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Abstract

Periodic wavetrains are the one-dimensional equivalent of spiral waves and target patterns, and play a crucial role in
the dynamics of oscillatory reaction-diffusion equations. I consider the behaviour of a A-w system of reaction-diffusion
equations on a one-dimensional finite spatial domain with boundary conditions corresponding to the forcing of a particular
periodic wavetrain. I derive a condition for the wavetrain itself to be a stable solution, and present numerical evidence for a
complex sequence of bifurcations in the unstable region of parameter space. Finally I discuss the implications of the results
for the phenomenon of irregular wakes behind transition waves in reaction-diffusion equations.

1. Introduction

Periodic wavetrains are waves moving with constant shape and speed that oscillate in both space and time.
In systems of reaction-diffusion equations whose kinetics have a stable limit cycle, periodic wavetrains, also
known as periodic plane waves, are a vitally important type of solution. Spiral waves and target patterns, which
have been intensively studied as solutions of oscillatory reaction-diffusion equations [e.g. 1,2], both approach
periodic plane waves at large distances from their centres. Moreover in one space dimension, many initial
conditions relevant in applications evolve to periodic wavetrains [3,4].

Since they were first studied by Kopell and Howard more than twenty years ago [9], much of the under-
standing of periodic plane waves has been gained from A-w systems. This is a simple class of oscillatory
reaction-diffusion equations, with the form

U =txx + A(r)u— w(rjv, (1a)
Ur=vx + @(r)u+ A(r)v. (1b)
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Here r = (u® +0?) /2 4 and v are functions of space x and time ¢, subscripts x and ¢ denote partial derivatives,
and A(0) and w(0) are strictly positive. For simplicity I take A(r) to be monotonically decreasing with a zero
at r = rz, so that the kinetics have a stable, circular limit cycle with radius r;. In this case, there is a one
parameter family of periodic plane waves, given by

U=rogcos [w(ro)ti)l(ro)]/2x] , (2a)

v =rosin [w(rg)ti /\(ro)l/zx} , (2b)

with 0 < ro < ry. It is most convenient to work with polar coordinates in u-v space, that is r = (u? + v%) 72,
f =tan! (v/u). In terms of these variables, the periodic plane wave solutions are r = rg, constant, with # a
linear function of space and time. It is because of this simplicity of representation that A-w systems are often
used as a prototype for more general oscillatory reaction-diffusion equations.

A key issue is whether periodic plane waves are stable as solutions of the partial differential equations.
Despite intensive study [5-8] the full answer to this in general reaction-diffusion equations remains unclear.
However for A-o systems, it was shown in the original paper of Kopell and Howard [9] that the periodic plane
wave solution (2) is stable as a solution of (1) on an infinite spatial domain if and only if ry satisfies

4A(rg) |1+ (w_’(‘_ro_))'} + roA'(rg) < 0. (3)

A (ro)

The aim of this paper is to consider the way in which the solution of (1) evolves from a periodic wavetrain
when a parameter is altered so that the wavetrain becomes unstable. In order to give a closer connection
with applications, as well as to enable numerical study, I consider a finite spatial domain, and thus I start by
considering the equivalent of the stability condition (3) in a finite domain. I will then describe the solutions
when this stability condition is not satisfied. My results have important implications for the phenomenon of
irregular wakes behind invasive transition waves that I have described previously [3], and I will discuss this in
Section 4.

2. Stability of periodic plane waves on a finite domain

Periodic plane wave solutions only exist on a finite domain if suitable boundary conditions are applied. One
obvious possibility for such boundary conditions is periodicity in u, v and their first derivatives; however, in
this case a particular periodic plane wave solution only exists for certain discrete values of the domain length,
which prevents the use of the domain length as a continuous bifurcation parameter. To overcome this difficulty,
I consider instead imposing the values of , and 8, on the boundary. Specifically, I consider the system (1) on
0 < x < L, subject to

ry=0, 6,=+/A(rg) orequivalently uy, = —v\/A(ro), vx=-+u/A(ro) 4)

at x =0 and x = L. At first sight these boundary conditions may appear rather artificial. However, they
correspond to periodic plane waves being forced at the boundary of the domain, and this situation does in
fact arise in the specific case of irregular wakes behind invasive wave fronts; I will describe this in detail in
Section 4.

When expressed in terms of the polar coordinates r and 6, (1) is
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Fo=rAC) + e — 62, (2)
9,:0)(7‘) +0xx+2rx0x/r' (Sb)

Linearising about the periodic plane wave solution 7 = rg, 6 = A(rg) 125 4 w(rg)t gives

P+ 2A(r0) *rod’ + (oA (r0) — v1p =0, (6a)

B —2p'A(r0)?/rg — v + &' (ro) p=0, (6b)
subject to

p=¢"=0 atx=0and x=L. (7)

Here prime denotes d/dx and r(x,t) = ro + p(x) exp(vt), 0(x,t) = A(rg)%x + w(ro)t + d(x) exp(wvr);
without loss of generality I am considering only periodic plane waves moving in the negative x direction. The
periodic plane wave is linearly stable if and only if there are no non-trivial solutions of (6) and (7) with
Re(») > 0. Note that », p and ¢ are in general all complex valued.

The system (6) is a fourth order set of ordinary differential equations in which the domain length L and the
amplitude ro of the periodic wavetrain are parameters. The system is most conveniently rewritten in the form
Y = AY, where Y = (p, p',d.¢"). Straightforward calculation shows that the eigenvalues Aj, ..., A4 of this
system at (0,0,0,0) are the roots of

A+ [4A(ro) + roA (ro) — 201 A% = 2A(r0) Prow’ (ro) A + [¥? — wroX' (r9)] = 0. (8)

Denoting by v, the eigenvector corresponding to A;, the general solution of (6) is then

4
Y(x) =) kwexp(Aix)

=1

where ki, ..., ks are constants of integration. The boundary conditions impose conditions on the k;s:

4 4 4 4
D oki(w)a =) ki(w)a= ki(w)2exp(AL) = D ki(z)sexp(AL) =0,
=1

i=1 i=l i=1
where (y;); denotes the jth component of the ith eigenvector. Therefore there is a non-trivial solution of (6)
subject to (7) if and only if

()2 (2 (2)2exp(ALL) (2))sexp(AiL) ]

()2 (V)4 (vy)2exp(A2L) (vy)aexp(AL)
D = det =0. 9)

(£3)2 (v3)4 (v3)2exp(A3L) (u3)aexp(AsL)

(24)2 (L4)a (2g)2exp(Asl) (vy)aexp(AsL) |

This is the dispersion relation, determining the eigenvalues » for which (6) subject to (7) has a non-trivial
solution. Since both the real and imaginary parts of the determinant must be zero, there are two scalar equations,
which determine both the real and imaginary parts of ».

It is algebraically unfeasible to solve (8) analytically for the eigenvalues A;; however, numerical solution is
straightforward. To this end I introduce at this stage the following specific forms for A(.) and w(.):

M) =1-7, w(r)=3-r. (10)
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Fig. |. The variation of rg, ., with the domain length L (——). The periodic wavetrain with amplitude ry is stable as a solution
of (1) subject to (4) if and only if rg > rp, rir. I also show the corresponding variation in Im(») (-=------- ), which is the temporal

frequency of the neutrally stable perturbations at ro = ro, crir-

All numerical results presented in this paper use these particular functional forms (except that in Section 4
a slight variant is also used); their choice is essentially arbitrary. However, less extensive numerical solutions
with a range of other functional forms suggest that in all cases qualitatively similar behaviour occurs more
generally.

Having specified particular functions, it is straightforward to calculate A;, v; and thence D numerically for
any given values of L and rq, which are the only remaining parameters. However, numerical calculation of the
zeros of D has a slight difficulty. The reason is that the sign of D depends on the ordering of the A;s, which
cannot be regulated in numerical solution. Therefore sudden changes in the sign of the calculated value of D
can occur, and the difficulty is to distinguish these from zeros. I found that elimination of these spurious zeros
required careful comparison of the changes in the actual and absolute values of the real and imaginary parts of
D.

For the functional forms (10), the stability condition (3) for an infinite domain is simply ro > 2/\/5 =~ 0.89
for stability. Intuitively, one expects that on a finite domain, the corresponding condition will be ro > ro i (L),
where rg i 1s a critical value that increases with L. In order to determine this anticipated critical value
numerically, I focus only on changes of stability, and impose Re(r) = 0. The real and imaginary parts of D are
then functions of rg, Im(») and L, and changes in stability occur at values of these three quantities at which
both the real and imaginary parts of D are zero. The critical value rg ., (L) is simply the largest value of rp at
which Re(D) and Im(D) have a common zero; the corresponding value of Im(») is the temporal frequency
at which the neutrally stable perturbations oscillate. Fig. 1 shows the variation of rg . with L, calculated in
the way I have described; the corresponding values of Im(») are also shown. Extensive numerical solutions
confirm that for a given domain length L, periodic plane wave solutions are indeed stable to small perturbations
below this critical amplitude and unstable above it.

3. Behaviour in the unstable region

Having discussed the conditions for the periodic plane wave solution of (5) subject to (4) to be lincarly
stable, I now consider the behaviour of the equations in the unstable region of parameter space. The work in
this section is entirely numerical, and all my results will be for the particular kinetics given by (10). Therefore
there are only two parameters in the problem: the domain length L and the periodic plane wave amplitude
ro induced on the boundary. However the range of behaviour in the unstable region rg < rg (L) is in fact
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very rich, and it is computationally unfeasible to attempt a detailed study of the entire ro~L parameter space.
Therefore I restrict attention to the behaviour as ry is varied with L = 5 and L = 30. These domain sizes should
be considered in relation to the spatial wavelength of the periodic waves, which varies between 6.3 and 13.8
for stable wave numbers. For these domain lengths I will describe the way in which the long term behaviour
of the solutions changes with the parameter ry. This approach is reminiscent of that used by Moon et al. [10]
and others [11,12] to study bifurcations in the Ginzburg-Landau equation as the domain length varies. These
studies have shown transitions to chaos via two- and three-tori as the domain length increases with periodic,
Neumann and Dirichlet boundary conditions. There are two key differences between this previous work and the
present study. The first is that a particular solution is not forced on the boundary, in contrast to the boundary
condition (4) which is central to the results I will discuss. The second is that the Ginzburg-Landau equation
is studied in a parameter region in which the spatially homogeneous oscillations (corresponding to the limit
cycle of the kinetics) are unstable, so that the dynamics are quite different from those of (1).

In all cases I will consider the solution that evolves from initial conditions of a small perturbation applied to
the periodic plane wave solution with amplitude . The results are independent of the details of the perturbation,
and I will discuss the effects of using other initial conditions below. In all cases the equations are solved for a
sufficiently long time that transients have decayed; details of this and other aspects of the numerical procedure
are described in Appendix A. The cases L =5 and L = 30 are chosen because they illustrate all of the solution
types that I have observed in my more sporadic investigation of other points in the parameter space; however
it may well be that there are quite different types of behaviour in other parameter regions. Most importantly,
the results for L = 30 suggest an explanation for the phenomenon of irregular wakes behind invasive transition
waves.

I begin by considering the relatively simple case of L = 5. The linear analysis discussed above predicts that
in the unstable case, small perturbations to the periodic wavetrain will cause the solution to grow away from
the wavetrain via spatiotemporal oscillations, with the form

r — ro x Re [p(x) exp(ilm(»)1)] , (11a)
8 — A(ro)'%x — w(rg)t oc Re [p(x) exp(ilm(»)1)] , (11b)
where
4
p(x) = k()1 exp(Aix) , (11c)
i=1
4
B(x) =D ki(r)3exp(Aix) . (11d)
i=1

As expected intuitively, as ro is decreased through rg i with L = 5, the solution of the full nonlinear
equations (5) subject to (4) evolves to a solution that has the form (11), with an amplitude that tends to zero
as the bifurcation point is approached. This is illustrated in Fig. 2, showing that the comparison with the linear
solution (11) is extremely good.

As ro is decreased further with L = 5, the amplitude of the oscillations in the long term solutions for r and
6, initially increases as expected, but then begins to decrease, at all points in space. Finally, at rp ~ 0.45,
the long-term solution becomes a time invariant spatial pattern in r and 6,, as illustrated in Fig. 3. As ro is
decreased further, the pattern changes slightly, but the long term behaviour remains a stationary spatial pattern.

For larger values of L, the behaviour for ro just below rg .; becomes very hard to determine, because the
rate at which the amplitude of the r-f, oscillations increases with (ro, crir — ro) becomes very rapid. This is
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Fig. 2. The numerical solution ( ) of (5) with (10) subject to (4) with L = 5 and ry = 0.589, which is just below
ro, crir = 0.5894, so that the periodic plane wave solution r = rq is just unstable. The line r = ry is also drawn for comparison. The long
term solution consists of regular spatiotemporal oscillations in r and #; (not shown, but of a qualitatively similar form). The numerical
method is described in Appendix A. This partial differential equation solution is compared with the solution form (11) predicted by the
linear analysis described in the text (=-------- ). The linear solution contains an arbitrary scaling in (r — ry) and also an arbitrary
phase shift in time, and these are chosen to give the best agreement with the partial differential equation solution. The resulting linear
solution compares extremely well with the numerical solution of the partial differential equations, and the comparison of the corresponding
solutions for 6y is equally good. Calculation of the linear solution requires determination of the eigenvalues and eigenvectors of the matrix
A (defined in the text) and also the constants ki,. .., ks, which are the elements of the left eigenvector of the matrix in (9); these
eigenvalue and eigenvector calculations were all performed numerically. Note that all these vectors and matrices have complex entries.

0.601

0.557
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0.401

Fig. 3. The numerical solution for r (—————) and @, (--------- ) of (5) with (10) subject to (4) with L =5 and ro = 0.3. The
long term solution consists of a time invariant spatial pattern in r and &,. The numerical method is described in Appendix A.

Table 1
The variation with ry of the maximum and minimum of the long term temporal oscillations in r at x = 0 when the domain length L = 19
ro Fmax T min Ty I max Fmin
0.80050 0.8005 0.8005 0.79996 0.8303 0.7557
0.80030 0.8003 0.8003 0.79995 0.9180 0.1771
0.80010 0.8008 0.7994 0.79990 0.9181 0.0094
0.80000 0.8020 0.7981 0.79970 0.9175 0.0345
0.79997 0.8174 0.7789

The periodic wavetrain r = ro becomes unstable very close to the theoretically calculated bifurcation point rg ¢ (19) = 0.8001. The
amplitude of the oscillations then increases extremely rapidly as rg is further reduced. In order to improve the precision of the calculated
bifurcation value of r¢, a finer space mesh was used in these calculations than that described in Appendix A: 601 equally spaced mesh
points were used. The numerical method was run up to a time ¢ = 20 000; again this is a longer time than that described in Appendix A
to ensure that the final state has been reached (this requires a longer time close to the bifurcation point). Each pair of data points requires
about 4 hours of computation on a Sun Sparcstation 20. The maximum and minimum of r are calculated over each mesh point after each

time step during the interval 19000 < ¢ < 20000.
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Fig. 4. The numerical solution for r of (5) with (10) subject to (4) with L = 30 and ry = (a) 0.808, (b) 0.8077, (c¢) 0.8075, (d) 0.8,
(e) 0.54, (f) 0.48, (g) 0.415, (h) 0.2. The interpretation of these solutions is discussed in detail in the text. In each case the solution is
plotted as a function of ¢ at x = 3, 12, 18, and 25. The solution is recorded every 0.1 time units, so that each box contains 10000 data
points joined by line segments. Note that detailed examination of the data points shows that a period doubling has occurred in the temporal
behaviour between (a) rp = 0.808 and (b) rg = 0.8077 at all four values of x (and also at 20 other x values | have examined). However
this is not visible in the plots at x = 18 and x = 25. The solutions for s have qualitatively similar forms in all cases. The numerical
method is described in Appendix A.

illustrated in Table 1 for L = 19, in which case the amplitude of the oscillations in r increases from zero (at
Fo,crir) to about 0.7 (corresponding to large amplitude oscillations since r is constrained to lie between 0 and 1
[13]) during a change of 0.04% in ry. In fact for L = 30, [ have been unable to detect low amplitude oscillations
in r. However for r just below ro, i = 0.809, the numerically calculated long term solution consists of simple
temporal oscillations in 7 and 6, at all points in space, albeit of large amplitude, as illustrated in Fig. 4a. As rg
is decreased further, these temporal oscillations undergo period doubling at ry =~ 0.8078 (Fig. 4b); the period
doubling appears to occur simultaneously at all points in space. At least two further period doublings then
occur (Fig. 4c), again synchronously in space, until for ro < 0.805, the temporal oscillations appear irregular
(Fig. 4d).

This irregular behaviour persists until 7y &~ 0.79, when the oscillations become regular in what appears to be
a sudden transition, and which occurs simultaneously at all space points. The period of the regular oscillations
is approximately twice that of those occurring close to the instability curve and halves again at rg = 0.77, again
synchronously in x.

As rg is decreased further, another transition towards irregular behaviour occurs, apparently via a bifurcation
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Fig. 4 — continued.

of the r—8, oscillations to a torus. In contrast to the period doubling described above, this does not occur
simultaneously at all space points. Rather, it occurs initially at x = 0, and a ‘wave of bifurcation’ then moves
across the domain in the positive x direction (Figs. 4e, 5a and 5b). Note that the polarity in the system is
provided by the sign of €, imposed in the boundary condition; in the original u-v Eqs. (1), this corresponds
to specifying the direction of motion of the periodic plane waves.

The temporal oscillations are irregular at all space points in the range 0.52 > ry > 0.45 (Figs. 4f and 5c¢),
and as ro is decreased from 0.45 to 0.4, the irregularity is lost, again through what appears to be a bifurcation
via a torus to periodic oscillations. This reverse bifurcation sequence again occurs first at x = 0, and moves
across the spatial domain in a ‘wave of bifurcation’ (Figs. 4g and 5d). For ry < 0.4, the long term behaviour
is regular spatiotemporal oscillations in r and 6, (Fig. 4h), and this persists down to rp = 0.

This complex sequence of long term behaviours is driven by the parameter ro. However in the method of
solution described above, rq affects both the initial and boundary conditions. In order to determine which of
these was the key factor, I solved the equations with boundary conditions as above but with initial conditions
given by a periodic plane wave of a different amplitude. In almost every case the long term behaviour is
essentially the same for all amplitudes of the initial periodic plane wave, as well as for a variety of other
initial conditions I have tried: the long term behaviour is determined purely by the value of ry in the boundary
condition. The only exception I found to this was in the region of irregular behaviour around ro = 0.5, where
two possible long term behaviours occur, depending on the initial wave amplitude (Fig. 6). One of these
solutions is the irregular oscillations described above, while the other is consists of regular temporal oscillations
at all space points: it appears that there are two attractors in the system in this parameter region, with rather
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Fig. 5. The numerical solution of (5) with (10) subject to (4) with L = 30 and r¢ = (a) 0.5435, (b) 0.54, (c) 0.48, (d) 0.415. The
solution is plotted in the r—8 plane at six different values of x: this method of illustratation shows the ‘wave of bifurcation’ described in
the text. Each picture is obtained by connecting the values of r and 8, every 0.1 time units for ¢ in the interval 6500 < ¢ < 7500. On each
r-0, plane a filled circle is superimposed (), indicating the solution at 7 = 6500; however in some cases the mark is difficult to see. The
numerical method is described in Appendix A.




174 J.A. Sherran | Physica D 82 (1995) 165-179

x=2.1
0.45
0.401
=
Z o035
-
0.301
088 030 092 D094
r(x.t)
x=18.3
6
3
=
X 0
~
-
-3
-6

00 02 04 06 08 10
r{x.t)

0.4

V,y(x.t)

0.88 0.80 0.92
r(x,t)

x=18.3

0.70 0.80 0.90 1.00
r(x.t)

(c)

084 088 082 0096
r(x.t)

x=22.8

(a)
x="7.7
0.5
=
= 04
-3
c3
0.88 0.82 0.96
r(x.t)

«(x.t)
)
Py

-0.2

04 0.6 08 1.0
r{x.t)

Fig. 5— continued.
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complex basins of attraction even for initial conditions restricted to periodic wavetrains (Fig. 6¢).

Finally, it is also important to stress that the long term solutions I have described are very much boundary
driven: if the boundary conditions are changed to zero flux (uy =v; =0at x =0 and x = L) once the long
term behaviour has been reached, the solution rapidly alters to spatially homogeneous oscillations, which are




J.A. Sherratt | Physica D 82 (1995) 165-179 175
x=3 =12 = =
‘Lo X . x=18 0.95 x=25
0.96 ’ 0.9
0.9! 0.95 o 0.8
0.94 08 0.8
' 0.9 0 .
0.934 06 0.7 [
0.924 0.8: : o (a)
- 05
091 0.85
. 0.8 0.4 0.8
0.907 0.3 055
| 0.7 '
0.24 0.5

w |
0.967 M 0.981 1. 0.9
0.85 g.:i g-a 0.8
0.94 - ’
0.9 0.7 0.8
0.93 0.9 0.6 0.75 f g )
0.92] 0.88 0.5 0.7
0.91 0.86 0.4 0.65
0.84: 03
0.901 0.8 0.2{ 0.8
0.14 5

— , - 1 __
6600 8800 70{00 7200 7400 8600 6800 7000 7200 7400 6600 6800 7000 7200 7400 6600 6800 7000 7200 7400
t t t

R R I I I IRI I I
- ¥ Frr— W (o)
.0

r

00 02 04 06 0.8

2

Fig. 6. (a),(b) The numerical solution of (5) with (10) subject to (4) with L = 30 and ry = 0.5, but with initial conditions given by
a periodic plane wave of amplitude (a) 0.4 and (b) 0.65. These solutions illustrate the two different long term behaviours that I have
abserved for this value of rq in the boundary condition; which behaviour is obtained depends on the initial condition. In (c) I indicate the
long term behaviour obtained for a series of initial wavetrain amplitudes: ‘R’ denotes regular oscillations (that is, the attractor illustrated
in (b)) and ‘I’ denotes irregular oscillations (corresponding to (a)). This is in no sense a detailed description of the basins of attraction
of the two long term behaviours - I have not attempted such a description. Rather, (c) simply illustrates that the final behaviour does
depend sensitively on initial conditions for this value of ry. I have only observed this sensitivity for values of ry close to 0.5: in all other
cases the long term behaviour appears to be independent of initial conditions. In (a) and (b) I plot r as a function of ¢ at four values of
x; the solutions for #y are qualitatively similar. The numerical method is described in Appendix A.

just the limit cycle solution of the kinetics.

4. Application to irregular wakes

In previous publications, I have described the phenomenon of ‘irregular wakes’ behind invasive waves in
reaction-diffusion equations [3,14]. The behaviour occurs in a number of directly applicable reaction-diffusion
systems, including in particular ecological models for predator-prey interactions [4], but I will now summarise
the phenomenon in the context of A-w systems, in which it is more simply described. The situation is a simple
one; consider the system (1) in an infinite spatial domain, with ¥ = v = O everywhere in space. Suppose
now that a small perturbation is applied, locally in space, to this (unstable) steady state. The instability then
propagates through the domain, away from the initial site of perturbation, leaving behind it a periodic wavetrain
(Fig. 7a). This propagating wave corresponds to a transition wave front in r and 6., which are both constant in
a periodic wavetrain. The amplitude of the wavetrain is uniquely determined, from the family of possible wave
amplitudes, by the fact that the initial perturbation is spatially localised [14,15]. For the system (1) with A(.)
and w(.) given by (10), this amplitude is about 0.9 (see Appendix B), and condition (3) implies that the
periodic wavetrain with this amplitude is stable. However if the form of w(.) is changed, say to w(r) =3 —3r2,
then the amplitude becomes about 0.7, corresponding to an unstable wavetrain. Correspondingly, in this case the
periodic plane waves behind the leading transition front destabilise, and one observes irregular spatiotemporal
oscillations behind a band of regular period plane waves (Fig. 7b). This is the behaviour I have termed an
“irregular wake”.

A key question concerning such irregular wake regions is how the irregular behaviour arises from the dynamics
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Fig. 7. Space-time plots of the numerical solution for u(x,¢) of (1) with A(r) =1 — r2and w(r) =3 —br¥; (a) b=1, (b) b =13,
The equation is solved on a large domain 0 < x < xoo, subject to u = v =0 at x = xoo and with the symmetry condition uyx = tx = 0 at
x = 0. The boundary condition at x = 0 essentially plays no role | 14] and simply enables the use of a semi-“infinite” rather than “infinite”
domain, thus reducing the computer time required for solution. The domain length x is taken to be sufficiently large that further increase
has a negligible effect on the solution over the time interval concerned. The numerical method is described in Appendix A, and a space
mesh of 1001 equally spaced points was used, with xoo = 250. At ¢ = 0, 1 and ¢ were set to 0. at the first mesh point (on the x = 0
boundary), with u = v = 0 at the other mesh points; however, the solution is essentially the same for any initial perturbation that is localised
in space | 14]. In both (a) and (b) the solution is plotted as a function of x at successive times in the range 75 < f < 110, with the
vertical separation of solutions proportional to the time interval between them. The solution for v is qualitatively similar to that for u.

of the partial differential equations. This issue is particularly important because spatiotemporal irregularities
are so rarely observed in reaction-diffusion equations, in sharp contrast to spatially discrete systems such as
cellular automata and coupled map lattices, which often compete with reaction-diffusion equations as models
of biological systems, and which frequently exhibit spatiotemporal chaos for realistic parameter values [16,17].
The results described above shed considerable light on this question. The transition wave front arising from the
perturbation described above terminates at a particular periodic wavetrain, and thus one can conceptually regard
the leading transition wave as imposing a boundary condition on the wake region of exactly the form r, =0,
6, = A(rp) 1/2_ Of course the situation in the wake region is not the same as that discussed in the earlier part of
the paper: in particular, the wake region continually grows in length and it has periodic plane waves of opposite
direction of motion imposed at the two ends. However, notwithstanding these differences, the results presented
above strongly suggest that the irregular behaviour observed in the wake region is driven by the forcing of a
particular periodic wavetrain at its boundary.

Another important question concerning the irregular wakes is whether the behaviour is genuinely chaotic or
whether it has underlying order despite its superficial irregularity. Again, the resuits described in the earlier
part of the paper have important implications. The observation of period doubling and bifurcations to tori,
which are well-known routes to chaos in finite dimensional dynamical systems, are strongly indicative that the
irregular behaviour in the wake region is genuinely chaotic. Further evidence for this is given by exploring the
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Fig. 8. The evolution of a small perturbation applied to the irregular wake region in the solution illustrated in Fig. 7b. The solution was
solved up to a time t = 75 exactly as described in the caption to Fig. 7b, obtaining the solution at the first time illustrated there. I then
continued the solution for two sets of initial conditions, one without any perturbation (simply the continuation of the numerical solution),
and the other with a small perturbation applied to the middle of the irregular region: specifically 0.01 was added uniformly to # and v at all
space points in the region 49 < x < 51. The figure illustrates the development of this perturbation, calculated as the difference between the
two solutions. The perturbation both grows and expands spatially as time increases. 1 plot only the difference in the u solutions; however
the difference in the v solutions develops in a qualitatively similar way.

sensitivity of the wake region to perturbations. Specifically I have performed the following simple numerical
test. I solve the system (1) for a sufficiently long time that an irregular wake has developed, such as in Fig. 7.
I then continue the solution for two identical copies of the partial differential equation, in one case with a
small perturbation applied locally at a point in the wake, and in the other without any perturbation. Calculating
the difference between the two numerical solutions shows that the perturbation both grows and expands in
time (Fig. 8). This demonstration of sensitivity to initial conditions, combined with the bifurcations described
above, together constitute strong evidence that the behaviour behind the invading wave can properly be called
a chaotic wake.

Appendix A

In this Appendix I describe briefly the details of the numerical method used to solve Eqgs. (1). The basic
method consists of the method of lines, which converts the partial differential equations to a set of coupled
ordinary differential equations, which are then solved using Gear’s method [18]. The solutions illustrated in
Figs. 2 and 3 were obtained with a space mesh of 101 equally-spaced points, while those in Figs. 4 and 5 were
obtained using 301 space points; the use of a finer mesh affects the precise values of ry at which the various
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bifurcations occur, but has no affect on the basic forms of the long term behaviour that are observed. The time
steps were controlled to obtain a solution accurate to at least 4 decimal places, and the equations were solved
up to a maximum time of 7500. This is sufficiently long that further integration has a negligible effect on the
form of the solution, at least for a trial set of rg values. The solution for one set of parameter values takes about
45 minutes on a Sun Sparcstation 20. Note that the r—8 equations (5) cannot be numerically solved directly
because the variable # increases without bound.

Appendix B

In this Appendix I derive an expression for the form of the periodic plane waves induced by a spatially
localised perturbation to the state # = v = 0 in the system (1). The analysis is described in detail elsewhere
[14], and here I present only a very brief summary. The leading wave front induced by the perturbation has
the form of a transition wave of constant shape and speed in r and €,, with speed 2A( 0)‘/ 2 [14]. Solutions
of this type have the form r = #(z), 6 = 8(z) + w(0)t, where z = x — 20(0) /%1, Substituting these solution
forms into (5) gives

P+ 20(0) PF + PA(F) — 767 =0,
6" +2(A0) 2+ 7 /)6 + w(F) — w(0) =0.

Non-trivial steady states of this system, that is with 7 and @’ constant, satisfy
4A(PIA0) = [w(F) — w(0)]7.

For the functional forms A(r) = 1 — r2, w(r) = 1 — br?, this equation has a unique real solution:

f=[%(\/ﬁb7—1)]l/z,

while (3) implies that periodic plane waves are stable if and only if their amplitude is greater than [2(1 +
b?) /(3 + 2b*)]1'/2. Comparing these, the waves in the wake region are stable if and only if b is less than the
critical value [ (2cosh{(1/3) cosh™ (29/2)} + 1)?/9 — 11'2 =~ 1.15.
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