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Angiogenesis, the process by which new blood capillaries grow into a tissue from surround-
ing parent vessels, is a key event in dermal wound healing, malignant-tumour growth, and
other pathologic conditions. In wound healing, new capillaries deliver vital metabolites
such as amino acids and oxygen to the cells in the wound which are involved in a com-
plex sequence of repair processes. The key cellular constituents of these new capillaries
are endothelial cells: their interactions with soluble biochemical and insoluble extracellu-
lar matrix (ECM) proteins have been well documented recently, although the biological
mechanisms underlying wound-healing angiogenesis are incompletely understood. Con-
siderable recent research, including some continuum mathematical models, have focused
on the interactions between endothelial cells and soluble regulators (such as growth fac-
tors). In this work, a similar modelling framework is used to investigate the roles of the in-
soluble ECM substrate, of which collagen is the predominant macromolecular protein. Our
model consists of a partial differential equation for the endotheliai-cell density (as a func-
tion of position and time) coupled to an ordinary differential equation for the ECM density.
The ECM is assumed to regulate cell movement (both random and directed) and prolifera-
tion, whereas the cells synthesize and degrade the ECM. Analysis and numerical solutions
of these equations highlights the roles of these processes in wound-healing angiogenesis. A
nonstandard approximation analysis yields insight into the travelling-wave structure of the
system. The model is extended to two spatial dimensions (parallel and perpendicular to the
plane of the skin), for which numerical simulations are presented. The model predicts that
ECM-mediated random motility and cell proliferation are key processes which drive an-
giogenesis and that the details of the functional dependence of these processes on the ECM
density, together with the rate of ECM remodelling, determine the qualitative nature of the
angiogenic response. These predictions are experimentally testable, and they may lead to-
wards a greater understanding of the biological mechanisms involved in wound-healing
angiogenesis.
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1. Introduction

Cells of all living organisms require a variety of biochemical nutrients in order to function
normally and to respond to environmental signals. In tissues larger than a critical size,
diffusion of these substances is an inadequate supply method and a circulatory system is
needed. Important examples of this phenomenon include solid-tumour and healing-wound
tissue, both of which are restricted to a linear dimension of a few millimetres until they
are invaded by blood capillaries (Alberts et al., 1989; Clark, 1993; Folkman & Shing,
1992).

Angiogenesis, defined as the ingrowth of a capillary network from pre-existing ves-
sels in the surrounding tissue, may therefore be either beneficial (as in wound healing)
or detrimental (as in tumour growth). Thus, increasing understanding of the biological
mechanisms involved in angiogenesis and of how these processes are regulated are impor-
tant steps in improving clinical treatments for malignant tumours and abnormally healing
wounds.

In this paper, we propose a continuum mathematical model for wound-healing angio-
genesis which can be used to investigate the regulatory roles of the solid-state extracellular
matrix (ECM) in the behaviour of blood capillaries. .

¥

1.1 Biological background

Mammalian skin cells obtain vital metabolites such as oxygen from an extensive capil-
lary network throughout the dermis, which is connected to larger arteries and veins in the
subdermal layers (Mast, 1992). Consequently, the dermal response to injury must not only
restore this capillary network but must also provide extra nutrients for the increased num-
ber of metabolically active cells involved in repair (Arnold & West, 1992). Angiogenesis,
which typically parallels fibroplasia and wound contraction (from a couple of days to a
couple of weeks post-wounding), is therefore a key event in the healing of full-thickness
dermal excisional skin wounds (Clark, 1993).

In normal unwounded skin, blood capillaries constitute an essentially quiescent net-
work of endothelial cells which are organized into tubular structures. Laminae of insoluble
extracellular matrix (ECM) proteins known as the basement membrane coat the exterior
of blood capillaries and are believed to maintain endothelial stability, impermeability,
and resistance against the hydrostatic pressure of the blood flow within vessels
(Ryan, 1989).

An early event in wound angiogenesis is the proteolytic degradation of the basement-
membrane ECM of vessels around the wound margins in response to wound-induced an-
giogenic stimuli. These signals probably arise from the enzymatic cascades which char-
acterize the early, inflammatory phase of repair (Clark, 1993), although wound-induced
vessel dilation may also be significant (Whalen & Zetter, 1992).

At vessel locations where the basement membrane has been degraded, capillary endothe-
lial cells become activated, assuming a migratory and proliferative phenotype (Folkman &
Shing, 1992). A few cells initially migrate out from the capillary wall towards the wound
site, possibly mediated by basement-membrane fragments, by exposure to the connective-
tissue ECM, or in response to (diffusible) angiogenic factors in the wound (Iruela-Arispe
& Sage, 1993; Mardri & Pratt, 1988).
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Immediately behind the advancing endothelial bud, cells proliferate and differentiate
into tubular morphologies, thereby forming a new capillary (Ingber & Folkman, 1989a).
Cells further behind the leading tip also begin to synthesize new ECM substances—notably
collagen, the predominant protein of normal dermis.

Blood flow is restored when two new capillary tips join to form a closed loop. Secondary
buds may sprout from these new vessels via similar mechanisms of endothelial-cell activa-
tion, migration, and proliferation. In this way, the wound tissue becomes endowed with a
dense network of fine blood capillaries which, in time, develop into mature, quiescent ves-
sels with increasing diameters and ECM (especially basement membrane) deposition. The
total number of vessels declines from its peak around a week post-wounding, although the
mechanisms of vascular maturation and regression are unclear (Dyson et al., 1992; Whalen
& Zetter, 1992).

The factors which regulate wound angiogenesis have attracted considerable recent re-
search (for reviews see Arnold & West, 1992; Folkman & Shing, 1992; Whalen & Zetter,
1992); they may be broadly subdivided into the following two categories:

(1) soluble signals, cytokines (for example, fibroblast growth factor and platelet-derived
growth factor), metabolic gradients (for example, in oxygen and lactate), and pro-
teases (for example, collagenase, plasminogen activator, ant urokinase).

(i1) insoluble signals, ECM substrate (for example, fibrillar collagen and fibronectin)
and physical forces (the morphology and behaviour of capillary endothelial cells is
influenced by mechanical stresses in vitro).

Although many factors have been shown to affect endothelial-cell function in culture,
their roles in vivo are difficult to assess experimentally, because of the multiple direct
and indirect interactions between individual components of the overall wound-healing
process.

Soluble (or diffusible) angiogenic regulators have been more widely studied. Gradi-
ents of metabolic factors (such as oxygen and lactate) across a wound are believed to
regulate endothelial-cell activity, whilst growth factors may stimulate cell movement (via
chemotaxis), proliferation, and ECM synthesis (Drucker et al., 1996; Jonsson ez al., 1991;
Knighton et al., 1982). Proteolytic enzymes also mediate cell-ECM interactions such as
attachment, detachment, and force transduction between the intracellular cytoskeleton and
the ECM (Ingber, 1993; Ryan, 1989).

The fibrillar ECM is undoubtedly an important local regulator of angiogenesis. For ex-
ample, the concentrations of collagen and/or fibronectin substrates may determine whether
cultured capillary endothelial cells migrate, proliferate, or differentiate into tubular,
capillary-like structures (Ingber & Folkman, 1989a: Ryan, 1989). These substrates have
also been demonstrated to promote cell movement by haptotaxis, haptokinesis, and con-
tact guidance in vitro (Dickinson & Tranquillo, 1993; McCarthy ez al., 1988). In addition,
inhibition of ECM remodelling modulates angiogenesis (Ingber & Folkman, 1988). The
further roles of the ECM in angiogenesis include the mediation of growth-factor-driven
endothelial-cell behaviour (Iruela-Arispe & Sage, 1993; Sato et al., 1993) and support for
the mechanical effects of cellECM interactions (for example, cell traction) which méy or-
chestrate wound healing via directional cues and ECM-fibre ali gnment (Clark, 1993; Ryan,
1989; Stopak & Harris, 1982; Vernon & Sage, 1995).
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1.2 Mathematical-modelling background

Recently, Chaplain and colleagues have proposed continuum mathematical models for
the (diffusible) chemical regulation of tumour angiogenesis (Byrne & Chaplain, 1995;
Chaplain & Stuart, 1991a,b). Specifically, a generic tumour angiogenesis factor is secreted
by the tumour, diffuses freely in the tissue, decays naturally, and is metabolized by cap-
illary endothelial cells. In addition, these cells proliferate and migrate chemotactically
in response to the chemical. These dynamics are modelled using two coupled nonlinear
partial differential equations, governing: (i) the chemical concentration, and (ii) the den-
sity of capillary-tip endothelial cells. Variants of the basic model framework account for

-capillary-loop formation and for the dynamics of intact blood vessels behind the leading
capillary tips.

Given the recognized biological similarities between tumour and wound angiogenesis
(Chaplain & Byrne, 1996; Folkman & Shing, 1992), the above model framework may also
be relevant to wound healing, wherein growth factors released at the wound site by in-
flammatory cells perform analogous roles to the tumour angiogenesis factor. Some authors
have now considered this application of the ‘generalized’ chemically regulated angiogen-
esis model (Chaplain & Byrne, 1996; Pettet et al., 1996). '

g,
g 2o
2. A new mathematical model

Previous mathematical models have neglected the ECM involvement in angiogenesis. In
this work, we develop and analyse a new model, based on a framework similar to that
outlined above, to investigate how interactions between capillary endothelial cells and the
solid-state ECM substrate may regulate wound angiogenesis. Our model has a relatively
simple form, and represents a first attempt to simulate the ECM-endothelial-cell interac-
tion during wound angiogenesis. Potential extensions to more realistic representations are
discussed in Section 6. :

2.1 Framework and variables
The independent variables are as follows.

(i) Time, ¢, measured from the onset of the proliferative phase of repair when angiogen-
esis commences—usually 2 or 3 days post-wounding (Clark, 1993).

(ii) Spatial position, r; we neglect the effects of wound depth and consider the one-
dimensional (1D) geometry in the plane of skin suggested by a long rectangular (or
‘linear’) wound, where —L < x < L defines the wound space, with the wound
centre at x = 0. The unwounded dermis occupies the region |x| > L.

The dependent variables must, at least, represent the blood capillaries and the insoluble
ECM. In order to simulate their interactions within the context of a healing wound rather
than in the immediate vicinity of individual capillaries, these quantities are defined as local
spatial continuum averages:

(i) capillary endothelial-cell density, n(x, t); note that this term does not account for the
capillary orientation, which would require a more complicated vector-field represen-
tation (which is beyond the scope of this paper);
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(ii) solid-state fibrillar ECM density, m(x, t), whose properties are modelled on those of
collagen, the predominant structural protein of the dermis.

2.2 One-dimensional model equations

As detailed above, we consider the following, fundamental biological interactions between
(capillary endothelial) cells and the (collagenous) ECM that are known to occur during
wound angiogenesis:

Cells, unbiased migration mediated by the ECM (haptokinesis), biased migration up ECM
density gradients (haptotaxis), and mitotic division (proliferation);
ECM, production (biosynthesis) and degradation (proteolysis) by cells.

Thus, the ECM regulates cell movement and proliferation—experimentally, these effects
are stimulatory at low ECM densities and inhibitory at relatively high densities (Dickin-
son & Tranquillo, 1993; Nusgens et al., 1984; Weinberg & Bell, 1985; Yoshizato et al.,
1985).
The above considerations suggest the following model equations, which govern the cell
and ECM densities: )
}

haptotaxis and haptokinesis
P 5 % 3 ~ proliferation
an a m n PO EE
— + — |C(m)n— — D(m)— | =[A(m) — Bnln = f(n, m), )
at  ox dx ax
production and
degradation
3m — A,
a7 = (P—-Qm)n=gn,m). 2)

The model parameters are all non-negative and the cellular functions also satisfy the fol-
lowing particular constraints.

(i) The haptotactic coefficient, C(m) = Co(K¢ + m)~2, is derived from kinetic analy-
sis of a model mechanism for the cell-surface-receptor—extracellular-ligand binding
dynamics (Sherratt, 1994); Cy > 0 and K¢ > 0.

(ii) The haptokinetic coefficient, D(m) = Dom(K3 + m?)~!, is suggested by specific
experimental data (Dickinson & Tranquillo, 1993) and by the intuitive arguments that
cells cannot move in the absence of a substrate for attachment (so D = 0 whenm = 0)
and that cell movement is restricted when the ECM becomes sufficiently dense (so
D — Q0Qasm — o0); Dy > 0and Kp > 0.

(iii) The cell proliferation rate, A(m) = Aom(K3 + m?)~', is also motivated by experi-
mental findings (Weinberg & Bell, 1985; Yoshizato et al., 1985) and by biological ar-
guments similar to those for the haptokinetic coefficient (above); Ag > Oand K4 > O.

2.3 End conditions

The following boundary conditions are associated with equations (1) and (2). By symmetry,
solutions need only be defined on the semi-infinite domain x > 0 subject to zero flux at
the wound centre; that is, C(m)n dm/3x = D(m) dn/dx at x = 0. Also, the cell and ECM
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variables remain at their normal dermal values far away from the wound, so n — ng and
m — mg (say) as x — Q.

Initially, there are no endothelial cells and a low level of ECM (due to the early depo-
sition of provisional matrix) inside the wound, so n = 0 and m = m;y;; (say) at ¢t = O for
0 < x < L, with the unwounded values n = ng and m = my outside the wound (x > L).
Note that 0 < m;g;; < myg.

2.4 Existence and stability of equilibria

Spatially uniform equilibria of equations (1) and (2) are given by the solutions of f(n, m) =
g(n, m) = 0. Their local stability is deduced from linear analysis, and the global stability is
investigated using standard phase-plane analysis of the spatially independent system. The
following results are obtained.

(i) A continuum of unstable ‘acellular’ states, in which n = 0 and m is unspecified.

(i) A globally stable state, in which n = A(m)/B and m = P/Q. These values are
positive, and equated to no and my, respectively, so that this ‘dermal’ steady state
represents normal, unwounded tissue. -

These results imply that the initial ‘wound state’ evolves tow}ards the same dermal state as
existed before injury, which is indicative of wound healing. The spatiotemporal nature of
these dynamics and the roles of the biological processes in the model will be investigated
in the remainder of the paper.

2.5 Nondimensionalization

The variables and parameters in equations (1) and (2) and their associated end conditions
are transformed into dimensionless quantities via the following scalings:

~ ~ X ~ n ~ m - C(m)T ~ D(m)T
t= T =7 = =, = s D = )
TOTD "Ta T XM ™=
a(ﬁi) = A(m)T, ﬂ = BnoyT, €= On,T, ';l?rri( — minit.

mo

The time scale, T, is defined as 1 day. Equations (1) and (2) thus become (omitting the
tildes for notational clarity)

on d

a d
m + I (X(m)"'é% - D(m)gg') = [a(m) — Bnln = f(n, m), 3)

‘;_':' = e(1 — m)n = g(n, m). @)

Note that the dimensionless unwounded dermal equilibrium is (n, m) = (1, 1) since 8 =
a(l).

Next, numerical simulations of the dimensionless model are presented and the mathe-
matical structure of these solutions are analysed.
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FIG. 1. A numerical simulation of vascular growth into a wound. The wavefronts (a, b) of the endothelial-cell
density and (c, d) of the ECM density move into the wound in parallel. We plot the‘solu;ions attime r = 0 and
at ten successive unit intervals. The wound space is assumed to be one dimensional, so that we are modelling the
healing of an incisional wound. The point x = 1 corresponds to the initial wound edge, and x = O corresponds
to the wound centre. The model equations (3) and (4) were solved numerically using methods described in the
Appendix. The end conditions are given in the text. The parameter values were: (a,c) Dy = 0.005, xp = 0.5,
xo = 0.001, x, = 0.5, a9 = 1.01, ke =01, 8 =1¢€ =1, and mipiy = 0.1; (b, d) the same except that
€ = 0.2, representing slower ECM kinetics. The finite-difference approximation mesh sizes, Ax = Ar = 0.005,
are considerably smaller than the bounds for numerical stability, in order to yield high accuracy. The arrows
indicate the direction of the wavelike propagation of the cells and ECM towards the wound centre.

3. Numerical simulations

Numerical solutions of equations (3) and (4) with the nondimensional end conditions are
obtained using a semi-implicit finite-difference scheme (see the Appendix for details).

A typical numerical simulation of the model is presented in Fig. 1, which shows the
endothelial cell density, n, and the ECM density, m, propagating into the wound space
(0 < x < 1) in a wavelike form. The key features of these dynamics are:

(1) the cell and ECM profiles appear to evolve with approximately constant speed and
form, after an initial transient and before the profiles reach the wound centre (x =0);
(ii) the cell density increases above its normal dermal value (unity) in the wavefront before

gradually returning to its unwounded level, whereas the ECM profile is monotonically
increasing;
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(iii) the gradients of the profiles are steeper in the wavefront than in the waveback.

These phenomena simulate some important qualitative aspects of wound angiogenesis
in vivo; in particular, endothelial-cell number increases sharply prior to a gradual regres-
sion which parallels ECM accumulation. In Section 8, we will discuss in vitro procedures
which could be used to replicate these results in detail.

Figure 1 also illustrates that these features are more pronounced, and more realistic,
when the ECM kinetics rate parameter € is smaller. In wound healing, ECM remodelling
occurs on a slower time scale than cellular proliferation (Clark, 1988), implying that this
parameter should be relatively small in magnitude (Olsen et al., 1995).

4. Travelling-wave analysis

The forms of the numerical solutions of the model suggest that profiles with constant speed
and form may evolve from the initial conditions. If so, then the dependence of these at-
tributes on the biological parameters in the model are of central importance in gaining
insight into ECM regulation of wound angiogenesis. Travelling-wave solutions have been
observed in other nonlinear parabolic partial-differential-equation models in cellular bio-
logy and wound healing (Byrne & Chaplain, 1995; Dale et'al., 1994; Olsen et al., 1996;
Sherratt et al., 1992).

4.1 Existence of travelling-wave solutions

We begin our analysis by considering the possible speeds for which the model equations
have wave solutions of the form observed in simulations of wound healing (see Fig. 1). This
is an essential precursor to determining an expression for the wave speed in terms of the
model parameters. Such an expression is discussed further in Section 6, and it corresponds
biologically to the predicted speed of vascular ingrowth.

Travelling-wave solutions are investigated first by the variable transformations

z=x+ct, N@) =n(, 1), M) =m(x,t),

where ¢ > 0 is the constant wave speed. Substituting into equations (3) and (4) yields the
following system of ordinary differential equations:

cN'+ [X(M)NM' — DIM)N'Y = f(N, M) = [«(M) — NIN, 5)
cM' = g(N, M) = e(1 — M)N, ' (6)

where the primes denote differentiation with respect to z.

If travelling-wave solutions exist, then a heteroclinic trajectory must exist from the
‘wounded equilibrium’ (0, 0, m;,;;) to the ‘dermal equilibrium’ (1,0, 1) in (N, N', M)-
space, lying wholly in the biologically realistic region N > 0, M > 0. The existence of
such a trajectory necessitates at least one unstable eigenvalue at (0, 0, mi,;;), and at least
one stable eigenvalue at (1,0, 1). ’

Standard linear-stability analysis of equations (5) and (6) in (N, N’, M)-space (see, for
example, Murray, 1989; Edelstein-Keshet, 1988) reveals that the eigenvalues at (0, 0, mjgi,)
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are

¢ £ /e — AD (i) (Minir)

0,
2D (M)

Since ¢ and D are positive at least one eigenvalue is positive, as required. If some eigen-
values are complex, however, then locally oscillatory solutions imply that N(z) < 0 for
some z, which is biologically inadmissible. Thus, the eigenvalues must be real, giving the
following minimum wave-speed condition:

¢ 2 Cmin = 24/ D(migi ) (Mini) . )

At (1,0, 1), there is one real positive and two real negative eigenvalues for all values of c,
which does not impose further constraints on the wave speed. Thus, travelling-wave solu-
tions may exist for any wave speed greater than cmin given in (7). In Section 6, we assess
whether the theoretical minimum wave speed, cmin, is observed in numerical simulations.
We also investigate the effects of haptotaxis (coefficient x); the nonlinear haptotactic term
is absent from the expression for cmin because condition (7) is derived from linear analysis
(above).

~

4.2 Perturbation approximations

Having established the possible existence of travelling-wave solutions with a speed boun-
ded below by cmin, we now use perturbation theory to study the form of the wave solutions.
The aim of this subsection is to determine the way in which features such as the peak in the
endothelial-cell density and the slope of the ECM wave depend on the model parameters.
Mathematically, our approach is motivated by the dependerice of the waveforms on the
small parameter ¢ in the numerical simulations, as illustrated in Fig. 1. Recall that the size
of € reflects slow rates of ECM synthesis and degradation.

The leading order (¢ = 0) approximation to equations (6) and (7) implies that M’ = 0,
and hence that M (z) is constant. This fails to satisfy the boundary conditions that M —
mini as z = —oo and that M — 1 as z — o0, however, so the perturbation € > 0 is
singular.

Figure 1 (and similar numerical simulations) reveals that as € decreases the domain
of influence, which is defined formally in the legend to Fig. 2, of the dynamics increases
behind the wave. This suggests that in the waveback, z can be rescaled so that the domain
of influence is invariant in the £-domain, where £ = £2(¢€)z and £2 is a positive increasing
function of € which is to be determined. By quantifying how the domain ‘of influence
depends on € in numerical simulations, as illustrated in Fig. 2 we can deduce that 2 ~ e,
so that an appropriate transformation in the waveback is £ = €z; that is, the width of the
ECM wavefront is inversely proportional to the rate of ECM dynamics. We will now use
this rescaling to determine the qualitative form of the waves, by considering the solution
separately in the wavefront and the waveback, and then matching these two solution parts
using standard techniques.

4.2.1 Wavefront approximation. In the wavefront, the nontransformed equation (7) im-
plies that M (2) = my;, to lowest order, using the boundary condition far ahead of the wave.
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FIG. 2. (a) Numerical measurements of §2 for different values of €. The parameter € reflects the rate of ECM
kinetics (synthesis and degradation by cells), and is consequently small, while £2~! represents the width of the
wave of the ECM density m associated with vascular ingrowth. For a fixed ¢, the spatial domain of influence,
2271, is defined as the difference X0.9 — Xoa, as illustrated in (b), where x, is determined by m(x,, t) = s, at
some given time ¢ which remains fixed throughout these simulations. The profiles of n and m given in Fig. 1
confirm that values of m between 0.4 and 0.9 lie wholly within the waveback. By plotting £2 against e, it is
evident that £2 and € are approximately proportional. Note that the protracted spatial domain —10< x< 1.2 was
used to accurately calculate £2 and that the wave speed was independent of ¥ in these numerical experiments, so
that measuring £2 in terms of x instead of z is valid (r was kept fixed throughout). The calculation presented in
this figure motivated our choice of scaling in the perturbation analysis.

Equation (6) then simplifies to

cN' = D(mini)N" + [a(mini) ~ BNIN, ®)
which is the Fisher equation (Fisher, 1937), whose travclling-Wave behaviour has been
extremely well studied (Murray, 1989).

4.2.2  Waveback approximation. In the waveback, the equations are expressed in terms
of & via the transformation £ = €z (as discussed above), leading to

NE) =alM®))/B

from equation (6) and to

dM
aE =(1-M)a(M)/B

from equation (7). Using the functional form a(M) = ayM /(&2 + M?), this ordinary
differential equation can be solved implicitly to give

kaInM — (k2 4+ 1) In(l = M) — M = ap(& — £0)/8,
where & is an arbitrary constant of integration to be determined by matching the solutions

in the two portions of the domain (see below). Note that the boundary conditions M — 1
and N — 1 as & — oo are satisfied.
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F1G. 3. Plots of the wave profiles: (a) N(z) with ¢ = 0.5, (b) N(z) with e = 0.1, (c) M(z) withe = 0.5,
and (d) M(z) with ¢ = 0.1. Here N and M denote the waveforms for endothelial cells and ECM; z is the
travelling-wave coordinate. The parameter ¢ reflects the rate of ECM kinetics, and is thus small. (—) The lowest-
order approximations given by (10) and (11) and (- - -) numerical solutions of equations (3) and (4) similar to
those given in Fig. 1. This figure shows that, even to leading order, the approximate solutions determined by our
perturbation methods capture the qualitative form of the solution. Higher-order correction terms are required to
obtain a better quantitative fit.

4.2.3 Lowest-order matching. Denoting the lowest-order wavefront approximations by
Nf(z) and M(z), and similarly, N®(£) and M®(£) for the waveback, we can match the two

solutions at some point in the wave profile by continuity at that point; that is, Nf = N® and
M® = MP®. Thus,

M® = min, N® = a(minir)/B.
Taking the matching point at £ = 0 yields the following implicit formula for M®(¢):
M" (&) 1—- M)
<1n (i) _ &2+ Dln (———5) — [MPE) — mig] = a0k /B. )
Minit 1 — Minic
The complete leading-order composite solution is the sum of the wavefront and waveback
solutions minus the common parts, which are m;y;, for M and a(m;y;)/B for N, giving

N(z) = N'(z) + a[M®(€2)]/B — a(minic) /B, (10)
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FIG. 4. A schematic cross section of the rectangular, full-thickness, dermal wound model, showing the epidermal,
dermal, and subdermal layers of the skin. The dermis is defined as —00 < x < 00, 0< y< yb and the wound space
isgivenby —1 < x < 1,0<y<»w.

M(z) = M®(ez). (1

A}

Here, Nf(z) is the solution of the Fisher equation (8) and M?(ez) is the implicit solution of
equation (9). Because the domain is contracted only in the' Waveback (that is, the domain
transformation is one sided), this composite solution is only valid in the waveback. The
wavefront solutions are simply N'(z) and M'(z), in the nontransformed domain.

These lowest-order approximations are compared with numerical solutions of the model
equations (3) and (4) in Fig. 3, for two values of €. The accuracy of these approximations
improves when ¢ is smaller, as expected. In addition to its role as an approximation, the
perturbation approach also yields insight into the structure of the travelling-wave solutions;
for example, (at least) for small ¢, the cell density in the waveback is closely related to the
form of the cell proliferation term, a(m). ’

5. Two-dimensional simulations

So far, we have assumed that wound angiogenesis occurs in one spatial dimension, with
cells and the ECM propagating towards the wound centre. In practice, however, a signifi-
cant component of dermal healing proceeds from the base of the wound towards the upper
surface. Subdermal tissues contain a well-developed blood-vessel network, and it is be-
lieved that a large proportion of new capillaries originate from this source during wound
angiogenesis. '

Here, a two-dimensional (2D) analogue of the model is formulated for wounds with
a rectangular cross section, as illustrated in Fig. 4. Numerical simulations are presented
below, focusing on the effects of quantitatively different boundary conditions and of wound
geometries.

5.1 The model
The 2D versions of equations (3) and (4) are

AV E=lalm) ~ pnln = f(nm), (12)
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FI1G. 5. Model simulations of equations 12 and 13 for wound angiogenesis in two dimensions, illustrating the
propagation of (a—c) endothelial cells and (d—f) the ECM into the wound. Recall that n and m denote the density
of the endothelial cells and of the ECM, respectively, while x and y are spatial coordinates along the surface of
the skin and perpendicular to this surface, respectively. (a, d) The early stages of angiogenesis, as endothelial cells
proliferate and migrate into the wound space from the wound margins at t = 2; (b, ) angiogenesis is underway,
as cells invade the wound space and deposit new ECM in the waveback at + = 4; and (c, f) angiogenesis is
complete, as the cell density drops from its maximum back towards normal dermal levels and the ECM gradually
accumulates in the wound space at r = 10. The end conditions are given in the text. The parameter values are
given in Fig. 1(b), (d), together with ny, = myp = y, = 1. Only the wound domain (0<x< 1, 0<y< 1) is shown
here. The equations were solved numerically using the alternating-direction implicit method; this is similar in
principle to the method used for 1D numerical solutions in Section 3 (see the Appendix for details). The finite-
difference-approximation mesh sizes are Ax = Ay = 0.02 and Ar = 0.01. High densities are represented by
lighter shading and low densities by darker shading.

om :
— =€(l —m)n = g(n, m), (13)
at
where V = (3/dx,3/3y)" and the cell-flux vector is F = (F;, F2)" = x(m)nVm —
D(m)Vn.

The boundary conditions are n — 1 and m — 1 as x — 00, and, by using the symmetry
condition F; = 0 at x = 0, we need only consider the semi-infinite domain x > 0. We
also assume that the cells and the ECM do not penetrate the dermis—epidermis interface,
giving 7, = 0 at y = 0. Finally, assuming that different biological processes occur within
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the subdermal tissue (deep wounds are beyond the scope of this paper), we stipulate the
Dirichlet conditions n = n, and m = my, at y = y,, the wound base. The initial conditions
are n = 0 and m = mjy; in the wound space 0 < x < 1,0 < y < yp, withn = 1 and
m = 1 in the unwounded dermis (x > 1,0 < y < y).

5.2 Numerical simulations

Figure 5 shows that the numerical solutions are a direct 2D extension of those observed in
1D: waves of endothelial cells, with density n, and of the ECM, with density m, propagate
in towards the wound centre; ECM accumulation follows the peak of cell proliferation
until the new tissue has filled the wound and angiogenesis is complete. The similarity
with the 1D-model simulations is most evident from the solution profiles along the x = 0
and y = 0 axes, where the system effectively mimics the 1D model (due in part to the
boundary conditions). The numerically observed wave speed is within a couple of per cent
of the theoretical minimum, as given by the inequality in equation (7), for the simulations
shown in Fig. 5. The zone of (significant) interference between the two waves moving in
the x- and y-directions lies within a narrow region situated around the line y = x. Here,
there is a small relative increase in n and a decrease in m compared to the 1D solutions.
The quantitative dependence of the numerical solutions as the ECM kinetics parameter €
varies is analogous to that in 1D.

Thus far, the subdermal cell and ECM densities have been taken as being equal to those
in the dermis, which may be inaccurate. Numerical simulations reveal that away from the
wound base (y = y;) the effects of using different subdermal boundary values (n, and my,)
are negligible. Near this boundary, however, there is a sharp jump in m and a smooth, albeit
fairly local, transition in n (not shown). This is expected because cell fluxes are present in
the model but the ECM has no flux; see equations (12) and (13).

Finally, we consider a quantitatively different wound geometry, in which the wound
is wider than it is deep, by setting y, < 1. This is a more realistic representation of a
typical excisional wound, which may be a few centimetres wide with the thickness of the
skin being a few millimetres. In this case, numerical simulations of the 2D model show
that the wave moving in the y-direction from the wound base reaches the wound surface
before the wave moving in the x-direction from the adjacent dermis has reached the wound
centre (not shown). These simulations also suggest that the wave speed does not depend on
the depth/breadth ratio of rectangular cross-section wounds and that the two orthogonally
propagating waves only interact within a narrow neighbourhood of the line y = x. This
specific prediction of the effects of wound geometry could be directly tested by experiment.

6. Wave speed and haptotaxis

The travelling-wave analysis (Section 4.1) suggests that there is a minimum wave speed,
Cmin, given by (7). This was derived from a linear-stability analysis of a third-order sys-
tem of nonlinear ordinary differential equations given by (5) and (6) in travelling-wave
phase space. Mathematically, the existence of travelling-wave solutions of the angiogen-
esis model is therefore a conjecture rather than a certainty; this is supported by the evidence
of apparently stable numerical travelling-wave solutions of the partial differential equa-
tions (3) and (4) given in Fig. 1. In some simpler systems, stable travelling-wave solutions
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FIG. 6. The evolution of the speed c(¢) of angiogenesis as a function of time calculated from equations (3) and
(4) (as in Fig. 1, but with the extended domain —10< x< 1.2), for different values of the haptotaxis parameter
x0: (=) x0 = 0, (---) xo = 0.001, (- - =) xo = 0.005, and (- - -} the minimum wave speed, cmin ~ 0.197,
as predicted by the travelling-wave analysis (see the text). These results illustrate that the long-term speed is
essentially independent of xo, but that the approach to this speed becomes slower as haptotaxis becomes stronger.
Zero-flux boundary conditions are imposed at x = —10 with n(x,0) = n(0,0) and m(x,0) = m(0, 0) for
—10< x<0. The other end conditions are given in the text and the parameter values are given in the legend to
Fig. | except xo.

can be proven to exist and to move at the minimum speed predicted by the linear-stability
analysis, with convergence towards this solution generally occurring over a long time scale
(Murray, 1989; Segel, 1980).

Furthermore, the haptotactic flux term (with coefficient x) is nonlinear, so that the the-
oretical minimum wave speed, cmin, does not account for the effects of haptotaxis. The
relationships between the theoretical value ¢, and the wave speeds observed in the nu-
merical simulations of equations (3) and (4) are demonstrated in Fig. 6, together with the
dependence of the wave speed on x > 0. These results indicate that:

(i) numerical solutions evolve into travelling waves with speeds which converge towards
the predicted minimum, cpp, over a long time scale;

(ii) the effect of haptotaxis (x > 0) is to slow down the evolution towards a travelling-wave
solution with speed Cpn.

Finally, if x is sufficiently large, then instability quickly develops in the numerical simula-
tions (not shown). This is typical of reaction—diffusion—taxis systems (Hofer et al., 1995;
Jager & Luckhaus, 1992; Keller & Segel, 1970; Othmer & Stevens, 1997), and it is also
expected in the numerical solutions of this model (see the Appendix).

7. Summary

Following a biological overview of the roles and regulators of wound-healing angiogen-
esis, and an outline of recent mathematical modelling work which has focused on



276 L. OLSEN ET AL.

soluble regulators of angiogenesis (Section 1), we developed a new continuum model for
the endothelial-cell-ECM interactions involved in wound angiogenesis (Section 2).

The model consists of two coupled partial differential equations, for the endothelial-cell
density and the ECM density, and it was shown that it simulated the fundamental spa-
tiotemporal phenomena of wound angiogenesis (Section 3). In particular, travelling waves
of cells and ECM propagate in towards the wound centre, with a front of proliferating
endothelial cells invading the wound space ahead of ECM deposition behind the front. A
minimum wave speed was deduced by linear-stability analysis which depended critically
on the cell haptokinesis and proliferation terms (Section 4.1).

Numerical simulations suggest that the solution profiles exhibit a spatially elongated
structure in the waveback. This observation, together with a slow-ECM-dynamics assump-
tion, underlies the approximation analysis of the travelling-wave equations which offer
analytical insight into the form of the cell and ECM wave profiles (Section 4.2).

Since many clinical dermal wounds are rectangular in cross section (including the small
dead space in incisional wounds), the extension of the model to two space dimensions
permitted a more realistic representation of the wound geometry and of the boundary con-
ditions (Section 5.1). Numerical simulations of the 2D mode} showed that angiogenesis
occurs by the cells and the ECM moving inwards from-both the wound margins and the
wound base, the dominant effect being determined by the Fatio of the wound depth to the
breadth. The properties of the angiogenic process, both parallel and perpendicular to the
plane of the skin, are very similar to those for the 1D case, except within a narrow zone of
interference between the orthogonally propagating waves of cells and ECM (Section 5.2).

Finally, the effects of the haptotactic flux were investigated numerically, since the trav-
elling-wave analysis did not account for this nonlinear term. It was shown that haptotaxis
transiently slows the evolution of travelling waves, as is intuitively expected in this model
(Section 6). a :

B

8. Discussion

The primary motivation for this work and related research lies in the scope for develop-
ing practical clinical treatments for both mediating wound angiogenesis and for inhibiting
tumour angiogenesis—since solid tumours cannot become malignant without angiogen-
esis (Folkman & Shing, 1992; Gasparini, 1995). Recently, Chaplain and colleagues have
proposed nonlinear partial-differential-equation models to delineate the mechanisms of
growth-factor-driven tumour angiogenesis (Byrne & Chaplain, 1995; Chaplain & Stuart,
1991b). This work adopted a similar modelling framework to ours, focusing instead on
the key interactions between capillary endothelial cells and their solid-state collagenous
extracellular matrix substrate during wound-healing angiogenesis.

One important aspect of endothelial-cell biology that has not been explicitly addressed
here is activation states. Cellular activation is an early angiogenic process in which cells are
stimulated to migrate and proliferate—later, as angiogenesis ceases, the endothelial cells
become quiescent and they are organized as the stable constituents of new blood capillaries
(Clark, 1993; Whalen & Zetter, 1992). The model framework presented in this work could
be extended to include two cellular variables, representing active and inactive endothelial
cells. Chaplain and colleagues include this feature in their models of biochemically me-
diated tumour angiogenesis. In our framework for ECM-mediated angiogenesis, however,
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the explicit modelling of active and quiescent cell phenotypes does not substantially affect
the qualitative model predictions (the details were omitted for brevity). This is because the
biological processes incorporated within the model account for ECM-induced cell activa-
tion, since cells neither proliferate nor migrate in the absence of the ECM and there is also
density inhibition of these processes.

The roles of the cell-movement terms in the model, namely, the haptokinetic (unbiased)
and haptotactic (biased, up ECM gradients) fluxes, are important. This model suggests that
the ECM regulation of haptokinesis is the key effect, since the angiogenic wave speed (Sec-
tion 4.1) and waveform (Section 4.2) depend crucially on the unbiased cell movement coef-
ficient D(m), but not on the directed motion (haptotactic) coefficient x (m). Rather, hapto-
taxis effectively reduces the numerically observed wave speed by a relatively small amount,
and then only transiently (Section 6). Although there is no in vivo evidence that haptotaxis
specifically facilitates wound-healing angiogenesis, it is perhaps counter-intuitive that hap-
totaxis should elicit cell movement away from the wound centre, thereby decelerating the
angiogenic process. This model prediction could be tested by a suitable in vitro study. An
appropriate framework has in fact already been developed by Ingber & Folkman (1989b),
although it was actually used to study cytokine control of angiogenesis. The basic proce-
dure is to absorb ECM proteins into plastic dishes, and to plate caglllary endothelial cells
onto these substrata. This technique could easily be amended to give initial configurations
generating waves of endothelial-cell density. This would lead to a greater understanding of
the primary mechanisms of cellular migration into healing wounds. The long-term goal of
such research is of course the improved treatment of clinical wounds. -

The model framework proposed in this paper may be enhanced to include a haptotaxis-
driven endothelial-cell invasive process. Specifically, we have neglected the fibrin/fibro-
nectin-rich provisional matrix, which is prominent during the early stages of wound-healing
angiogenesis (McDonald, 1988; Peacock, 1984). Fibronectin is an adhgsive protein which
may be an important mediator of cellular migration into the wound site (Kurkinen et al.,
1980; McCarthy et al., 1988; Repesh et al., 1982; Herrick et al., 1993), and its inclusion
in an enlarged model may provide further insights into the process of vascular ingrowth.
Another natural extension of the model would be to address the structure of the vascula-
ture laid down by wound angiogenesis. Under optimal conditions, tight-skin species (man
and pigs) create a remarkably ordered vascular stucture (Arnold et al., 1995). A number of
research groups are currently developing methods for modelling orientation within connec-
tive tissue, and incorporating these methods into our model would enable mechanisms of
vascular order (and its control) to be predicted. Finally, we should emphasise that cytokine
control is undoubtedly a vital regulatory process in angiogenesis, which we have delib-
erately excluded in order to focus on ECM interactions. A comprehensive model would
have to include cytokine regulation, building on the considerable existing experimental
data (Ingber & Folkman, 1989b; Le & Bertolami, 1997).

Such extensions provide a route to the development of detailed models focusing on spe-
cific aspects of wound angiogenesis. However, even the simple model we have presented
has important biological implications, and a number of experimentally testable predictions
have been made which have direct clinical relevance.
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Appendix: Numerical-solution methods

Here, we briefly discuss the methods used to obtain numerical solutions of the angiogen-
esis model, both in one and two spatial dimensions, using a semi-implicit finite-difference
scheme in both cases.

A.1  Crank-Nicholson method (1D)

We require the solutions n(x, t) and m(x, t) of equations (3) and (4), a nonlinear parabolic
partial differential equation coupled with a nonlinear ordinary differential equation. The
method used to obtain approximations to these solutions is based on the popular Crank—
Nicholson semi-implicit finite-difference scheme (Crank & Nicholson, 1947), which uses
central difference approximations for the spatial derivatives and both forward (explicit)
and backward (implicit) differences (in equal proportions)’fog\the temporal derivatives (for
further details see Morton & Mayers, 1994, Ch. 2).

We use uniform spatial and temporal grids, and denote by n¥ and m* the solutions at
space point x; and time step #. Equation (4) for m is discretized:explicitly:

mit = mk 4 (At)g(n;‘, m{‘)

For equation (3), central difference formulae are applied (at each time step) to the hap-
tokinetic (unbiased) flux term: A

D(m,-+%)(n,-+| -n;) — D(m‘-_%)(ni —ni—y)
(Ax)? ’

2 (D(m)g—”-) (i) ~
X

ax

where m;, 1= %(m,- + m;4) etc. Similarly, for the haptotactic (biased) flux term:

2

(Ax)? N

d ( am) X(migy)nipy (miey = mi) = x(m;_1)m;_s (mi = mi_y)
—\xmn— ) (xi, )~ .
dx ax

As discussed above, our semi-implicit method uses the above approximations to the spatial
derivatives at times #, and 4, in equal proportions. The cell kinetics, f, are evaluated
wholly explicitly, to avoid generating nonlinear equations for n**'.

A standard iterative elimination method (the Thomas algorithm) is used to solve the
resulting tridiagonal system of difference equations for n; at each time step, subject to
n = 1 at the final mesh point, and zero-flux boundary conditions at i = 0 (see Morton &
Mayers, 1994, for further details). If x (m) = 0, the Thomas algorithm is always stable,
but, more generally, stability imposes the following conditions (the derivations are omitted

for brevity):

2D(m)
x(m)|am/ox|}’

2
18/0x[x (m)am/dx]l |

(x.1)

Ax<minl At<min{
(x.1)
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The second of these two conditions is required only if (3/38x) [x (m)dm/3x] < 0 anywhere
in the domain.

These stability conditions reinforce the intuitively expected and commonly observed
phenomenon that the ratio of directional to random-movement coefficients, that is, x /D, is
crucial to the stability of numerical schemes for equations for the form (3). Intuitively, such
instability arises because the form of the equation changes from predominantly parabolic to
predominantly hyperbolic. It should also be noted that directed-motion terms can result in
finite-time ‘blow-up’ in parabolic partial differential equations (see, for example, Jager &
Luckhaus, 1992). Thus blow-up can potentially arise from the differential equation itself,
as well as being an artefact of the numerical discretization.

A.2 ADI method (2D)

We extend our numerical scheme to two spatial dimensions using the alternating-direction
implicit (ADI) method. Thus, we discretize the domain in both the x- and the y-directions
and in time using uniform grids, and divide each time step into two halves. In the first half,
the spatial derivatives are evaluating explicitly in time in the x-direction and implicitly in
the y-direction, and in the second half of the time step these directions are reversed. This
standard technique preserves the increased stability from a semi!implicit method, while
also retaining a tridiagonal system of linear equations to be solved at each time step (for
further details of ADI methods, see Morton & Mayers, 1994, Ch. 3).
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