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Abstract. We investigate a discrete mathematical model for a type of cell-cell communication in
early development which has the potential to generate a wide range of spatial patterns. Our previous
work on this model has highlighted surprising differences between the predictions of linear analysis
and the results of numerical simulations. In particular, there is no quantitative agreement between
the unstable modes derived from linear analysis and the patterns observed numerically. In this
paper, we look at the nonlinear model on a domain of two cells with the aim of gaining an insight
into behavior in larger systems. We study the existence and stability of spatially heterogeneous
steady-state solutions, which correspond to patterns of alternating cell fate on larger domains, as
we vary two key parameters. These parameters are measures of the strength of positive feedback
in the biological system. By reducing the problem to two coupled nonlinear algebraic equations,
we show that a patterned solution exists and is stable on a 2-cell domain for a significant part of
parameter space. We compare these results to those obtained from linear analysis and conclude
that the behavior of the nonlinear 2-cell system gives a better insight into the results of numerical
simulations on large arrays of cells. Furthermore, we conduct a bifurcation analysis of the model
on domains of various sizes: we demonstrate that as the domain size increases, the 2-cell pattern
becomes unstable for certain parameters, and overall the number of stable patterns increases. This
leads us to speculate that on large domains there are many stable patterned solutions to the model of
approximately the same periodicity, which is typical of the fine-grained patterns that one sees during
early development. Our work predicts that this is a feature of the patterning dynamics rather than
a consequence of environmental heterogeneity.
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1. Introduction. Early development in organisms is characterized by the de-
termination of cell fate—for example, whether a cell will become part of a bone or
part of the surrounding soft tissue. In general, this occurs on a very small spatial
scale, whereby a single cell adopts a different fate from that of its neighbors. This
microscopic pattern formation is common in the early stages of neural development
[9]. It is thought that direct communication between neighboring cells is one way
in which these patterns are generated. Such a mechanism is of particular interest in
epithelial tissues, in which cells are closely packed together with little intercellular
space.

The basis of cellular communication is that a molecule of a signaling chemical,
known generically as a ligand, binds to a receptor on the cell surface. This can
regulate many properties of a cell, such as, its growth rate or adhesiveness. Moreover,
the receptor complex can also regulate the production of new ligand and receptor
molecules within the cell. Traditionally, cell signaling pathways were divided into
three categories: autocrine—the molecule acts on the cell that produces it; paracrine—
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Fig. 1. We solve our model on a two-dimensional cellular array in which each cell in row j is
identical, so that behavior varies only in one direction. Pattern formation thus corresponds to the
generation of stripes within a two-dimensional sheet.

the molecule acts on neighboring cells via extracellular diffusion; and endocrine—the
molecule acts on all cells within a tissue. However, in the 1980’s a fourth mechanism
was identified [11]: juxtacrine—where the signaling molecule is anchored in the surface
of a cell and acts on immediately neighboring cells. This is possible only in tissues
where the cells are in close contact with one another, most notably the epithelia that
cover the surface of all tissues in the body. It is in these epithelia that much early
developmental patterning occurs.

Several ligand-receptor systems that operate via juxtacrine signaling have been
identified in developmental biology. In particular, there is a protein called Delta which
binds to the receptor Notch [13, 10]; this interaction is known to be important in
early development of the fruitfly. A previous mathematical model by Collier et al. [6]
looked at the Delta-Notch mechanism under the assumption that receptor activation
downregulated ligand production. Their work showed that given sufficiently strong
feedback, the model was capable of generating fine-grained patterns, in which cells
alternate between high and low levels of Delta and Notch expression. Patterns of
wavelength two cells are indeed observed in early development, but there are also
many microscopic patterns of a somewhat longer wavelength, which are not predicted
by Collier et al.’s mechanism. A possible resolution of this is that in some juxtacrine
signaling mechanisms, receptor activation upregulates ligand production—the reverse
of Collier et al.’s assumption. In fact, such upregulation is well established for certain
juxtacrine signals [18], in particular, the binding of the ligands transforming growth
factor-α and epidermal growth factor to the epidermal growth factor receptor [4,
5]. Moreover, recent experiments show that the important Delta-Notch system can
exhibit this positive feedback in some contexts [1, 8, 10, 16]. Our work is concerned
with the exploration of the patterning potential of juxtacrine signaling when this
positive feedback occurs.

The specific mathematical model we consider was developed in [14] and, in ac-
cordance with the scale of the process, uses a discrete formulation, with ODEs repre-
senting ligand and receptor levels on each cell in a fixed cellular array. At the stage
when early developmental patterns are being laid down, most epithelia are simply
two-dimensional sheets of cells; later in development, these will thicken to be several
cells deep. We restrict our attention to the formation of striped patterns within this
sheet, although the same mechanism can give spotted and other two-dimensional pat-
terns. Thus our model assumes a number of rows of cells with the model variables
being the number of ligand molecules aj , free receptors fj , and bound receptors bj ,
on the surface of cells in row j. A sketch of the cellular array that we use is given in
Figure 1.
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The model equations are given by

∂aj
∂t

= −
binding︷ ︸︸ ︷
kaaj〈fj〉+

dissociation︷ ︸︸ ︷
kd〈bj〉 −

decay︷︸︸︷
daaj +

production︷ ︸︸ ︷
Pa(bj) ,(1a)

∂fj
∂t

= −ka〈aj〉fj + kdbj − dffj + Pf (bj),(1b)

∂bj
∂t

= +ka〈aj〉fj − kdbj −
internalization︷︸︸︷

kibj ,(1c)

where da, df , ka, kd, ki are all positive constants. The kinetic scheme we use is as
generic as possible: ligand and receptor molecules bind reversibly to form a bound
receptor complex which can be internalized within the cell. We base rates of reaction
on the law of mass action, and we assume that both ligand and free receptors decay at
a constant rate. We assume that the production terms of new ligands and receptors,
Pa and Pf , are increasing, saturating functions of the number of bound receptors.
Particular forms will be discussed later, but note that we take Pf (0) to be nonzero,
reflecting the background production of free receptors in the absence of binding. The
spatial coupling between the cells, 〈·〉, is our representation of the juxtacrine commu-
nication. In this model, we assume that each cell has four nearest neighbors—two in
the same row and one in each of the two adjacent rows. Under these assumptions the
local average is then

〈aj〉 ≡ aj−1 + 2aj + aj+1

4
, etc .(2)

Of course, the cells in real epithelia are not arranged in regular geometric arrays, but
our assumption enables detailed analysis of the process, which would otherwise be
restricted to numerical simulation.

2. Previous work. The pattern-forming potential of the “one-dimensional”
model, as described in section 1, was studied using local stability analysis in [21]
and was supported by numerical simulations on large arrays of cells. In contrast
to the mechanism studied by Collier et al. [6], we demonstrated that our juxtacrine
model (1) can generate a wide range of pattern wavelengths. This result is clear from
both the analysis of the linearized model and the numerical simulations of the full
nonlinear model. Indeed, the linear analysis gives a fair insight into the behavior
we observe in numerical simulations. However, it is evident that the nonlinearities
override some of the predictions made by the linear analysis, and this is what we aim
to address in the present work. Before we do this, it is helpful to present a summary
of the previous results.

In the linear analysis, we applied techniques similar to those used by Turing [19]
to investigate diffusion-driven instability in reaction-diffusion systems. This involves
studying the stability of a uniform equilibrium subject to spatial perturbations. By
varying certain parameters, we consider where this equilibrium is both stable to ho-
mogeneous perturbations and unstable to inhomogeneous perturbations, and we thus
obtain a parameter regime where pattern formation is possible. Our parameter space
is characterized by measures of the strength of ligand and receptor feedback at the
uniform steady state. This is important since the nonlinear positive feedback in lig-
and and receptor production is the main assumption of our model. In addition, there



286 H. J. WEARING AND J. A. SHERRATT

A

F

L2

L1

L3C

L4

Region I

Region II

Fig. 2. Qualitative illustration of the parameter space in the A − F plane, where pattern
formation is possible. The parameters A and F represent, respectively, the slopes of the ligand and
receptor feedback functions (P ′

a and P ′
f ) at the homogeneous steady state. Below the lines L1 and

L2, the homogeneous equilibrium is stable to homogeneous perturbations. Above the curve C and the
line L3, the steady state is also unstable to inhomogeneous perturbations. The region for pattern
formation is therefore defined by the F-axis, the lines L1 and L2, and the curve C. For mathematical
convenience, we divide this region into two parts by the horizontal line L4: below L4, a wavelength of
two cells is always a stable mode, whereas above L4, a wavelength of two cells is always an unstable
mode. Mathematical expressions for the lines L1 − L4 and the curve C are derived in [21].

exists empirical data for the kinetic rate constants of binding, dissociation, and in-
ternalization for specific signaling systems, but there is little data on feedback levels.
Figure 2 illustrates the region of pattern formation in the A−F plane, where A and
F are, respectively, the slopes of the ligand and receptor feedback functions (P ′

a and
P ′
f ) at the homogeneous steady state. The lines that delimit this region were derived

in [21] and will be referred to later in this work.
The linear analysis not only predicts when patterns will form but also the range

of wavelengths that can destabilize the steady state for particular parameter val-
ues. Furthermore, we are able to estimate analytically and calculate numerically the
wavelength that corresponds to the fastest growing mode, which is the wavelength
we expect to dominate. Before discussing numerical simulations of the full nonlin-
ear model, we therefore review the range of patterns that is predicted by the linear
analysis. It turns out to be mathematically convenient to divide the region of pattern
formation into two smaller regions (I and II), as shown in Figure 2. We use the term
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Fig. 3. Three numerical simulations of the model (1) on a domain of 30 cells, each correspond-
ing to different (random) initial conditions. Linear analysis predicts the formation of a pattern with
a wavelength of two cells. In all the simulations of the nonlinear equations for these parameter
values we observe no regular form of pattern. The nearest solution to a pattern with a wavelength
of four cells is illustrated in (a); a regular pattern of mode four is not possible in this case since 4 is
not a divisor of 30. Notice that the high isolated peaks in the number of free and bound receptors are
always at least four cells apart. Boundary conditions are periodic. The kinetic rate constants are
ka = 0.0003 molecule −1min−1, kd = 0.12 min−1, ki = 0.019 min−1, da = 0.006min−1, df = 0.03
min−1. The feedback functions are taken to be of Hill form, such that Pf = C3+(Cn

4 b
n)/(Cn

5 + bn)
and Pa = (Cm

1 bm)/(Cm
2 + bm), where Cm

1 = 118, C2 = 2500, C3 = 90, C4 = 6.9, C5 = 5334,
m = 0.1, and n = 3.02. The profiles are for t = 1800 hours.

“single-mode pattern” to denote a pattern where only one wavelength is unstable;
when there is a range of unstable wavelengths we shall refer to the pattern as “multi-
mode.” Our analysis shows that single-mode patterns with a wavelength greater than
two cell lengths are possible only in region II, and in theory there is no bound on the
unstable wavelength in some parts of the parameter space. Multimode patterns are
possible in both regions with no upper bound for the wavelength in either region; a
pattern of wavelength two is always unstable in region I. The wavelength correspond-
ing to the fastest growing mode takes the values 2 or 3 in region I, but it may take
any value above 2 in region II.

The main goal of the numerical work in [21] was to test the predictions of our linear
analysis and therefore add to our understanding of the nonlinear system. Numeri-
cal simulations were performed on arrays of 30 and 60 cells with periodic boundary
conditions to simulate cells as part of a continuum. Initial conditions were random
perturbations about the homogeneous steady state. Figure 3 shows three typical sim-
ulations for a single set of parameters. These solutions are characteristic of most of
the simulations—a pattern that has some irregularities but with isolated peaks having
a roughly constant separation. However, we also obtained patterns that were strictly
periodic—for example, a peak in the number of bound receptors every five cells. In
practice, only divisors of the number of cells in the array can be regular wavelengths;
so for 30 cells these are 2, 3, 5, 6, 10, 15, and 30. By varying the feedback parameters,
a wide range of different wavelength patterns was observed.
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The motivation for this paper comes from the comparison of our numerical simu-
lations with the predictions of the linear analysis. In short, the linear analysis seems
to predict correctly the parameter regions in which patterns will form. Furthermore,
as we vary the feedback parameters, numerical results agree qualitatively with the
changes in the fastest growing mode. However, the wavelengths seen in the simu-
lations do not agree quantitatively with the predictions of the linear analysis. In
particular, for a large part of the parameter space, a wavelength of two cells, corre-
sponding to an alternating pattern of high and low receptor numbers, is predicted to
be the fastest growing mode by linear analysis. This is the case for the parameter val-
ues in Figure 3; indeed, a wavelength of two cells is the only unstable mode for these
parameters. However, as demonstrated in Figure 3, a regular pattern of wavelength
two is rarely observed in simulations on large arrays of cells.

The aim of the present work is to investigate the full nonlinear model for the
2-cell system and study the possibility of nonuniform steady states, which correspond
to a pattern of alternating cell fates in larger systems. In section 3, we consider
the steady-state equations of the model on an array of two cells; we show how these
simplify to two coupled nonlinear equations and outline our approach to finding het-
erogeneous solutions. Section 4 analyzes these equations when the feedback functions
are of a particular form and derives conditions for patterned equilibria; some of the
mathematical details are rather laborious and are presented in the appendix. We then
discuss these results in section 5 in the context of our previous work, investigating
the stability of the 2-cell pattern in larger systems. Section 6 is left for a general
discussion of the work.

3. Equilibria of the 2-cell system. Our analysis focuses on the model equa-
tions (1) for a 2-cell domain with periodic boundary conditions. In real systems, the
juxtacrine mechanism will be functioning on much larger domains with tens, possibly
hundreds, of cell numbers. However, the behavior of the 2-cell system may be a good
indication as to what is occurring in larger arrays of cells and enables us to consider a
reduced system of six coupled ODEs, for which the solutions are either homogeneous
or patterned with a wavelength of two cells. In fact, for the striped patterns that we
are considering (see Figure 1), the juxtacrine term is the same for both cells, i.e.,

〈aj〉 =
a1 + a2

2
, etc. for j = 1, 2 ,(3)

and this simplifies the ODEs considerably. Indeed, when the system is at equilibrium,
the end result is just two equations for the variables b1 and b2.

Initially, the steady-state equation of (1c) yields

fj =
(kd + ki)bj
ka〈aj〉 =

2(kd + ki)bj
ka(a1 + a2)

, j = 1, 2 .(4)

Substituting this expression for fj into (1a)–(1b), the equilibria of the 2-cell system
are then determined by four nonlinear equations. These are given by

0 = − (kd + ki)aj(b1 + b2)

(a1 + a2)
+ kd

(b1 + b2)

2
− daaj + Pa(bj),(5a)

0 = −kibj − 2df (kd + ki)bj
ka(a1 + a2)

+ Pf (bj)(5b)

for j = 1, 2. Notice that the pair of equations for each cell is symmetric, since the
spatial coupling is identical for both cells. On rearranging (5b) for j = 1 and j = 2
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to find a1 + a2, we obtain the following expression:

a1 + a2 =
2df (kd + ki)b1

ka(Pf (b1) − kib1)
=

2df (kd + ki)b2
ka(Pf (b2) − kib2)

.(6)

The second equality governing b1 and b2 then simplifies to

b1
Pf (b1)

=
b2

Pf (b2)
.(7)

To find another relation between b1 and b2, we first deduce an expression for aj . We
take the first equality of (6) and substitute this into (5a) to obtain

aj =
dfb1[kd(b1 + b2) + 2Pa(bj)]

2dadfb1 + ka(b1 + b2)(Pf (b1) − kib1)
, j = 1, 2 .(8)

Notice that the difference between a1 and a2 corresponds to the difference between
Pa(b1) and Pa(b2). After summing (8) for j = 1 and j = 2, we have another expression
for a1 + a2, which we can then equate with (6) to give

2dfb1[kd(b1 + b2) + Pa(b1) + Pa(b2)]

2dadfb1 + ka(b1 + b2)(Pf (b1) − kib1)
=

2df (kd + ki)b1
ka(Pf (b1) − kib1)

.

This equation simplifies so that either b1 = 0, corresponding to the trivial uniform
steady state, or

ka(Pf (b1) − kib1)[Pa(b1) + Pa(b2) − ki(b1 + b2)] − 2dadf (kd + ki)b1 = 0 .(9)

Solutions (b1, b2) of (7) and (9) therefore define the steady states of the 2-cell system.
The homogeneous steady states are given by those solutions for which b1 = b2.

We are interested in when patterned solutions to the 2-cell system exist. There-
fore, we would like to find conditions on the feedback functions, Pa and Pf , that de-
termine when the coupled equations (7) and (9) have solutions such that b1 �= b2. Our
approach is motivated by the symmetry imposed by the juxtacrine average. Equation
(7) is symmetric in b1 and b2; we thus use this equality to obtain another symmet-
ric equation from (9) and study two symmetric equations instead. Each equation is
considered individually; we will investigate for which parameters there are solutions
satisfying b1 �= b2 and visualize these solutions in the b1 − b2 plane. The intersec-
tions of the solution curves for each equation in the b1 − b2 plane correspond to the
steady states of the system. We outline our investigation of these intersections for
specific (biologically realistic) forms of the functions Pa and Pf in section 4. Further
details of this analysis are presented in the appendix together with a simpler case for
illustration.

We begin by considering (7), since this involves only one of the production func-
tions, Pf . In particular, by defining F (b) ≡ b/Pf (b) we are interested in solutions
of F (b1) = F (b2) for b1 �= b2. We therefore require that F has at least one turning
point. By direct differentiation, F ′(b) = 0 if and only if

Pf (b) − bP ′
f (b) = 0 .(10)

If (10) has no real and positive solution, then no patterned steady state can exist.
Figure 4 illustrates the function F (b) and solutions of F (b1) = F (b2) in the b1 − b2
plane for a specific function Pf that satisfies (10) for some b > 0. The symmetry of (7)
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Fig. 4. Illustration of (a) F = b/Pf (b) and (b) the solutions of F (b1) = F (b2) for Pf =
C3 + (Cn

4 b
n)/(Cn

5 + bn), where n = 4, C3 = 90, C4 = 4.5, C5 = 4700. The branching points of the
nonuniform solutions of F (b1) = F (b2) are the turning points of F, denoted by α and β. Expressions
for these points are given in the appendix.

means that we have to consider only solutions for which b1 < b2 and then reflect these
in the line b1 = b2. Notice that the turning points of F , denoted by α and β, give the
branching points of the heterogeneous solutions in the b1 − b2 plane. Expressions for
α and β and the condition for solutions b1 �= b2 for this example can be found in the
appendix.

We also wish to know when (9) has solutions such that b1 �= b2 and where these
overlap with solutions of (7) to give heterogeneous steady states. To facilitate the
analysis, we can rewrite (9) in a symmetric form. First, if we divide throughout by



NONLINEAR ANALYSIS OF JUXTACRINE PATTERNS 291

b1, then (9) becomes

G(b1)[H(b1) + H(b2)] = 2c ,

where G(b) = Pf (b)/b− ki, H(b) = Pa(b)− kib, and c = dadf (kd + ki)/ka. Collecting
the terms in b1 on the left-hand side and those in b2 on the right-hand side gives

H(b1) − 2c

G(b1)
= −H(b2) .

From the identity (7) it follows that G(b1) = G(b2). We can therefore make the
substitution 2/G(b1) = [1/G(b1)+1/G(b2)] to obtain the following symmetric equation
in b1 and b2:

Φ(b1) = −Φ(b2) ,(11)

where

Φ(b) = H(b) − c

G(b)
≡ Pa(b) − kib− dadf (kd + ki)b

ka(Pf (b) − kib)
.(12)

The roots of Φ determine the homogeneous steady states. We are now interested in
solutions of Φ(b1) = −Φ(b2), such that b1 �= b2, and where these coincide with those of
F (b1) = F (b2). Figure 5 displays the function Φ and solutions of Φ(b1) = −Φ(b2) for
specific forms of Pa and Pf . Since Φ depends on both production functions, its form
can vary much more than that of F . However, there are properties of Φ that can be
deduced from the biological constraints of the system. In particular, we can assume
that G(b) > 0 for all b < rmax, where rmax is the maximum number of receptors that
can be expressed on a cell’s surface, since only at the point of saturation must the
rate of internalization (kib) be equal to the rate of free receptor production (Pf (b)).
Therefore, Φ < 0 for all b such that H < 0. It is also easy to show that the turning
points of 1/G(b) are identical to those of F (b). In the next section, we consider
solutions to (7) and (11) and their intersections for biologically realistic forms of the
production functions.

4. Conditions for patterned solutions when Pa and Pf are of Hill func-
tion form. In this section we look at a specific case when both production functions
are increasing, saturating functions of b. We investigate this case for a particular
system in which the parameter values are fixed, except for two free parameters that
give an indication of the feedback strength in ligand and free receptor production.
By partitioning the parameter space, we deduce conditions that are necessary for the
existence of patterned solutions to the 2-cell system.

We suppose that both functions have Hill form; these are the forms used in [21]
and are defined as follows:

Pa(b) =
Cm

1 bm

Cm
2 + bm

,(13)

Pf (b) = C3 +
Cn

4 b
n

Cn
5 + bn

,(14)

where C1, . . . , C5 are positive constants and m and n are real numbers greater than
zero. The two function forms differ qualitatively at b = 0, since Pa(0) = 0 and Pf (0) =
C3; as mentioned in section 1, we are assuming a background level of free receptors in
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Fig. 5. (a) The form of Φ(b) and (b) the solutions of Φ(b1) = −Φ(b2) in the b1 − b2 plane for
Pa = (Cm

1 bm)/(Cm
2 + bm) and Pf as in Figure 4, where m = 1.5, n = 5, C1 = 105, C2 = 2500,

C3 = 90, C4 = 3.3, C5 = 4300. Note that the roots of Φ are the points of intersection of the line
b1 = b2 with Φ(b1) = −Φ(b2).

the absence of binding so that Pf is nonzero at b = 0. We study Hill functions simply
as a commonly used example of nonlinear feedback, and our calculations would apply
for other similar functions; however, nonlinearity in Pf (b) is essential for patterns to
form.

If we fix one homogeneous steady state, say, (aeq, feq, beq), then this determines
all but two of the parameters in the production functions in terms of the kinetic rate
constants. The two “free” parameters (which are most conveniently taken as the Hill
coefficients m and n) can be interpreted as a measure of the feedback strength and are
equivalent to the parameters A and F in Figure 2 of our linear analysis. In this way
we can study the behavior of the system in a two-dimensional parameter space, where
we vary the strengths of the feedback in both ligand and free receptor production. For



NONLINEAR ANALYSIS OF JUXTACRINE PATTERNS 293

m

n

Σ1

Σ2
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Σ4

Σ5 Σ6

(i)

(ii)

(iii)

(iv)

(v)

(vi) (vii)

(xi)

(xii)

(x)(ix)

(viii)

Σ7

NO PATTERNS

Fig. 6. Qualitative partition of the parameter space for the 2-cell system, where Pa and Pf

are of Hill form. The parameters m and n (the Hill coefficients) represent the strength of ligand
and receptor feedback, respectively. We delimit twelve regions by conditions on m and n, denoted by
Σ1 −Σ6. (The dotted line Σ7 denotes H′(beq) = 0 and is discussed in section A.2 of the appendix.)
These regions are detailed in section A.2 of the appendix, although it is worth noting that values of
n above the line Σ1 satisfy the condition given by (A.2), which implies that heterogeneous solutions
are not possible for the region below Σ1. Regions filled with grey squares are those where patterned
solutions are possible. Patterned solutions are also possible for some parameters in region (xi). For
comparison, the lines Σ2 and Σ3 correspond, respectively, to the lines L4 and L1 of Figure 2, which
are derived in our linear analysis.

the other parameter values we use data on a specific juxtacrine mechanism, namely,
the binding of the ligand transforming growth factor-α to the epidermal growth factor
receptor. This data set was also used in [21] and will allow us to directly compare
the nonlinear analysis presented in this work with the linear analysis and numerical
simulations carried out in [21].

We partition the parameter space analytically by obtaining conditions on the
feedback parameters m and n. The qualitative form of the partitioned parameter
space is illustrated in Figure 6. These regions are constructed by considering the
behavior of the functions F (b) and Φ(b) as we increase the parameters m and n. This
in turn affects the solution curves of (7) and (11) and where these curves intersect
to give steady-state solutions to the 2-cell system. In particular, the partitioning is
motivated by the number of roots of Φ and the gradients of F and Φ at the fixed
uniform steady state. Specific details of this analysis are given in section A.2 of the
appendix, which is preceded by an instructive example for the case when Pa is a
constant in section A.1 of the appendix. Here, we illustrate the behavior in each
region for particular values of the feedback parameters.

In Figure 7, we display the solution curves of (7) and (11) in the b1 − b2 plane
for specific values of m and n, in each of the twelve regions. Recall that the roots
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Fig. 7. Illustration of the solutions of (7), F (b1) = F (b2) (dashed line), and (11), Φ(b1) =
−Φ(b2) (solid line) for regions (i)–(iv) of the parameter space. Each region is delimited in Figure
6. Uniform solutions of the system are the real roots of Φ, which are the points of intersection
of (11) with the line b1 = b2 in the b1 − b2 plane. Nonuniform solutions of the system occur
if solutions of (11) intersect with the ring of nonuniform solutions to (7). The solution curves
of the two equations intersect only for parameters in regions (ii), (iii), (iv), (vi), (viii), (x), and
(xii). Therefore, heterogeneous/patterned solutions are possible in these regions. They are also
possible in region (xi) for different values of m and n. We note that in region (iv) there are two
sets of symmetric heterogeneous solutions (b1, b2): one pair very close to b1 = b2 and another
where b1 is either much smaller or much larger than b2. This may be difficult to see, since the
curve intersects the line b1 = b2 just below b = α and doubles back on itself. The kinetic rate
constants are ka = 0.0003molecule−1min−1, kd = 0.12min−1, ki = 0.019min−1, da = 0.006min−1,
df = 0.03min−1. The parameter values C1 and C3 − C5 of the production functions are defined
through steady-state analysis using feq = 3000, beq = 3000, r0 = 3000, rm = 25500. We fix the
parameter C2 = 2500 and vary the Hill coefficients as follows: (i) m = 0.5, n = 3; (ii) m = 0.5,
n = 5; (iii) m = 0.5, n = 50; (iv) m = 0.5, n = 65; (v) m = 2, n = 3; (vi) m = 1.5, n = 5; (vii)
m = 2.1, n = 5; (viii) m = 1.4, n = 20; (ix) m = 3, n = 2.5; (x) m = 4, n = 3; (xi) m = 2, n = 30;
(xii) m = 4, n = 30.

of Φ determine the homogeneous steady states of the full nonlinear system, and that
the points of intersection of the solutions to (7) and (11) in the b1 − b2 plane give the
steady states of the 2-cell system. The solutions illustrated in Figure 7 for parameters
in regions (i)–(iv) are similar to those in section A.1 of the appendix, in which we
assume that Pa is constant. This is to be expected, since the assumption that Pa is
constant is equivalent to setting m = 0. In the other regions, the number of roots of
Φ varies with both m and n, although in our numerical work we have not found more
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Table 1
In which regions are patterned solutions possible? The partitioning of the parameter space into

the twelve regions is illustrated in Figure 6. The solutions are for the particular juxtacrine system
demonstrated in Figure 7.

Region of parameter space Patterned solutions possible?

(i) no

(ii) yes

(iii) yes

(iv) yes (more than 1)

(v) no

(vi) yes

(vii) no

(viii) yes

(ix) no

(x) yes

(xi) only for some parameters

(xii) yes (more than 1 for some parameters)

than four positive real roots. (An explanation for this is given in section A.2 of the
appendix.) Consequently, there is some variation in the form of the solution curves
of equations (7) and (11), but if these curves do intersect to give patterned solutions
to the 2-cell system, then there is generally only one such solution. In Table 1, we list
whether each region of the parameter space is capable of 2-cell patterned solutions.
The regions where heterogeneous solutions are possible are those satisfying Φ(α) > 0
or Φ(β) > 0 (where α and β are the turning points of F (b)) and region (iv), in which
the ligand feedback parameter m ≤ 1 and the receptor feedback parameter is very
large as well as part of region (xi) adjacent to region (iv).

So far we have considered heterogeneous steady-state solutions to the nonlinear
2-cell model that correspond to a pattern of alternating cell fate in larger arrays. In
two dimensions this is equivalent to obtaining alternate stripes of 1-cell width. We
have illustrated the existence of such equilibria for a particular juxtacrine mechanism
in this section; the details are given in section A.2 of the appendix. However, these
results do not give us any information about the stability of the dynamical system. In
the next section, we are therefore interested in relating this work to previous results
from linear analysis in [21] and also in calculating the stability of the 2-cell solutions
obtained above.

5. Comparison with the results of linear analysis. The region of pattern
formation where linear analysis predicts that a wavelength of two cells is a possible
solution corresponds to part of regions (ii) and (vi), and region (vii), all above the
line Σ2 in Figure 6. As we would expect, in the first two regions we have shown
that nonuniform 2-cell patterned equilibria exist. However, in the smaller region
(vii) the nonlinear steady-state analysis has demonstrated that there are no 2-cell
heterogeneous solutions, contrary to the prediction of the linear system. Note that
this significant difference between linear analysis and nonlinear behavior is in contrast
to the well-studied Turing systems [12], for which the two behaviors are usually very
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Fig. 8. 2-cell pattern calculated from nonlinear analysis (a) and numerical simulation of the
30-cell system (b) for parameter values in region (ii). The 2-cell system, where alternating cells are
identical, is presented on a 30-cell domain for the purposes of comparison. Steady-state analysis
of the full system of nonlinear equations has shown that a 2-cell pattern exists for such parameter
values, and we observe from numerical simulation of the 2-cell system about the uniform equilibrium
(aeq , feq , beq) that this solution is stable. When the simulation is carried out on an array of 30 cells,
no regular pattern forms, but, more importantly, the pattern wavelength is closer to four cells than
two cells. This suggests that although the 2-cell pattern exists as a solution, it is perhaps unstable
in larger systems of cells. For brevity, only the profiles of the number of ligand molecules and the
number of bound receptors are shown. For the simulation in (b), initial conditions were random
perturbations about the homogeneous steady state. The values of the “free” parameters are m = 0.5
and n = 5. The other parameter values are as in Figure 7.

similar. Numerical simulations on arrays of both 2 and 30 cells for parameters in region
(vii) confirm this finding: from initial conditions that are random perturbations about
the uniform equilibrium, numerical solutions decay to the trivial homogeneous steady
state (a = b = 0, f = r0) in both cases.

There are also regions where 2-cell patterns are solutions of the steady-state equa-
tions, but linear analysis does not imply pattern formation. This is to be expected
since we have not yet considered the stability of the 2-cell patterns. Moreover, the
linear analysis is based only on the behavior of the system close to a single uniform
steady state, and when other uniform equilibria exist it is possible that perturbations
about these steady states would also give rise to stable patterns for certain parame-
ter values. In Figure 8, we present both the 2-cell pattern calculated from nonlinear
analysis, plotted on a 30-cell domain, and a numerical simulation of the 30-cell sys-
tem for parameters in region (ii). These show that despite the existence of a 2-cell
patterned solution and the predictions of linear analysis, longer wavelength patterns
are observed in simulations on a larger array of cells. This suggests that for larger
systems the 2-cell pattern may be unstable. Such observations raise two important
questions: is the 2-cell patterned solution to the steady-state equations stable; and
what happens to the stability of this solution in larger systems?
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Fig. 9. Stability of the patterned solution to the 2-cell system in m− n parameter space. Light
shading indicates stability, and dark shading indicates instability; those regions left blank are where
heterogeneous solutions do not exist or they exist for only some parameters (region (xi) of Figure
6). In the case where there are two such solutions (in region (iv) of Figure 6), the stability of the
solution where |b1−b2| is the greater is recorded; the other solution is unstable. Note that the pattern
is predominantly stable in the region where linear analysis predicts pattern formation; this is the
region defined by the four vertices (×). The other parameter values are as in Figure 7.

5.1. Stability analysis of the 2-cell system. We begin by investigating the
stability of the patterned solution for the 2-cell system. The nonuniform equilibria
of the 2-cell system can be obtained directly from the steady-state equations of the
model, and so it is possible to calculate their stability explicitly. Although alge-
braically infeasible, we can solve the two nonlinear equations (7) and (9) numerically
to find b1 and b2, since we know from section 4 whether (and how many) heteroge-
neous solutions exist for any point (m,n) of the parameter space outlined in Figure
6. The values of the other variables are obtained by back-substitution into (4) and
(8). It is lengthy but straightforward to calculate analytically the Jacobian of the
2-cell system about the nonuniform equilibrium and thus determine the characteristic
equation; this is a polynomial of degree six, and a numerical method is used to find the
eigenvalues. Figure 9 illustrates the stability of heterogeneous solutions (when they
exist) of the 2-cell system in m− n parameter space. We can see that the patterned
solution is stable for a range of parameters and is always stable for small m. In the re-
gion of pattern formation derived from linear analysis about the uniform steady state,
the heterogeneous equilibrium is unstable only close to where there is no solution at
all. We therefore conclude that the alternating 2-cell pattern is predominantly stable
in the 2-cell regime, and so to try to explain the results of numerical simulations on
larger arrays of cells we should now consider its stability in larger systems.

5.2. Investigation of the 1-cell, 2-cell, 4-cell, and 8-cell systems using
AUTO. The previous section considered the stability of the patterned solution in
the 2-cell system by directly calculating the eigenvalues of the Jacobian. This method
could be used to investigate the stability of the 2-cell pattern in larger systems of
cells. However, it is more informative to consider all the steady states of the model
and their stability for larger arrays of cells, and this is best achieved using AUTO [7],
a programming package which can carry out a limited bifurcation analysis of systems
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of ODEs.
If we are to track the stability of the 2-cell pattern in larger systems of cells, we

need to consider those where a pattern of period 2 cells can exist. It is therefore
convenient to study arrays of length 2i, where i is a positive integer. In this way,
we ensure that the 2-cell pattern is always a potential solution and also that as we
progress, the equilibria of each system include the equilibria of the previous one. First,
we consider the 1-cell system, whose equilibria are the uniform steady states of the
full model. We then investigate the 2-cell system, which should include the steady
states of the 1-cell system and agree with the stability results of the previous section
for the 2-cell pattern. Similarly, in the 4-cell system, we should observe the equilibria
of the 2-cell system and so on.

Figure 10 illustrates bifurcation diagrams for a single bound receptor variable in
the 1-cell, 2-cell, 4-cell, and 8-cell systems, where one feedback parameter, m = 0,
is fixed, and the other, n, is free. We confine ourselves to values of n within the
region of pattern formation derived from linear analysis to allow comparison with
numerical simulations. In the 1-cell case, there is a unique stable steady state for the
parameter values shown. If we double the number of cells, then this becomes unstable
at a bifurcation point (n ≈ 3) from which a stable nonuniform steady state branches
out. One of the branches gives the equilibrium value of b1, while the other gives
the corresponding value of b2. Taken together, the branches labelled (b) determine
a 2-cell patterned solution (b1, b2). In the 4-cell system, the period 2-cell pattern is
unstable for small values of n but is stable for n greater than about 6. However, in
addition to the 2-cell pattern, there are two other heterogeneous solutions: one of
these is stable (labelled (c)) for most of the parameter values, and the other (labelled
(d)), which appears just before n = 6, is unstable. Both solutions (c) and (d) have
only three branches, which means that two of the bound receptor variables have the
same value—the smallest value of b. Due to the juxtacrine average, adjacent cells
cannot be identical, so, for example, one solution (d) for n = 10 would be b1 ≈ 6400,
b2 ≈ 1250, b3 ≈ 3500, and b4 = b2.

Finally, let us consider the behavior of the 8-cell system. We can see by looking
at Figure 10 that the bifurcation diagram for 8 cells is much harder to interpret.
However, we can observe that the stability of the 2-cell solution remains the same as
in the 4-cell system. Furthermore, the stability of the 4-cell pattern labelled (c) in
Figure 10 also remains unchanged in the larger system. The most striking feature
of the 8-cell diagram is the increase in the number of bifurcations and therefore the
number of 8-cell patterns, which illustrates why it becomes difficult to investigate
bifurcations in larger systems. This suggests that in large arrays of cells, there are
many different patterns of maximum wavelength, but these may be similar to several
repetitions of a shorter wavelength. The analysis of the 8-cell system also indicates
that a 4-cell pattern exists and is stable for a greater part of the parameter space
than the 2-cell pattern on larger domains. This may explain why the alternating 2-
cell pattern is observed less frequently than a 4-cell pattern in numerical simulations
and also that 2-cell patterns are only stable solutions if n is sufficiently large.

6. Discussion. In this paper, we have considered the behavior of a generic mech-
anism for juxtacrine signaling in a simple 2-cell system. We have investigated the
possibility of heterogeneous solutions, which correspond to a pattern of alternating
cell fate in larger systems, and we have obtained conditions on the feedback func-
tions that are sufficient for their existence in general and necessary for their existence
in a specific case. Furthermore, we have calculated the stability of the patterned



NONLINEAR ANALYSIS OF JUXTACRINE PATTERNS 299

Fig. 10. Bifurcation diagrams for the variable b1 in the 1-cell, 2-cell, 4-cell, and 8-cell systems,
where the receptor feedback parameter n is free. Solid lines denote stable equilibria, and dotted lines
denote unstable equilibria. The solution of the 1-cell system gives the uniform equilibria of the full
model. Although we plot only a single bound receptor variable against n, these diagrams are in fact
the same for all bj , since the boundary conditions are periodic. In this way, a solution of the system
of cells is comprised of one or more paths on the diagram; each solution is labelled by a single letter.
For example, in the 2-cell case, the stable solution (b) that branches away from b1 = 3000 in two
directions represents the heterogeneous steady state derived in section 4. In the case of 4 cells, the
solutions of both the 1-cell and 2-cell systems remain in addition to one stable (c) and one unstable
(d) 4-cell pattern. The important observation is that in the 4-cell system there is a 4-cell pattern
which is stable for most values of n, whereas the 2-cell pattern is stable only for n > 6. Furthermore,
even though the 8-cell diagram is difficult to interpret, we can check that the stability of the period
2-cell and 4-cell patterns is the same as in the 4-cell system. The ligand feedback parameter m = 0.
The other parameter values are as in Figure 7.

equilibria in the 2-cell domain and compared these results with previous work, which
applied linear analysis techniques to the full model. In addition, we have conducted
a bifurcation analysis of 1-cell, 2-cell, 4-cell, and 8-cell arrays to address the behav-
ior of the model in larger systems of cells. Our results confirm numerical evidence
that juxtacrine signaling, with positive feedback in ligand and receptor production,
can generate a wide range of stable spatial patterns. Note that this runs counter to
recent thinking in developmental biology that such “lateral induction” will prevent
patterning (e.g., [10]).

We have shown that a pattern of wavelength two cells exists as a steady-state so-
lution to the juxtacrine model (1) in a significant part of parameter space. Moreover,
when there is a single homogeneous steady state, this pattern is always stable on a
domain of two cells. It is not surprising that this is predominantly true for param-
eters for which the linear analysis of [21] predicts that a pattern of wavelength two
is an unstable mode. However, stable 2-cell patterns do exist outside the region of
pattern formation derived from our linear analysis, and, more importantly, numerical
simulations on large arrays of cells show that patterns do form for these parameters.
Furthermore, for a small part of the region of pattern formation derived from our
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linear analysis, we have shown that no patterned equilibria exist in the 2-cell sys-
tem; likewise, in numerical simulations on large domains, no patterned solutions are
generated. These two observations highlight a distinct difference between the linear
analysis and nonlinear behavior. They suggest that knowing when patterns form in
the nonlinear 2-cell model is more informative for an understanding of the behavior in
larger systems than considering the linearized model for larger arrays of cells. This is
quite different from diffusion-driven patterns in reaction-diffusion or Turing systems,
in which the results of linear analysis typically give a very good understanding of the
behavior of the full model [12]. It is worth noting that the model we study cannot
be thought of as a discrete analogue to these continuous systems: the nature of the
spatial coupling distinguishes the juxtacrine mechanism from any discretized version
of reaction-diffusion models. However, the methods employed by authors investigat-
ing spatial patterns [3, 17] and waves [22] in discrete Laplacian systems might be
applicable to our model; this is an area for future work.

Investigation of the 2-cell system does not explain why regular 2-cell patterns
are not generated in numerical simulations on large arrays of cells. To understand
such behavior we must turn to the results of the bifurcation analysis. There are two
main conclusions to be drawn from this work. First, the number of stable patterned
solutions increases as both the strength of receptor feedback increases and the size of
the system/domain increases. Second, the 2-cell pattern is not seen numerically for
weaker feedback in receptor production because it becomes unstable in larger systems,
although it remains stable if the feedback is strong enough. This leads us to speculate
that the pattern we expect to dominate in large systems of cells corresponds most
closely to the shortest stable wavelength for any given parameter values.

Previously, pattern formation in juxtacrine models has been considered only in
the mechanism proposed by Collier et al. [6]. The assumption of negative feedback
in ligand production in their model gives rise only to patterns of alternate cell fate.
The positive feedback we have assumed is well established for a ligand molecule called
transforming growth factor-α that binds to a receptor called epidermal growth factor
receptor [4, 5]. This is a mechanism for which there is a comprehensive amount
of kinetic data and as such is the reference for the values of our fixed parameters
[20]. However, there is recent evidence that, in some contexts, the biological system
modelled by Collier et al.—Delta-Notch [1, 8, 10, 16]—and many other signaling
molecules [18] are also subject to such positive feedback. In particular, it is thought
that the production of both new ligands and new receptors is upregulated via binding
during wing morphogenesis of the fruitfly [2]. In this process, sharp bands of receptor
(Notch) expression develop at the vein-intervein boundaries.

Collier et al. also investigated their model on a domain of just two cells, although
the results of their linear analysis agreed well with numerical studies. An important
difference between the behavior of the 2-cell system of their mechanism and that
studied in this paper is highlighted by an interpretation of the possible patterns on a
two-dimensional square grid. In the Collier et al. model, their assumption of the jux-
tacrine average corresponds to checks/spots in two dimensions, whereas our average
corresponds to stripes. Two-dimensional numerical simulations of the model (1) on
large arrays of cells have been conducted [15], and we do see a variety of spotted and
striped patterns, although the spots are in general a few cell lengths apart. Collier et
al. also presented simulations on two-dimensional hexagonal arrays, but these did not
give rise to striped patterns. The principal differences between their model and ours
are in the feedback assumptions and the representation of juxtacrine signaling. From
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a biological point of view, it would be interesting to know whether the formation of
stripes is in fact a consequence of our assumption of positive feedback in ligand and
receptor production. This forms a basis for further investigation of our model with
different juxtacrine averages and negative feedback.

In summary, we can conclude that a 2-cell pattern of alternating cell fate exists
as a steady-state solution to the full nonlinear model. However, the stability of this
solution changes as the domain size increases, and in larger systems the 2-cell pattern
is stable only for large enough feedback in receptor production. In applications, we
are concerned with pattern formation on domains of tens or hundreds of cells, and
to address this, we refer back to Figure 3. In this figure, we present three numerical
simulations of the model on a 30-cell domain for a particular set of parameter values
but each with different (random) initial conditions. For these parameter values, the
linear analysis predicts that the only unstable mode is one of wavelength two cells.
Our nonlinear analysis shows that a nonlinear pattern of wavelength two cells exists
and is stable on a domain of two cells. However, our numerical bifurcation study
demonstrates that the 2-cell pattern is unstable on a larger domain (even on a domain
of four cells) but that a 4-cell pattern is stable on larger domains.

In fact, the patterns presented in Figure 3 are of wavelength 30, since there is
no regular repetition of one wavelength. However, the pattern is approximately of
wavelength 4 with some irregularities. Figure 3 illustrates three patterns of this form,
and in fact numerical simulations reveal many different patterns, all of wavelength 30
but approximately of wavelength 4. We speculate that as the domain size increases,
the bifurcation diagram for patterns becomes extremely complex (recall the case of
8 cells in Figure 10), giving rise to many patterns of the same basic structure but
with minor differences in detail. In reality, the fine-grained patterns that one sees in
early development typically have approximate periodicity but with some irregularities.
Our work predicts that this is not due to environmental heterogeneity; rather, it is
an intrinsic feature of the patterning dynamics.

Appendix. In section 3, we discussed our approach to finding patterned solutions
to the 2-cell system. We then outlined in section 4 the necessary conditions for this
type of solution when the production functions are of Hill form. In this appendix
we provide the details of that work. In addition to presenting the analysis behind
the specific case described in section 4, we first illustrate the process for a simpler
example. However, before doing so we need to determine the condition for solutions
b1 �= b2 to (7) when Pf is of Hill form:

Pf (b) = C3 +
Cn

4 b
n

Cn
5 + bn

,

where C3, C4, C5 are positive constants and n is some real number greater than zero.
Recall (from section 3) that for such a solution, F ′(b) = 0 (where F (b) = b/Pf (b)),
which now becomes

C3 +
Cn

4 b
n

Cn
5 + bn

− nCn
4 C

n
5 b

n

(Cn
5 + bn)2

= 0 ,

must have a real and positive solution. After some rearranging, this equation is just
a quadratic in bn which may be solved to obtain

bn =
Cn

5 {(n− 1)Cn
4 − 2C3 ±

√
(n− 1)2C2n

4 − 4nC3Cn
4 }

2(C3 + Cn
4 )

.(A.1)
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Thus for real b > 0, there are at most two possible stationary points of F , and these
exist if the following inequality holds:

(n− 1)2Cn
4 > 4nC3 .(A.2)

It is straightforward to show that if two stationary points of F exist, they are also
turning points. For fixed C3 and C4, we therefore have a condition on n which
determines whether nonuniform solutions of (7) exist. Figure 4a plots F for an n
satisfying the above inequality. The corresponding solutions of (7) in the b1 − b2
plane are illustrated in Figure 4b.

A.1. Illustrative example: Pa is a constant. In this section, we represent
solutions of (11) in the b1 − b2 plane for two particular forms of the function Φ and
demonstrate how these can intersect with the solutions of F (b1) = F (b2). Specifically,
we consider the simple case when Pa is just a constant and therefore H = Pa−kib is a
straight line with negative slope. We assume that Pf is such that 1/G = b/(Pf − kib)
is a positive function for b > 0 with two turning points, α and β, (these are defined
by (A.1) if Pf is of Hill form). Furthermore, we assume that the function 1/G has a
unique point of inflection between α and β.

Recall that the roots of Φ are the points of intersection of H and c/G, where
c is a positive constant defined in section 3. The gradient of c/G is equal to −ki,
the gradient of H, at a maximum of two points: the gradient of c/G is negative
only for b ∈ (α, β), and between α and β there is only a single point of inflection.
Consequently, H and c/G have a maximum of three points of intersection. This is
equivalent to saying that Φ has at most three real roots, and so we consider the
following two cases separately: (I) Φ has a single real root, and (II) Φ has three real
roots. The case when Φ has two real roots is just the point of transition between
(I) and (II). Figure 11 shows qualitative forms for Φ in each case, as well as the
corresponding solutions of Φ(b1) = −Φ(b2) in the b1 − b2 plane. Since the equation is
symmetric, we need only consider b1 < b2 and reflect the solution in the line b1 = b2.

Case (I). The function Φ is strictly decreasing with a single real root, say, b = beq.
Therefore, for b1 < beq there is a unique value of b2 satisfying (11). This leads to
a single curve of solutions in the b1 − b2 plane, symmetric about the line b1 = b2
(illustrated in Figure 11).

Case (II). Φ has three real roots, so it is convenient to consider the values of b1
in successive intervals. We denote the roots of Φ by be1 < beq < be2, and we define

b̃e1 < be1 and b̃e2 > be2 such that Φ(b̃e1) = −Φmin and Φ(b̃e2) = −Φmax, where
Φmin and Φmax are the values of Φ at its minimum and maximum turning points,
respectively (illustrated in Figure 11). We then tabulate the solutions b2 in Table 2.
As shown in Figure 11, case (II) gives both a curve and a ring of solutions in the
b1 − b2 plane. The difference in the magnitudes of Φmin and Φmax determines the
size of the closed loop and where it intersects the line b1 = b2. Figure 11 illustrates
solutions for |Φmin| > |Φmax|.

Now that we have constructed solutions to Φ(b1) = −Φ(b2) in the b1 − b2 plane,
we can consider conditions that guarantee an intersection with the solution curve of
F (b1) = F (b2), thus giving a nonuniform solution to the 2-cell system. For case (I),
this occurs if the root of Φ lies between the turning points of the function F (these
are just the turning points of 1/G), which implies that F ′(beq) < 0. From (10) it then
follows that

P ′
f (beq) >

Pf (beq)

beq
,(A.3)
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Fig. 11. Qualitative illustration of Φ(b) and solutions of Φ(b1) = −Φ(b2) in the b1 − b2 plane
for the simple example: Pa is a constant. We consider the cases when Φ has either a single real
root (I) or three real roots (II). Since Pa is a positive constant, Φ(0) > 0. In (I), Φ is strictly
decreasing, crossing the b−axis at b = beq. Thus for b1 < beq there is a unique value of b2 satisfying
(11), corresponding to a single curve of solutions in the b1 − b2 plane, symmetric about the line
b1 = b2. Case (II) is more complicated since Φ changes sign three times. This results in both a
curve and a detached ring in the b1 − b2 plane. The ring occurs when the magnitude of Φ differs
at the two turning points. In this figure we have assumed that |Φmin| > |Φmax|, so that the curve
passes through the smallest root. If this condition was reversed, then the curve would intersect the
largest root, and the loop would form between the smaller roots instead.

giving us a sufficient condition for a heterogeneous solution when Φ has only one root.
We have considered a general form of Pf for which heterogeneous solutions to (7)
exist. Since the specific shape of these solutions in the b1− b2 plane (see, for example,
Figure 4) depends on the details of Pf , we therefore cannot dismiss the possibility
of intersections with solutions to (7) below α and above β. As such, the inequality
(A.3) is not a necessary condition for patterned solutions in this illustrative example.
However, in section A.2 we shall show that this is a necessary condition when Pa is a
constant for a particular juxtacrine system.

In case (II), when Φ has three real roots, at least one of them must lie between α
and β (the turning points of F and 1/G). For the purposes of illustration, we therefore
assume that b = beq is always an equilibrium in the interval (α, β). Since Φ′(beq) < 0
when b = beq is a unique root, three steady states of which beq is the middle root exist
for Φ′(beq) > 0. We note that three steady states can of course exist for Φ′(beq) < 0,
so that beq is either the smallest or largest root, and a similar analysis to that below
can be done. We are now interested in where the other roots of Φ lie along the line
b1 = b2 in relation to α and β, which is determined by considering the sign of Φ(α)
and Φ(β). For example, if β < be1, then Φ(β) > 0, and if α > be2, then Φ(α) < 0. For
the form illustrated in Figure 11, where |Φmin| > |Φmax| so that the curve intersects
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Table 2
Case (II): Φ(b) has three real roots. The number of solutions b2 that satisfy Φ(b1) = −Φ(b2),

where b1 is in a particular interval. *For b1 ∈ (be1, beq), if the magnitude of Φ is greater at the
maximum turning point than at the minimum turning point, there are two solutions b2 ∈ (beq , be2).
If the reverse is true, then there will be some values of b1 in this interval for which there is no
solution b2.

Interval of b1 Number of solutions b2

[0, b̃e1) 1

b̃e1 2

(b̃e1, be1) 3

be1 2

(be1, beq) 2 {or 0 for some b1 if |Φmin| > |Φmax|}*
[beq , be2) 1

Table 3
Case (II): Φ(b) has three real roots, and |Φmin| > |Φmax|. The number of patterned solutions

(i.e., solutions satisfying both Φ(b1) = −Φ(b2) and F (b1) = F (b2) with b1 �= b2) for each of the
possible configurations that are illustrated in Figure 12. The sign of Φ(α) (or Φ(β)) determines the
size of α (or β) in relation to the smallest (or largest) root of Φ.

Φ(α) Φ(β) Number of patterned solutions

(a) +ve +ve 2 pairs (b1, b2)

(b) +ve -ve 1 pair (b1, b2)

(c) -ve +ve 1 or 3 pairs (b1, b2)

(d) -ve -ve 0 or 2 pairs (b1, b2)

the smallest root and a closed loop joins the other roots, the existence of solutions
can then be summarised in Table 3. These four configurations are displayed in Figure
12. Notice that more than one symmetric pair of nonuniform solutions are possible
in case (II), since both the curve and ring of solutions to (11) can intersect with the
solutions of (7). Moreover, in configurations (c) and (d), the open curve of solutions
to (11) can intersect twice with the heterogeneous solutions of (7), and thus up to
three pairs of nonuniform solutions are possible.

In summary, for this illustrative example when the production function Pa is a
constant, we have considered the two possible forms of Φ and derived conditions for
patterned solutions in each case. If Φ has a single real root, say, beq, then patterned
solutions always exist if F ′(beq) < 0, i.e., if beq lies between α and β—the turning
points of F . In the case of three real roots, patterned solutions always exist if Φ(α)
and Φ(β) are of different sign, so that only one or all roots of Φ lie between the turning
points of F . These are all sufficient conditions; other possibilities are dependent on
the details of Pf . However, we recall that for any patterned solutions to exist, it is
necessary that F ′(b) = 0 for some b > 0. In the following section, we consider the
production functions Pa and Pf to be of Hill form for a particular parameter system.
Provided that the positive constant ki is sufficiently small, the assumptions made
about Pf in this section are satisfied by the Hill function form.
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(a) 

(c)

(b) 

(d) 

b 1

b 2

✖

✖
✖

✖

b 2

b 1

b 2 b 2

b 1 b 1

α βbeq

✖

✖

α α

α

beq β

beq β

beq β

✖

✖

Fig. 12. Qualitative solutions of Φ(b1) = −Φ(b2) (solid lines) and F (b1) = F (b2) (dotted
lines) in the b1 − b2 plane for case (II) of the simple example: Pa is a constant. Each diagram
corresponds to one of the configurations listed in Table 3. The points of intersection of the two
sets of solutions (×) represent the nonuniform solutions of the full 2-cell system. As in Figure
11, we have assumed that |Φmin| > |Φmax|. Notice that configurations (c) and (d) can give two
additional pairs of heterogeneous solutions to those demonstrated above; if the smallest root of Φ,
be1, is sufficiently close to α yet still smaller than α, then the solid curve which passes through be1
will intersect twice with the dotted curve of nonuniform solutions to F (b1) = F (b2).

A.2. Partitioning of the parameter space when Pa and Pf are of Hill
function form. We now give details of how we partitioned the parameter space into
the twelve regions shown in Figure 6. The behavior in each region is demonstrated
for particular values of the feedback parameters m and n in Figure 7 of the main
text. The analysis that follows is a study for a particular system in which all but two
parameters are fixed. Although the framework is quite general, any conditions that
are derived for patterned solutions are specific to this system.

We recall that solutions of the full 2-cell system must satisfy both (7) and (11).
The first of these equations depends on only one of the production functions, Pf , and,
as discussed at the beginning of this appendix, for patterned equilibria to exist, the
equation Pf (b) − bP ′

f (b) = 0 must have at least one positive real root. For Pf of Hill
form, we obtained a condition (A.2) on the function parameters C4, C5, and n such
that (10) has two positive real roots. Since we determine all parameters except n by
steady-state analysis, this now corresponds to a condition on n. We denote the critical
value of n by ncrit and the line n = ncrit by Σ1, which gives us our first condition
in m − n parameter space: for values of n below Σ1 nonuniform solutions are not
possible. As n increases above the line Σ1, the function F remains qualitatively the
same, so we now concentrate on the form of Φ and investigate where the solutions of
(7) and (11) intersect.

The function Φ = H− c/G, which depends on both production functions, is more
complicated than in section A.1 since Pa now depends on b. Indeed, the function H
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can have up to two nonzero real roots for m > 0, since Pa(b) intersects the straight
line kib at b = 0 and at one or two other points. The exact number of roots depends
on whether Pa has a point of inflection (recall that for all b > 0, Pa(b) is a positive,
increasing function): if P ′′

a (b) < 0 for all b > 0 then Pa can intersect kib at only one
nonzero point, but if there is a value of b > 0 for which P ′′

a (b) = 0, then there can
be a further point of intersection. Since Pa is of Hill form, it has a unique point of
inflection for m > 1. Thus the change in the number of roots occurs at m = 1, so
that for m ≤ 1, H has one nonzero real root, whereas for m > 1, H has two nonzero
real roots. This in turn increases the number of roots of Φ. In Figure 6 we denote
the line m = 1 by Σ5.

Regions (i)–(iv). Let us begin by considering m ≤ 1, the region to the left of
Σ5 in m − n parameter space. This can be subdivided into regions (i)–(iv) by the
conditions Σ2 − Σ4, as demonstrated in Figure 6. In each of these regions, Φ has
different properties. The fixed nonzero real root beq is the only root in region (i) and
in most of region (ii). The line Σ2 denotes F ′(beq) = 0, so that above Σ2, F ′(beq) < 0,
and therefore α < beq < β; recall that α and β are the roots of F ′ = 0. Below Σ2,
beq < α or beq > β, depending on whether Cn

5 (n − 1)/(n + 1) − bneq is positive or
negative, respectively. For the parameter values of the juxtacrine mechanism we use,
beq < α below Σ2. We note that the line Σ2 is identical to the line L4 of Figure 2
derived in our linear analysis. In regions (iii) and (iv) of Figure 6, Φ has at least
three nonzero real roots: extra roots occur as the slope of Φ at b = beq changes sign.
This is represented in m − n parameter space by the line Φ′(beq) = 0, denoted by
Σ3. The line Σ3 is the line L1 of Figure 2 derived in our linear analysis. Above
Σ3, Φ′(beq) > 0, and beq becomes the second of three nonzero real roots. Just below
Σ3, there is also a transition between one, two, and three real roots for which beq is
either the smallest or largest root. (For our fixed parameter values it is the largest
root.) Therefore, in region (ii), beq is not the only root close to the line Σ3; although
obtaining an expression as to when this transition occurs is difficult because we cannot
solve Φ(b) = 0 or Φ′(b) = 0 explicitly. However, this does not affect the possibility of
patterned solutions in region (ii).

For the particular system we look at, we observe only three positive real roots
in regions (iii) and (iv), although we cannot rule out that there are further roots for
other fixed parameter values. This is because Pf is of Hill function form, so that,
unlike in section A.1, the function 1/G can have more than one point of inflection
between its turning points, α and β. We distinguish between regions (iii) and (iv) by
looking at the sign of Φ(α), since this affects where solution curves of (11) intersect
with those of (7). From numerical calculations, Φ(α) is positive for values of m and
n between the line Σ2 and the curve Σ4 and negative elsewhere. Thus, in region (iii),
Φ(α) > 0, whereas in region (iv), Φ(α) < 0.

The four left-hand plots of Figure 7 show the solution curves of (7) and (11) in
the b1 − b2 plane for parameters values in each of the regions (i)–(iv). As expected,
these graphs are similar to those illustrated in section A.1, where we assumed Pa was
a constant, which is equivalent to m = 0. We see that nonuniform solutions are not
possible in region (i) and that condition (A.3) derived in case (I) of section A.1 must
hold for m ≤ 1. Solutions in regions (iii) and (iv), where Φ has three nonzero real
roots, correspond to configurations (b) and (d) of Figure 12, respectively. The other
configurations are not seen because Φ(β) is not positive for m ≤ 1. We note that
Φ(β) is only positive in region (xii), which will be discussed later.
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Regions (v)–(viii). We now address what happens for m > 1. This implies
that the function H has two positive real roots, and consequently Φ has at least two
positive real roots. In regions (v) and (vii), Φ has only two such roots with beq the
larger. This is also true for most of region (vi): another two roots exist close to Σ3,
as explained above for region (ii), but this does not affect the possibility of patterned
solutions. Below the line Σ2, in region (v), both roots of Φ are smaller than α since
beq < α. In regions (vi) and (vii), α < beq < β. However, in region (vi), Φ(α) > 0,
and therefore α lies between the two roots, whereas in region (vii), Φ(α) < 0 and so
α is smaller than both roots. This is demonstrated in Figure 7 for specific values of
m and n. We remark that when |Φmin| > |Φmax|, the solutions of (11) are closed
loops joining the two homogeneous equilibria. When the inequality is reversed, the
solutions form two open curves, each intersecting a single homogeneous steady state.
Note that only parameters in one of these regions, region (vi), are capable of producing
heterogeneous solutions.

For parameter values in region (viii), Φ has at least four nonzero real roots, since
another two roots exist for Φ′(beq) > 0. As mentioned above, parameter values above
the line Σ3 in m − n parameter space satisfy this condition. However, the solutions
of Φ(b1) = −Φ(b2) in the b1 − b2 plane for region (viii) are still quite similar to those
of region (vi). In Figure 7 we can see that both (vi) and (viii) have two curves of
solutions to (11). In addition, (viii) has a small ring of solutions, but this does not
result in further intersections with solutions of (7), and therefore parameters in both
of these regions give one symmetric set of heterogeneous solutions (b1, b2).

Regions (ix)–(xii). The right-hand plots of Figure 7 show the solutions of (7)
and (11) for parameters in the final four regions: (ix)–(xii). In regions (ix) and (x), Φ
has only two nonzero real roots, where beq < α is the smaller. The difference between
the two regions is that in (ix), Φ(α) is negative so that both roots lie below α, whereas
in (x), Φ(α) is positive so that the larger root must lie above α. Thus, as Figure 7
demonstrates, no nonuniform solutions exist for parameters in region (ix), but they
must exist for those in region (x).

We have not fully investigated the regions denoted by (xi) and (xii). From nu-
merical observations of our particular system, we see that Φ has two nonzero real
roots for most parameters in both regions; Φ seems to have four nonzero real roots
for values of n above region (viii). If Φ has only two real roots (the case illustrated in
Figure 7), then beq must be the smaller of the two roots, since both regions lie above
Σ3, and therefore Φ′(beq) > 0. However, Φ may still develop more than two turning
points. This leads us to believe that there are nonzero roots smaller than beq, but
that these have become complex in regions (xi) and (xii). The important difference
is that in region (xii), β lies between the two roots so that the curves of (7) and
(11) must intersect to give nonuniform solutions, which does not occur for parameter
values in region (xi). For those values in region (xi) where Φ has four nonzero real
roots, the solution curves are similar to those shown in Figure 7 of region (viii), except
that Φ(α) < 0, so there are possibly two sets of heterogeneous solutions. Similarly,
if Φ has four nonzero real roots in region (xii), then there are possibly three sets of
patterned solutions since Φ(β) > 0. Therefore, patterned solutions are possible for all
parameters in region (xii), but this is not true for all parameters in region (xi).

Limit on the number of roots of Φ. Numerical investigation of the parameter
space for our particular juxtacrine system leads us to conclude that, for the fixed
parameter values we use, there are at most four positive real roots of Φ. Analysis
of the function Φ shows that this is not a general property, even when Pa and Pf
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are restricted to Hill function form, and that for suitable parameters we could obtain
more roots and therefore more complicated solutions to Φ(b1) = −Φ(b2) in regions
above the line denoted by Σ3 in Figure 6. However, the nature of juxtacrine signaling
allows us to make a simplifying assumption. The rate of internalization of bound
receptors, ki, is small in juxtacrine communication because the process of internalizing
the ligand-receptor complex is difficult: the ligand must become detached from the
neighboring cell’s membrane. We can thus obtain a good approximation to the system
by considering ki = 0. On making this substitution in (12), Φ then becomes

Φ∗(b) = Pa(b) − c∗F (b) ,

where c∗ = dadfkd/ka and F (b) = b/Pf (b), as defined at the beginning of this section.
The roots of Φ∗ are just the points of intersection of Pa and c∗F (b). We know that Pa

is a monotonically increasing function of b with a single point of inflection for m > 1
at

b = C2

(
m− 1

m + 1

) 1
m

.

The function F (b) is strictly positive for b > 0 and has two turning points α < β
defined by (A.1). For Pf of Hill function form and b > 0, F (b) has only a single point
of inflection which lies in the interval (α, β), and this ensures that there are at most
four nonzero real roots, say, ba < bb < bc < bd, such that ba < bb < α, α < bc < β,
and bd > β, as well as the trivial root b = 0. We therefore expect the full system to
behave in a similar way for the biologically relevant case of small ki. As an aside, we
remark that the line Σ7 in Figure 6 denotes the equality H ′(beq) = P ′

a(beq) − ki = 0,
so that for m < Σ7, H ′(beq) < 0. If we were to set ki = 0, then H ′(beq) > 0 for all
m > 0, n > 0, and so the parameter space would consist only of those regions where
m lies to the right of the line Σ7 in Figure 6.
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[7] E. J. Doedel, H. B. Keller, and J. P. Kernévez, Numerical analysis and control of bifur-
cation problems: (I) Bifurcation in finite dimensions, Internat . J. Bifur. Chaos Appl. Sci.
Engrg., 1 (1991), pp. 493–520.

[8] S. S. Huppert, T. L. Jacobson, and M. A. T. Muskavitch, Feedback regulation is central
to Delta-Notch signalling required for Drosophila wing vein morphogenesis, Development,
124 (1997), pp. 3283–3291.



NONLINEAR ANALYSIS OF JUXTACRINE PATTERNS 309

[9] J. Lewis, Neurogenic genes and vertebrate neurogenesis, Curr. Op. Neurobiol., 6 (1996), pp.
3–10.

[10] J. Lewis, Notch signalling and the control of cell fate choices in vertebrates, Sem. Cell Dev.
Biol., 9 (1998), pp. 583–589.
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