffusion to Perumpanani et al’s [9] model.

5. Adding diffusion to the model

Our numerical evidence suggests that stable travelling wave solutions of (2)–(4) may only
evolve from semi-compact u(x, t = 0) initial data if a small amount of diffusion is added
to the model. This is biologically realistic, since (2)–(4) is merely an approximation to the
invasive situation in which diffusion has been neglected. We assume that this diffusion is
linear, so we now consider the system

∂u

∂t
= u(1 − u) − ∂

∂x

(
u
∂c

∂x

)
+ Du

∂2u

∂x2
(31)

∂c

∂t
= −pc + Dc

∂2c

∂x2
(32)

∂p

∂t
= 1

ε
(uc − p) + Dp

∂2p

∂x2
(33)

where Du, Dc and Dp are positive diffusion coefficients.
In this section we investigate a leading-order asymptotic approximation to (31)–(33) when

a small amount of diffusion of the invading cells is included in the system. We assume that
Du = O(ε) and Dc = Dp = 0. This is realistic for some invasive situations. The connective
tissue is a large immobile matrix so it is reasonable to assume that Dc = 0. Tsuboi and
Rifkin [12] stated that uPA, a protease produced by HT1080 cells, is bound to the extracellular
matrix and therefore does not diffuse so we take Dp = 0. In fact, we have found similar
results when Dp is non-zero. Aznavoorian et al [1] found that HT1080 melanoma cells had
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a haptotactic response more than 50 times greater than the random response, giving some
justification for a small value of Du.

Our blunt interface solution to the reduced model (5) and (6) forms the outer solution
u0, c0, p0 for this problem. In the region where ∂p0/∂t is unbounded a rescaled inner solution
ũ0, c̃0, p̃0 is required. Each end of this inner solution should match with the values of the outer
solution on either side of the shock, where we just take U = 0, C = ĉ0, P = 0 for the state of
the outer solution after the shock.

If we introduce the O(1) constant du = Du/ε, the travelling wave equations for the
system (31)–(33) become (with Dc = Dp = 0)(

CP

a
− a

)
dU

dz
= U(1 − U) − UC

εa2
(P − UC) +

UCP 2

a2
− εdu

d2U

dz2
(34)

dC

dz
= CP

a
(35)

dP

dz
= 1

εa
(P − UC). (36)

Here we have eliminated dC/dz (using (35)) from equation (34), and have eliminated dP/dz
(using (36)) so that (34) becomes the same as (14) when du = 0.

In regions where all the derivatives are bounded (34)–(36) may be approximated to leading
order in ε by (10) and (11), the travelling wave equations studied in [7]. Thus the introduction
of diffusion has no effect upon the leading-order outer solution.

When CP − a2 = O(ε) (i.e. close to the shock in the outer solution) however,
dU/dz = O (1/ε) and a rescaling of the z variable is required. Note that if a2 = O(1)
then the outer solution approximation is valid at the reduced model (5) and (6) singular barrier
(that is UC2 = CP = a2/2). The approximation is not valid as the solution approaches the
full model singular barrierCP = a2. In this inner region we introduce ζ such that z−z0 = εζ ,
where z → z0 as we approach the singular barrier. The leading-order inner equations are then
written as

(a3 − aC̃0P̃0)
dŨ0

dζ
= Ũ0C̃0(P̃0 − Ũ0C̃0) + a2du

d2Ũ0

dζ 2
(37)

dC̃0

dζ
= 0 (38)

dP̃0

dζ
= 1

a
(P̃0 − Ũ0C̃0). (39)

From (38) we see that C̃0 is a constant. The inner layer equations may be rewritten as a
first-order system by introducing the new variable W̃0 := dŨ0/dζ , so that we have

dW̃0

dζ
= Ũ0C̃0

a2du
(P̃0 − Ũ0C̃0) +

W̃0(C̃0P̃0 − a2)

adu
(40)

dŨ0

dζ
= W̃0 (41)

dP̃0

dζ
= 1

a
(P̃0 − Ũ0C̃0). (42)

Writing (40) in the form

adu
dW̃0

dζ
= Ũ0C̃0

dP̃0

dζ
+ C̃0P̃0

dŨ0

dζ
− a2 dŨ0

dζ
(43)
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and using C̃0 as a constant, we can integrate (40) to find that

W̃0 = dŨ0

dζ
= Ũ0C̃0P̃0

adu
− aŨ0

du
+ A (44)

for some arbitrary constant A. Thus we have reduced the study of the system in the inner layer
to the two equations (42) and (44).

We require that Ũ0, C̃0, P̃0 as ζ → ±∞ match with the values of U0, C0, P0 on either
side of the outer solution shock. Thus we require that C̃0 = ĉ0 throughout the inner layer,
and that W̃0 = 0 (that is, dU0/dz is bounded), Ũ0ĉ

2
0 = a2 and P̃0 = Ũ0ĉ0 as ζ → −∞, and

W̃0 = Ũ0 = P̃0 = 0 as ζ → ∞. Both of these points are steady states in the (Ũ0, P̃0) phase
plane for equations (42)–(44) when A = 0. Note that the conditions as ζ → −∞ imply that
A = 0 in equation (44). A phase plane connection between these points will be possible if the
steady state at ζ = −∞ (Ũ0 = a2/ĉ2

0, P̃0 = a2/ĉ0) has a non-trivial unstable manifold and
the steady state at ζ = ∞ (Ũ0 = 0, P̃0 = 0) has a non-trivial stable manifold.

The Jacobian of (42) and (44) is

J(Ũ0,P̃0)
=




ĉ0P̃0 − a2

adu

Ũ0ĉ0

adu

− ĉ0

a

1

a


. (45)

At the ζ = ∞ steady state this becomes

J(Ũ0,P̃0)
=




−a

du
0

− ĉ0

a

1

a


. (46)

Thus this steady state is a saddle point with eigenvalues λ = 1/a and −a/du. The trajectory
may approach the healthy steady state along the stable eigenvector

(
1, ĉ0du/(du + a2)

)
.

Therefore, as ζ → ∞

Ũ0 = B exp

(
− a

du
ζ

)
(47)

C̃0 = ĉ0 (48)

P̃0 = B
ĉ0du

du + a2
exp

(
− a

du
ζ

)
(49)

where B is an arbitrary constant.
At the ζ = −∞ steady state the stability matrix becomes

J(Ũ0,P̃0)
=




0
a

ĉ0du

− ĉ0

a

1

a


. (50)

This matrix has eigenvalues

λ = 1 ±
√

1 − 4a2/du

2a
. (51)

Thus the eigenvalues have a positive real part, and so this steady state is unstable and a smooth
connection between the values at each end of the outer solution shock is possible.
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Figure 6. An illustration of the phase plane argument described in the text as to why a connection
between the steady states in the (Ũ0, P̃0) phase plane must exist. The trajectory τ leaves the origin
along the unstable manifold and enters the region bounded by the Ũ0 nullcline (labelled ‘UN’) the
P̃0 nullcline (labelled ‘PN’) and the line P̃0 = µŨ0 (labelled ‘B’) where µ < ĉ0du/(du + a2).
Along the P̃0 nullcline and the line P̃0 = µŨ0 the vector field points into this region. Therefore,
τ may only leave the region by crossing the Ũ0 nullcline. This occurs at a value of Ũ0 = U∗ say.
If U∗ = a2/ĉ2

0 then the connection is complete. Otherwise, U∗ > a2/ĉ2
0, and the phase plane

structure causes τ to spiral to the steady state as shown above. The arrows indicate the direction
of the vector field.

To confirm that such a connection exists it is necessary to look at the global structure of
the phase plane. With this aim we rewrite (42) and (44) in terms of ζ ∗ = −ζ/a

dŨ0

dζ ∗ = Ũ0ĉ0

du

(
a2

ĉ0
− P̃0

)
(52)

dP̃0

dζ ∗ = Ũ0ĉ0 − P̃0. (53)

The required connection now corresponds to a trajectory which leaves (Ũ0 = 0, P̃0 = 0) and
terminates at (Ũ0 = a2/ĉ2

0, P̃0 = a2/ĉ0). We have already shown that the origin is a saddle
point and therefore exactly one trajectory leaves it along the unstable (in the ζ ∗ coordinate
system) manifold (1, ĉ0du/(du + a2)). We wish to prove that this trajectory, τ , terminates at
(Ũ0 = a2/ĉ2

0, P̃0 = a2/ĉ0). We consider a line in the (Ũ0, P̃0) phase plane, P̃0 = µŨ0 where
µ < du/(du + a2). Both dŨ0/dζ ∗ and dP̃0/dζ ∗ can be shown to be positive on this line in the
region where P̃0 < a2/ĉ0.
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Figure 7. The u(x, t = 20) profile of a numerical travelling wave solution to (31)–(33) evolving
from semi-compact initial conditions. The parameters are ε = 0.01, ĉ = 1.0 and Du = 0.005 (i.e.
du = 0.5). The numerically measured wavespeed is a = 0.667. The oscillation to the left of the
smoothed shock can be clearly seen.

Referring to figure 6, upon leaving the origin, the trajectory τ enters the region which
is bounded by the Ũ0 nullcline (P̃0 = a2/ĉ0), the P̃0 nullcline (P̃0 = ĉ0Ũ0) and the line
P̃0 = µŨ0. The trajectory must stay in this region until it reaches P̃0 = a2/ĉ0, at Ũ0 = U ∗

say. If U ∗ = a2/ĉ2
0 then the connection has been completed. Otherwise, U ∗ > a2/ĉ2

0,
and the form of the phase plane means that τ must spiral round the steady state, passing
through the half-lines P̃0 = ĉ0Ũ0 (P̃0 > a2/ĉ0), P̃0 = a2/ĉ0 (Ũ0 < a2/ĉ2

0) and P̃0 = ĉ0Ũ0

(P̃0 > a2/ĉ0) in that order, thus re-entering the original region. Then Ũ0 and P̃0 must
increase along τ until P̃0 = a2/ĉ0 again. Since τ cannot cross itself, this must occur at a
Ũ0 value less than U ∗. By repeating this argument we can show that τ eventually spirals in to
(Ũ0 = a2/ĉ2

0, P̃0 = a2/ĉ0).
Returning to ζ coordinates we have shown that the values of Ũ0, C̃0 and P̃0 at ζ = ±∞

match with the values of U0, C0 and P0 on either side of the outer solution shock. Furthermore,
the behaviour close to the ζ = −∞ invading front steady state can also explain the oscillatory
behaviour seen in the u profile in figure 5, since when du < 4a2 the eigenvalues (51) are
complex and the steady state (Ũ0 = a2/ĉ2

0, P̃0 = a2/ĉ0) is a spiral. The amplitude of these
oscillations increases as du → 0 and if du = 0 the eigenvectors become singular and no stable
travelling wave solution exists. For du > 4a2 the steady state is an unstable node and there are
no oscillations in the u and p profiles, and this would be expected for a diffusion-dominated
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Figure 8. The u(x, t = 20) profile of a numerical travelling wave solution to (31)–(33) evolving
from semi-compact initial conditions. The parameters are ε = 0.01, ĉ = 1.0 and Du = 0.02
(i.e. du = 2.0). The increased diffusion has caused the wavespeed to rise to a = 0.690 and the
oscillation to the left of the smoothed shock is no longer present.

process. We have thus shown that the blunt interface solution described in section 2, forms a
leading-order outer solution to a valid travelling wave solution of the full model with diffusion
(31)–(33).

If we consider a specific example, we found in [7] that when ĉ0 = 1, the wavespeed,
a0, of the blunt interface solution ≈ 0.66 and thus the critical value of the rescaled diffusion
coefficient, du ≈ 1.76 or Du ≈ 1.76ε. In figure 7 we confirm that oscillations are present at
the front of the u(x, t) profile for du significantly less than 1.76. In figure 8 we see that these
oscillations are no longer present for du = 2.0. The exact value of du at which the oscillations
disappear is difficult to assess from numerical solutions, but upon magnifying the solution
there is some evidence of their presence when du = 1.4. Both of these profiles bear a strong
resemblance to the blunt interface solutions (figure 1) except in the rescaled inner layer. These
numerical solutions are calculated by adding an explicit term to represent the diffusion to the
Kurganov–Tadmor [5] scheme used in section 4.

As du and ε decrease, the wavespeed of the travelling wave solution which evolves
from semi-compact initial data approaches the wavespeed of the blunt solution to (5) and
(6) as illustrated in figure 3. Here, for relatively large ĉ, the wavespeed of the three-variable
model closely follows the approximation derived in [7]. For smaller values of ĉ however,
the haptotactic flux u dc/dx is smaller and diffusion dominates haptotaxis. Therefore, as ĉ is
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reduced the wavespeed decays towards 2
√
Du, the wavespeed of the minimum speed equation

to the Fisher equation and other diffusion-dominated processes.

6. Conclusions

In this paper we have studied a three-equation model of malignant invasion, which initially
neglected diffusion in order to focus upon the effect of haptotaxis in the process of cells
invading surrounding tissue by producing degradative enzymes. We found, however, that a
small amount of diffusion in the model has a vital stabilizing effect on the blunt invasion profiles
that we expect to be of most physical significance. Aznavoorian et al [1] have demonstrated
experimentally the existence of haptoxis-dominated motion of particular tumour lines such as
HT1080 melanoma cells.

In previous work [7] we approximated this three-equation model without diffusion (2)–
(4) by a two-equation model (5) and (6), and found that novel discontinuous travelling wave
solutions evolved from semi-compact initial data. At the front of these waves was a blunt
interface or shock which took the concentration of invading cells from a positive value down to
zero. In contrast to the conventional invading tails from diffusion-dominated equations which
decay exponentially [3], these profiles have no cell density ahead of the blunt invasion face.

In the full model, when the diffusion coefficients and the parameter ε are small, these
blunt solutions were a good approximation to the solution profiles of the full model with added
diffusion (31)–(33), except for local detail at the blunt interface. At the invasion crest the
behaviour of the solution profile was highly dependent upon the amount of diffusion, with a
spike and oscillations growing as the diffusion is reduced. The wavespeed of the blunt solutions
to the reduced model could be estimated from behaviour in a two-dimensional phase plane,
and provided an accurate lower bound on the wavespeeds evolving from (31)–(33) for small
diffusion and fast protease adjustment.

This work illustrates that the solutions to the reduced model are more than just a
mathematical curiosity, since they do provide important information about the higher-order
and more physically useful system (31)–(33). This work may also be relevant to other systems
where the dominant motility mechanism is an advective (hyperbolic-like) term rather than
diffusion.

The surprise here is that the solutions can stably evolve and steadily invade even though
the solution profiles are constructed from ordinary differential equations that have singular
behaviour zones in several regions of the solution profiles. These near singular solutions (for
small diffusion and fast protease adjustment) have the slowest invasion speeds and the most
interesting ‘near-shock’ profiles.
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