IMA Journal of Applied Mathematics (1994) 52, 79-92

On the speed of amplitude transition waves in reaction—diffusion
systems of A-w type

JONATHAN A. SHERRATT

Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick,
Coventry CV4 7AL, UK

AND

Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles’,
Oxford OXI1 3LB, UK

[Received 12 April 1993]

A-w systems are a class of simple examples of two coupled reaction-diffusion
equations whose kinetics have a stable limit cycle. The author considers the
evolution of such systems from snmple initial data in which aysmall homogeneous
perturbation is applied to the unique steady state in a localized region of the
domain. Using a combination of analytical and numerical methods, it is shown
that the system evolves to two sets of transition wave fronts in the solution
amplitude, one moving outwards from the perturbation, and the other moving
inwards. An expression is derived for the speed of the outward moving wave, and
it is shown that this in turn determines the speed of the inward moving wave.
Between these transition fronts, the solution has the form of periodic plane
waves, whose amplitude is the solution of a simple algebrai¢ equation. In some
cases these periodic plane waves are unstable as reaction-diffusion solutions, in
which case they degenerate into irregular spatiotemporal oscillations.

1. Introduction

‘A-w systems’ are a class of simple examples of two coupled reaction—-diffusion
equations whose kinetics have a stable limit cycle:

U = Uy, + Ar)u — w(r)y, U, = Uy, + w(r)u + A(r)v. (1.1a,b)

Here u and v are functions of space x and time ¢, with x e R and ¢>0, and
r=(u®+v?? the subscripts x and ¢ denote partial derivatives. Numerous
previous authors have used A-w systems to investigate periodic plane waves
(Kopell & Howard, 1973; Ermentrout, 1980) and spiral waves (Greenberg, 1981;
Koga, 1982). These solution types are characteristic of reaction—diffusion systems
with a limit cycle in the kinetics, but are hard to analyse in general systems of this
type, so that A-w systems are used as a prototype. In contrast to this detailed
study of particular solution types, there has been very little previous work on the
way in which the solution of (1.1) evolves from given initial conditions. A notable
exception is a paper by Lange & Larson (1980), in which a multiple timescale
procedure is used to obtain an asymptotic expansion for the solution when the
initial data varies slowly with x, in the specific case A(r)=1—r and w(r)=1.
Here 1 investigate the way in which the solution of (1.1) evolves following a
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small perturbation of the steady state u =v =0. Throughout the paper 1 will
assume that A(e) is strictly decreasing, with a simple zero at r =r, >0, and that
w(0)> 0. The kinetic ordinary differential equations then have a unique steady
state at u = v =0, which is an unstable spiral, and there is a circular limit cycle of
radius r,, which is globally attracting. For the majority of the paper I will further
assume that () is strictly decreasing, although I will relax this condition slightly
in Section 4. I also take the boundary conditions at x = £ to be u, = v, =0. The
limit cycle of the kinetics is then a (spatially homogeneous) solution of the partial
differential equations, and it is straightforward to show that it is linearly stable
(Kopell & Howard, 1973).
1 consider the evolution of (1.1) from the initial data

e ifjx|<L,

0 otherwise, (12)

u(x,0)=v(x, 0)= {
where £ «< r,. The dynamics of the reaction kinetics imply that, when L = «, the
solution will tend towards the homogeneous periodic solution

u =r, cos [o(r)(t — to)l, v =r,sin {‘."grﬁ)(t ] E
where 1, is a constant determined by &, and this is illustrated in Fig. 1(a).

However, when L is finite, it is not immediately clear what the behaviour will be.
I begin by considering the case of L very small, in a sense that will be made clear.
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FI1G. 1. The solution of (1.1) subject to (1.2), with £ =0.01 and (a) L == and (b) L = 2. In both cases
Ar)=2-r>and w(r)=2—¢", and I plot u(x, t) as a function of x at r =25 and as a function of ¢ at
x = 42. The solution for v is qualitatively very similar. In (a), the solution evolves to the limit cycle of
the kinetics, while in (b) a wave front moves across the domain, with regular spatiotemporal
oscillations behind the front. Here and in numerical solutions of the partial differential equations
presented in other figures, the system (1.1) was solved numerically using the method of lines and
Gear's method, and the solution is essentially independent of &.
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Intuitively, one might expect that there would be a region of homogeneous
oscillations expanding from the origin in both the positive and negative x
directions. However, numerical solutions suggest that this is not the case. Rather,
wave fronts do move out from the site of the perturbation, but the solution
behind these fronts consists of regular spatiotemporal oscillations, of lower
amplitude than r, (Fig. 1(b)).

2. Periodic plane waves

The nature of the spatiotemporal oscillations induced by localized perturbations
to u = v =0 is clarified when one plots the solutions for r and 6,. Here r and 0 are
polar coordinates in the u—v plane, so that

r=?+v?)} 0 =tan"' (v/u), 0, = (uv, — vu)/(u* + v?).

The solution in Fig. 1(b) is replotted in terms of r and 6, in Fig. 2, revealing
transition wave fronts that appear to move with constant shape, and speed. Similar
numerical results are obtained for a wide range of other (strictly decreasing)
functional forms for A(+) and (). Transition fronts in 7.apd 6, have previously
been studied by Howard & Kopell (1974, 1977) in the case in which r is nonzero
on both sides of the front; they showed that there is a 1-1 relationship between
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F1G. 2. The solution of (1.1) subject to (1.2) for the functional forms and parameter values as in Fig.
1(b). In this case I plot r and 6, as functions of x at equally spaced times, including ¢ = 0; the time
interval is 5. This reveals transition wave fronts moving across the domain with constant shape and
speed.
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the front velocity and the change in amplitude across the front. I will show that
when r =0 ahead of the front, the situation is more complex, but the 1-1
relationship remains.

Taking r and 6 as dependent variables, the partial differential equations (1.1)
become

rr:rA(r)+rxx_r6i; elzw(r)+9xx+2rxex/r‘ (21a’b)

I am considering transition front solutions, with 6, and r tending to constant
values behind the front. Denoting these constant values by ¢ and r, respectively,
(2.1a) implies that 2= A(r,), which is satisfied by the values observed in
numerical solutions of (1.1). Equation (2.1b) then gives 6, = w(r;). Therefore,
behind the transition fronts, the solution tends towards

u = rycos [w(r)t + ¢x + 6], v=rgsin [w(r)t + Yx + 6], (2.2a,b)

where 6, is an arbitrary constant. This solution is a periodic plane wave, which
moves across the domain with constant shape and speed, oscillating in space and
time. Periodic plane wave solutions of A—w systems have been extensively studied
by previous authors (reviewed by Murray, 1989: Chap. 12). In particular, Kopell
& Howard (1973) showed that a periodic plane wave solution of the form (2.2)
exists for all r, € (0,r,), and is linearly stable on an infinite spatial domain if and
only if
w'(ry)
A'(r)

Thus waves of sufficiently low amplitude are unstable, while those of sufficiently
high amplitude are stable. The development of periodic plane waves following
localized perturbations to u = v =0 is illustrated in Fig. 3.

4)\(rs)[l & < )2] + A (r) <O0. (2.3)
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FiG. 3. The solution of (1.1) subject to (1.2) for a variety of functional forms of A(+) and w(-). In each
case I plot u as a function of x at successive times, with the vertical separation of solutions
proportional to the time interval. The solution for v is qualitatively very similar. The solution consists
of an amplitude transition wave moving outwards from the origin, with periodic plane waves behind
the front In each case L =5 and £=0.01, and the functional forms are: (a) A(r) =3 - r¥’,
o(r)=4-r1 (b) /\(r) =6-—¢"log(1+4r), w(r)=1- r% (c) A(r)=4—¢", w(r)=6—log(l+r); (d)
Ar) = 1 =—(» + rPrttr ), w(r)=0.1—r’¢¥. These forms are chosc,n for their vanety‘ and have no
special significance. The time intervals over which the solutions are plotted are: (a) 40 <t =<50; (b)
5=<t=<30;(c) 40=<r=< 50; (d) S0=<¢=100.
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Transition fronts of constant shape and speed in r and 6, have the form
(r, 8,) = (F(x —ct), ¥(x —ct)), where ¢ is the front speed. To be specific I
consider the waves in x >0 which are moving in the positive x direction, so that
c¢>0. From (2.1b), 6,— w(0) far ahead of the front, which gives 8= ¥
(x — ct) + ®(0)t, where W(-) is an indefinite integral of §(-). Substituting these
solution forms into (2.1) gives a third-order system of ordinary differential
equations:

P'+cF' + PA(F) —FP2=0, ' +ch +27'§/F + o(F)— @(0)=0, (2.4a,b)

where primes denote differentiation with respect to z =x —ct. In this form the
equations are singular at r =0, and thus before analysing the system I follow
Howard & Kopell (1974, 1977) and rewrite it in terms of 7, ¢, and ¢ = 7'/F:

Pr=th, &' =¢"~chd-¢*-AF), ¥ =w(0)-wf)-c—2¢y.
(2.5a—¢)

A number of previous authors have presented analytical methods for investigating
bounded trajectories in systems of travelling wave ordinary¥differential equations
for reaction—diffusion systems (e.g. Gardner 1982, 1984; Dunbar, 1983, 1986;
Terman, 1988), and these methods may be amendable to the rather different
system (2.5). However, I do not adopt this approach, but rather I consider only
local behaviour near steady states, in combination with numerical evidence for
trajectory paths.

3. The transition wave equations

In this section I investigate the system (2.5), with the goal of determining the
possible speeds for transition fronts of r and 6,, and the steady-state values
behind these fronts, which correspond to periodic plane waves. Steady states of
(2.5) with # %0 have ¢ =0 and § = [@(0) — w(F)]/c, with

AAF) = [w(F) - w(0)]~ 3.1)

When A(+) and w(+) are both strictly decreasing, (3.1) has a unique solution, and
this solution compares extremely well with the amplitude behind the r-6,
transition wave in numerical solutions of (1.1). Following my previous notation, I
denote this steady state by (r, 0, ). Explicit determination of the stability matrix
at this steady state shows that the eigenvalues pu satisfy

F
B+ 2002+ +AN(R) + AN BN + 2L EAP) = [0(F) — @(O)F}rar, =0,

Therefore the sum of the eigenvalues is negative, while their product is positive,
so that there is one real positive eigenvalue, with the other two having negative
real part. Therefore there are exactly two trajectories originating from the steady
state. I denote these trajectories by T*, according to the sign of ¢ for large



84 JONATHAN A. SHERRATT

negative z. Numerical integration of (2.5) as an initial value problem, starting
close to (r, 0, ) on the unstable eigenvector, suggests that 7, ¢, and § all tend
to infinity on T, but that 7~ remains bounded. To consider further the
behaviour of T~ for large positive z, I investigate steady states of (2.5) for which
F=0.

If 7 and § are both zero, then a steady state must have $+ch + A(O) 0,
which has real roots for ¢ if and only if ¢ =2(0)2. Conversely, if # =0 but § #0,
then ¢ = —ic and 412 = A(0) — 4c? at a steady state, which has real roots for ¢ if
and only if ¢ < 2A(0)%. I consider first the case ¢ > 2A(0):. Then the steady states
are (0, ¢, 0) and (0, ¢, 0), say, where ¢,< ¢, <0. Straightforward calculation
shows that the first of these is stable, while the second has one real negative and
two real positive eigenvalues. Numerical integration of the equations (2.5) for a
range of functional forms for A(*) and w(+) suggests that 7~ terminates at the
stable equilibrium (0 $., 0) (Fig. 4(b)).

When ¢ <2A(0)}, the steady states are (0, —ic, £[A(0) — c?)?). These steady
states have one real negative and two pure imaginary eigenvalues. The pure
imaginary eigenvalues correspond to eigenvectors in the ¢ - plane, and thus the
corresponding behaviour can be investigated by conside¥ing (2.5b) and (2.5¢) with
£ = 0. Substituting

U=—(¢+3)/M0) -1, V=9/AM0) - i, i ¢ =2[A0) -,
this second-order system becomes ‘
dU/d¢ =1+ U*-V? dv/d¢ =2Uv. (3.2a,b)

Therefore U? —2UV(dU/dV) = V? - 1. Dividing by U* gives a first-order equa-
tion for V/U? as a function of V, which can 'be integrated to give
U*+(V £K)*=K?—1, where K >1 is a constant of integration. Therefore the
trajectories of (3.2) are all circles, centre (0, £K) and radius (K2 — 1)z, and the
steady states (U, V)= (0, +1) are true centres. In the full system (2.5), the
behaviour near the steady state is therefore a stable eigenvector with a nonzero ¢
component, coupled with a true centre in the ¢—¢ plane. Numerical integration
suggests that in this case 7~ terminates on one of the periodic orbits in the 7 =0
plane (Fig. 4(a)).

Therefore, for ¢ on both sides of the bifurcation value 2A(0)3, the trajectory 7~
is a connection between 7 =7 and 7 =0, and corresponds to a well-defined
solution of the partial differential equations consisting of travelling fronts in r and
0,. However, it remains to consider the stability of these solutions. I have been
unable to solve the linear stability problem analytically, but numerical solutions
suggest that the waves of speed ¢ <2A(0)! are unstable as reaction—diffusion
solutions, while those of speed c =2A(0): are stable. Figure 5 illustrates the
evolution of (1.1) using the trajectory 7T~ as an initial condition; the value of ¢
affects the initial condition 77, but the partial differential equations (1.1) are of
course independent of ¢. For ¢ =2A(0):, the transition wave form in 7 and 6,
persists, moving across the domain with speed c. In fact, I have previously
presented numerical evidence suggestmg that with initial conditions such that
uv~e ¥ as x -, with §>/\(O)’ the reaction-diffusion solution evolves to
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FiG. 4. Examples of the trajectory T~ in the system (2.5) for (a) c <2A(0)} and (b) ¢ >2A(0)%. 1 I plot
?, &, ¢ as functions of z, and also the corresponding wave form for u = 7(z) cos ['ﬁ(z)] where ¥(-)
is an indefinite integral of §(+). In the figure, A(*) =6 — re’ and w(r) = (1 +3r*)~' ¥ e ¥, so that the
bifurcation wave speed 2A(0)2 = 4.9. In (a), c =4.5, and in (b) ¢ =5.5. The trajectory was determmed
by integrating the system (2.5) numerically using a Runge-Kutta—Merson method, with initial values
&, )= (7,0, ) — v(e,, €5, €5), where 0<v<«1 and (e,, e, e;) is the normalized unstable
eigenvector of (2.5) at (7,0, ), with e, > 0.

transition waves in r and 6, of speed £ + A(0)/¢ (Sherratt, 1993a,b). This type of
dependence on initial data is very similar to that in the Fisher equation (Rothe,
1978). However, if ¢ <2A(0)%, the initial condition T~ evolves to a front in 7 and
6, moving with speed 2A(0)2 the limiting shape of the front is simply the
trajectory T~ when ¢ = 2A(0)z.
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FiG. 5. The solution of (1.1) with the initial condition given by the trajectory T~ in the system (2.5),
for three different values of c. I plot the solution amplitude r as a function of x at equally spaced times
(time interval = 2.5). The trajectory T~ is an amplitude transition wave solution of (1.1), and was
calculated as described in the legend to Fig. 4. This figure illustrates the general observation in
numerical solutions that the transition wave T~ is stable as a partial differential equation solution for
¢ =2A(0)3, whereas for ¢ <2/\(0)5 the wave is unstable, and the solution evolves to the wave with
speed 2A(0)}. In the figure, A(r) =1—r® and w(r) =5~ r*, so that the bifurcation speed 2A(0)} is 2.
The system (1.1) was solved numerically, subject to zero flux boundary conditions.

Returning now to evolution of (1.1) from (1.2) when L is small, numerical
solutions for a range of functional forms for A(*) and «(+) suggest that the
transition waves in r and 6, that develop in this case move with the minimum
stable speed 2A(0)}. This means that the amplitude r, of the periodic plane waves
behind this front is the unique solution of 4A(0)A(r,) = [w(r) — w(0)]>. The
velocity of the periodic plane waves is —w(rs)/z/;s=2/\(0)5/[l—w(O)/w(rs)].
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Since w(-) is strictly decreasing, this is always less than the front velocity 2A(0)z;
however, it can be negative with an absolute value greater than the front speed.
The evolution of transition waves moving with a minimum speed is reminiscent
of behaviour in single reaction-diffusion equations. Kolmogoroff et al. (1937)
studied the system y, =y,, + F(y), where F(y,)=F(y,)=0 with F(y)>0 on
(»1sy2), and F'(y)>0 with F'(y)<F'(y;) on (y,,y,). They showed that
transition wave solutions with y =y, exist only for speeds greater than or equal
to 2F'(y,)?. In the vast majority of applications (reviewed by Murray, 1989: Chap.
9), the condition y =y, is necessary for the solution to be physically realistic:
typically y is a population density and y, = 0. Moreover, Kolmogoroff et al. (1937)
showed that for initial conditions such that F(y(x, t = 0)) has compact support in
x, the partial differential equation solution evolves to the transition wave with the
minimum possible speed 2F'(y,):. However, there is an important difference
between this result for a single reaction-diffusion equation and the situation
discussed here. For the system (1.1), 2A(0)} appears to be a minimum speed for
stability, but waves of lower speeds do exist and are physically realistic, since the
solution amplitude r =0 for all z.

4. Larger scale perturbations

Having considered the cases of L = and L very small, I now investigate the
solution of (1.1) subject to (1.2) when L is large but finite. From the discussions
above, one would still expect transition waves in r and 6, to move outwards,
leaving periodic plane waves behind them. However, the difference in this case is
that when a sufficiently large region of the domain is perturbed, the central part
of that region is some distance from the amplitude transition wave, and evolves
towards the limit cycle solution of the kinetics. A typical example of the
subsequent behaviour is illustrated in Fig. 6. In addition to the transition wave in
r and 6, moving away from the initial disturbance with speed ¢ = 2A(0)?, thére is a
second transition wave moving into the disturbance. Behind both fronts r — r, and
6, — Y, corresponding to periodic plane waves in u and v. Ahead of the outward
moving wave r— 0, so that the system is at the steady state, while ahead of the
inward moving wave r—r, and 6, —0, so that the system is executing spatially
homogeneous temporal oscillations.

I denote by s the velocity of the inward moving wave. Again I consider waves
in x >0, and I continue the sign convention that a positive velocity means a wave
moving in the positive x direction, so that one expects s <0. The inward moving
wave then has the form (r, 6,) = (F(x — st), y(x — st)). Far ahead of the front
(near the centre of the initial perturbation), r—r, and 6,—0, so that (2.1b)
implies that 6,— w(r.). Therefore 6= W(x —st) + w(r)t, where P(-) is an
indefinite integral of (+). Substituting these solution forms into (2.1) gives a
third-order system of ordinary differential equations:

F'+sP +PA(F) = p? =0, ¢ +sg+2FP/F+ w(F) — w(r)=0. (4.1a,b)

This system is different from the equations (2.4) for 7 and § because of the
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FiG. 6. The solution of (1.1) subject to (1.2) with A(r)=2~r>, w(r)=3.5/(1+r%), L =40, and

€=0.01. I plot r and 6, as functions of x at equally spaced times, mcluding t =0, the time interval is

8. The system evolves to two sets of transition fronts in r and 6,; one moving away from the

perturbation, the other moving into it. The steady-state values between the fronts correspond to

periodic plane waves in u and v.

different behaviour ahead of the front. Since )\(rL) 0, it follows that
(F, ¥) = (r.,0) is automatlcally a steady state of (4.1). However, the requirement
that (7, ¢) = (r,, ) is a steady state determines the wave velocity s as

_ () - o(r) _ o(n) - w(r)

v “0(0) —w(r)

Under our assumption that w(+) is strictly decreasing, the value for s given by
(4.2) has the opposite sign to ¢, so that the two fronts always move in opposite
directions, as in Fig. 6. The value predicted by (4.2) agrees extremely well with
that observed in numerical solutions of (1.1) for a wide range of functional forms
for A(*) and ().

As a slight digression, I now investigate the possibility that s->0 when w(¢) is
not strictly decreasing. I do not make any attempt at a general study, but rather I
consider the following specific functional forms for A(+) and w(+):

A =1-r,  o(r)=w,—2[Br(a - )], (4.3)

where a >1 and B >0 are real parameters. In this case ¢ =2, and the equation
(3.1) has the unique solution

(4.2)

1 R
r= ﬁ{l +af - [(1 +aB)’ —48]3}. (4.4)
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F1G. 7. Contour plots of r, and s as functions of a and B when A(*) and w(+) are given by (4.3).
Expressions for r, and s are given in (4.4) and (4.5) respectively. The periodic plane waves of

amplitude r, are stable if and only if B8 is below the dashed line, which is the curve ( 168 —5)(1—r) =

4a*B? - 1, calculated using (2.3). y

Equation (4.2) implies that

s=of (BesDy ] “5)

1-r,

The variation of 7, and s with « and B is illustrated in Fig. 7. In particular, (4.5)
implies that s can be positive or negative, depending on a and 8. When s <0,
numerical solutions of (1.1) subject to (1.2) with L large have the same qualitative
form as the solution illustrated in Fig. 6. That is, two sets of transition fronts in r
and 6, move with constant shape and speed in opposite directions. Therefore,
one expects intuitively that, when (4.5) gives s >0, the solution will again evolve
to two sets of transition fronts, both moving with constant shape and speed in the
positive x direction. However, numerical solutions suggest that this is not the case
(Fig. 8). Rather, there is a constant shape transition front connecting
(r, 6,)=(0,0) and (r, 6,) = (r,, ¥;), which does move with constant shape and
speed as before, and there is also a second wave, which moves in the positive x
direction, but not with constant shape. The form of the solution illustrated in Fig.
8 is qualitatively the same for a wide range of a, 8, and w, for which s >0, and
implies that the region in which the system executes spatially homogeneous temporal
oscillations does not grow with time. Rather, this region remains of approximately
constant width (=2L), and the transition region between these homogeneous
oscillations and the periodic plane waves gradually increases in width.
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FiG. 8. The solution of (1.1) subject to (1.2) when L =400, £ = 0.01, and A(+) and w(+) are given by
(4.3), with a=1.1, B=05, and wy=1. I plot r and 6, as functions of x at equal spaced times,
including ¢ = 0; the time interval is 620. For these parameter values the wave speed s is positive, and
the solution evolves two sets of waves in r and 6, moving in the positive x direction. The leading wave
moves with constant shape and speed (=2), but the trailing wave does not.

5. Conclusion

In contrast to scalar reaction-diffusion equations, the evolution of A-w systems
from given initial data has received very little attention in the literature. In this
paper, I have used a combination of analytical and numerical techniques to
address this problem when the initial data has the particular form (1.2), and when
A(+) and w(+) are both strictly decreasing. I have shown that the solution evolves
to two sets of transition wave fronts in the amplitude r and wave number 6,, one
moving outwards from the perturbation and one moving inwards. Numerical
evidence suggests that the outwards moving wave has speed 2A(0):. I have shown
analytically that at this wave speed there is a bifurcation in the form of amplitude
transition waves for which r—0 ahead of the front, and I have presented
numerical evidence suggesting that the stability of the waves changes at this
bifurcation. I have also shown that the speed of the inward moving wave is
uniquely determined by the speed of the outward moving wave. Between the
transition fronts, the solution has the form of periodic plane waves for 4 and v,
and their amplitude r, is also determined by the speed of the outward moving
transition front.

Linear stability of periodic plane waves as reaction—diffusion solutions can
easily be determined using (2.3), and in Figs. 1-3, 6, and 8 I have deliberately
chosen functional forms for which the periodic plane waves of amplitude r, are

L
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FiG. 9. The solution of (1.1) subject to (1.2) with A(r) =2 — r®*, w(r) =1-°®, L = 150, and ¢ = 0.01.
I plot r and u as functions of x at ¢ = 60, and as functions of ¢ at x = 190. In the former case, I plot only
the region x >0 for clarity; r and u are of course symmetric about x = 0. For these forms for A(+) and
w(+), (2.3) implies that the periodic plane waves with amplitude r, are linearly unstable, and the waves
between the amplitude transition fronts degenerate into irregular spatiotemporal oscillations.
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stable. However, this is not always the case, and for some functional forms the
front speed ¢ =2A(0): determines a plane wave amplitude for which the waves
are unstable. I have solved the system (1.1) subject to (1.2) numerically for many
such functional forms, and in each case the periodic plane waves degenerate into
irregular spatiotemporal oscillations, as illustrated in Fig. 9. This is the case
whether L is large or small. Typically there is a band of regular oscillations
immediately behind the outward moving transition front, and there is in some
cases a narrower band of regular oscillations immediately behind the inward
moving front. The ability of A-w systems to sustain oscillations that are at least
spatially irregular has been documented previously by Kopell & Howard (1981),
who proved the existence of solutions that are temporally periodic but spatially
irregular in systems for which A(+) and w(+) are both strictly decreasing, with w(*)
and o'(+) small. In the present case, the oscillations are not of this form because
they are irregular in both space and time, and their precise nature is an open
problem.
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