
Available online at http://www.idealibrary.com on
doi:10.1006/bulm.1999.0152
Bulletin of Mathematical Biology(2000)62, 293–320

Mathematical Modelling of Juxtacrine Patterning

H. J. WEARING

Department of Mathematics,
Heriot-Watt University,
Edinburgh EH14 4AS, U.K.
E-mail: helenw@ma.hw.ac.uk

M. R. OWEN

Department of Mathematics,
University of Utah,
Salt Lake City,
Utah 84112, U.S.A.

Department of Mathematical Sciences,
Loughborough University,
LE11 3TU, U.K.
E-mail: M.R.Owen@lboro.ac.uk

J. A. SHERRATT

Department of Mathematics,
Heriot-Watt University,
Edinburgh EH14 4AS, U.K.
E-mail: jas@ma.hw.ac.uk

Spatial pattern formation is one of the key issues in developmental biology. Some
patterns arising in early development have a very small spatial scale and a natural
explanation is that they arise by direct cell–cell signalling in epithelia. This ne-
cessitates the use of a spatially discrete model, in contrast to the continuum-based
approach of the widely studied Turing and mechanochemical models. In this work,
we consider the pattern-forming potential of a model for juxtacrine communication,
in which signalling molecules anchored in the cell membrane bind to and activate
receptors on the surface of immediately neighbouring cells. The key assumption
is that ligand and receptor production are both up-regulated by binding. By linear
analysis, we show that conditions for pattern formation are dependent on the feed-
back functions of the model. We investigate the form of the pattern: specifically, we
look at how the range of unstable wavenumbers varies with the parameter regime
and find an estimate for the wavenumber associated with the fastest growing mode.
A previous juxtacrine model for Delta–Notch signalling studied byCollier et al.
(1996, J. Theor. Biol. 183, 429–446) only gives rise to patterning with a length
scale of one or two cells, consistent with the fine-grained patterns seen in a number
of developmental processes. However, there is evidence of longer range patterns in
early development of the fruit flyDrosophila. The analysis we carry out predicts
that patterns longer than one or two cell lengths are possible with our positive feed-
back mechanism, and numerical simulations confirm this. Our work shows that
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juxtacrine signalling provides a novel and robust mechanism for the generation of
spatial patterns.

c© 2000 Society for Mathematical Biology

1. INTRODUCTION

Nearly all of the existing mathematical models for spatial pattern formation in
developmental biology are based on continuum processes. However, the cellular
diversity exhibited in early development does not appear on such a macroscopic
scale. Indeed, why individual cells acquire specific fates is most likely to be a con-
sequence of cellular interactions. Nearest-neighbour communication or juxtacrine
signalling is one important way in which this is thought to occur. In this paper we
develop a model that provides a novel and robust mechanism for patterning arising
from nearest-neighbour interactions.

1.1. Continuum models for pattern formation.Reaction–diffusion systems have
been a major focus of interest sinceTuring (1952) proposed the chemical pre-
pattern approach in his seminal paper of 1952. He showed that, under certain
conditions, chemicals can react and diffuse in such a way as to produce hetero-
geneous spatial patterns of chemical concentration. Once established, the pre-
pattern is interpreted by the cells which then differentiate accordingly. Thus, once
the initial pattern has been laid down, cellular development is independent of the
pattern-generating mechanism. Turing systems have been applied to a large num-
ber of biological situations. For example,Kauffmanet al. (1978) presented one
of the first practical applications to early segmentation of the embryo of the fruit
fly Drosophila, while Murray (1993) applied reaction–diffusion systems to animal
coat patterns at the beginning of the 1980s. Recent work byVareaet al. (1997)
has looked at the applications to skin patterns of some marine fish, considering a
confined Turing system on a growing domain.

Most applications of the Turing theory have one common feature: they are con-
sidered in the context of a homogeneous environment where the model parameters
are constant across the domain. However, as experimental evidence suggests, some
embryological systems may exhibit environmental inhomogeneities. The form of
Turing patterns in such cases was analysed byBensonet al. (1993). They con-
sidered a two-species reaction–diffusion system where the dispersal rate of one
species varied in a simple step-wise manner, and discussed its application to the
development of cartilage pattern in embryonic chick limb. More recently,Voroney
et al. (1996) have investigated the interaction between oscillatory dynamics and
Turing pattern formation in a heterogeneous environment. The importance of such
work has been highlighted since the identification of Turing patterns in chemi-
cal systems, byCastetset al. (1990). Such chemical reactions have provided ex-
perimental observations that illustrate the interaction of Turing (spatial) and Hopf
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(temporal) instabilities (Dulos et al., 1996). A detailed review of the application
of reaction–diffusion theory to chemical systems and its biological implications is
given byMaini et al. (1997).

Mechanochemical theory has a much shorter history. Developed by Oster, Mur-
ray and colleagues in the early 1980s, mechanochemical models reflect the laws of
mechanics as applied to tissue cells and their environment; an issue which is not
addressed by pre-pattern models. All parameters involved are in principle mea-
surable, since the models are based on specific biological and biochemical mecha-
nisms. In contrast to Turing systems, there is no separation between the pattern for-
mation and morphogenetic processes in mechanochemical mechanisms, enabling
them to adjust to external disturbances. Mechanochemical models have been ap-
plied to a variety of patterning problems, such as feather germ primordia (Murray
et al., 1983) and cartilage formation in the vertebrate limb (Osteret al., 1985). Re-
cent work on wound-healing in mammalian skin is an important example of how
the models can be adapted to obtain an understanding of morphogenesis in living
tissue (Murrayet al., 1988; Olsenet al., 1995).

Both the Turing and mechanochemical approaches are based on continuum mod-
els and this is not always biologically appropriate. In particular, some patterns
arising in early development have a very small spatial scale; examples include
mesoderm induction inXenopus(Reilly and Melton, 1996) and the patterning in
Drosophila imaginal discs (Serrano and O’Farrell, 1997). A natural explanation
for such patterns is that they arise by direct cell–cell signalling in epithelia, a mi-
croscopic process, which necessitates the use of a spatially discrete model.

1.2. Juxtacrine signalling. Cellular communication has traditionally been di-
vided into autocrine, paracrine and endocrine molecular activity. These mean re-
spectively that the molecule acts only on the cell which secreted it, on neighbouring
cells via extracellular diffusion, and on all cells within a tissue. However, within the
close-packed cellular structure of epithelia another form of communication is pos-
sible: ‘juxtacrine signalling’—as it was termed byMassagúe (1990). In this pro-
cess the signalling molecules anchored in the cell membrane bind to and activate
receptors on the surface of immediately neighbouring cells. There are two main
types of juxtacrine signalling molecules: (i) those that only exist in membrane-
bound forms, for example theDrosophila proteins Boss and Delta which bind
respectively to the receptors Sevenless and Notch (Lewis, 1996); (ii) those that
are membrane-bound precursors of soluble paracrine ligands, such as epidermal
growth factor (EGF) and the closely related transforming growth factor-α (TGFα)
(Massagúe, 1993). In the latter case, the relative rates of cleavage and decay of
the membrane-bound form determine the relative importance of paracrine and jux-
tacrine signalling modes.

Collier et al. (1996) were the first to consider explicit mathematical modelling of
juxtacrine communication when they investigated the pattern-forming potential of
Delta–Notch signalling duringDrosophiladevelopment. Their model incorporates
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lateral inhibition; a type of cell–cell interaction whereby a cell fated in a particular
way inhibits its neighbours from developing similarly. This is controlled by a neg-
ative feedback loop: the more inhibition a cell delivers to its neighbours, the less
it receives back from them, and the more it is consequently able to deliver. The
work by Collieret al. showed that, provided the feedback was sufficiently strong,
such a nearest-neighbour lateral inhibition mechanism is capable of generating by
itself the fine-grained patterns observed in early development. However, many
membrane-bound growth factors act in a quite different way, by up-regulating their
own production. Models that incorporate such positive feedback have been pro-
posed in three recent papers studying juxtacrine signal range:Monk (1998) has
adapted the Collieret al. model to study transforming growth factor-β (TGFβ)
juxtacrine signalling, with particular application toXenopusmesoderm induction;
whereasOwen and Sherratt (1998) andOwenet al. (1999) have investigated signal
range in a more generic model for juxtacrine communication. In this work, we con-
sider the pattern-forming potential of the model developed byOwen and Sherratt
(1998), in which the key nonlinearity is a positive feedback loop.

In Section2, we introduce the model equations and detail the main assumptions.
Using linear analysis in Section3, we derive conditions for pattern formation which
are dependent on the feedback functions of the model. We then investigate the form
of the pattern: in particular, we look at how the range of unstable wavenumbers
varies with the parameter regime and find an estimate for the wavenumber associ-
ated with the fastest growing mode. In Section4, we solve the model equations
numerically to confirm and extend our results. The implications of this work and
possible extensions are discussed in Section5.

2. MATHEMATICAL M ODEL

The mathematical model consists of a series of three coupled ordinary differen-
tial equations representing ligand–receptor binding, with one set of equations for
each cell. We consider a two-dimensional epithelial sheet which is represented as a
regular array of identical, square cells. For simplicity, we look at behaviour which
is one-dimensional, with ligand and receptor levels varying only in one direction
across this array of cells. The kinetic scheme we use is as generic as possible:
we assume that a single ligand molecule binds reversibly to a receptor on the cell
surface, giving an occupied receptor which is internalized within the cell. In prac-
tice, new ligand and new receptors will be produced at the cell surface through a
combination of recycling, release from intracellular stores, andde novoproduction
within the cell. This complex series of processes has been modelled explicitly in
a few specific cases (Zigmondet al., 1982; Martiel and Goldbeter, 1987), but the
simplifying assumption here is that production of both ligand and receptor occurs
at a rate that increases with the current level of occupied receptors. Such positive
feedback is a central assumption in the model; it is well-documented for a number
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of ligand–receptor interactions, including the binding ofTGFα andEGF to theEGF

receptor (EGF-R) in keratinocytes (Clarket al., 1985; Coffeyet al., 1987).
Thus, the variables are the number of ligand moleculesa j (t), free receptorsf j (t)

and bound receptorsb j (t) on the surface of cells in rowj (an integer) at timet .
This gives the equations:

∂a j

∂t
= −

binding︷ ︸︸ ︷
kaa j 〈 f j 〉 +

dissociation︷ ︸︸ ︷
kd〈b j 〉 −

decay︷︸︸︷
daa j +

production︷ ︸︸ ︷
Pa(b j ) (1a)

∂ f j

∂t
= −ka〈a j 〉 f j + kdb j − d f f j + Pf (b j ) (1b)

∂b j

∂t
= +ka〈a j 〉 f j − kdb j −

internalization︷︸︸︷
ki b j . (1c)

HerePa andPf represent the synthesis of new ligand and receptor molecules by ep-
ithelial cells. These are increasing functions ofb j , the number of bound receptors;
the exact form of these functions will be discussed later. The notation〈·〉 reflects
the juxtacrine communication, indicating an average over neighbouring cells. In
the context of our assumption of a regular grid of square cells, this is defined by

〈a j 〉 ≡
a j−1+ 2a j + a j+1

4
, etc. (2)

These terms represent the total number of ligand molecules, free and bound recep-
tors available on the surface of the cells adjacent to those in rowj . The term 2a j

enters because two of the four neighbours of any cell are in the same row, and are
thus identical under our assumption of one-dimensional behaviour.

3. L INEAR ANALYSIS OF PATTERN FORMATION

We begin our study of the pattern-forming ability of the juxtacrine system by
analysing the stability of a homogeneous steady state, denoting the equilibrium
levels of ligand molecules and free and bound receptors by(ae, fe,be). It is
straightforward to show that there is always at least one such steady state. The
trivial state, witha = b = 0, corresponding to the absence of any ligand binding
at the cell surface, is not relevant to pattern formation, since oscillations about
it are not possible. In this section we wish to investigate the temporal stabil-
ity of the homogeneous equilibrium to spatially varying perturbations. We begin
by linearizing the model (1a)–(c) about the homogeneous steady state, setting
a j = ae+ ã j , f j = fe+ f̃ j ,b j = be+ b̃ j , to give:

∂ã j

∂t
=−ka feã j − kaae〈 f̃ j 〉 + kd〈b̃ j 〉 − daã j +Ab̃ j (3a)
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∂ f̃ j

∂t
=−ka〈a j 〉 fe− kaae f̃ j + kdb̃ j − d f f̃ j + F b̃ j (3b)

∂b̃ j

∂t
=+ka〈ã j 〉 fe+ kaae f̃ j − kdb̃ j − ki b̃ j (3c)

where〈·〉 is defined by (2). HereA = P′a(be) andF = P′f (be) are the slopes
of the feedback functions at the steady state; we will show that these are the key
parameters in the conditions for pattern formation. We look for solutions of the
form ã j = āeαt+iλ j etc., wherēa is an arbitrary constant,α is the temporal growth
rate andλ is the wavenumber. Each of the averaged terms for the contribution of
neighbouring cells is then of the form

(ã j−1+ 2ã j + ã j+1)

4
= āeαt+iλ j (e

iλ
+ 2+ e−iλ)

4

with a corresponding reduction forb and f . For notational simplicity, we define

K (λ) ≡
(eiλ
+ e−iλ

+ 2)

4
=

cos(λ)+ 1

2
. (4)

Substituting into the linearized model, dividing throughout byeαt+iλ j and collect-
ing the terms in matrix form gives: ka fe+ da + α kaaeK −kd K −A

ka feK kaae+ d f + α −kd − F
−ka feK −kaae kd + ki + α

 ā
f̄
b̄

 = 0. (5)

For nontrivial solutions we require the determinant of this matrix to be zero. Ex-
panding the determinant gives a cubic characteristic equation, denoted byP(α),
whose roots determine the stability of the steady state.P(α) = α3

+ a1α
2
+

a2(K )α + a3(K ), where

a1 = kaae+ ka fe+ da + d f + kd + ki (6a)

a2(K )=−K 2ka fe(kaae+ kd)− Kka feA+ dad f + (da + d f )(kd + ki )

+ka fe(kaae+ d f + kd + ki )+ kaae(da + ki − F) (6b)

a3(K )=−K 2ka fe[kaae(ki − F)+ kdd f ] − Kka fed fA

+[ka fe+ da][kaae(ki − F)+ d f (kd + ki )]. (6c)

For spatial pattern formation we require the steady state to be:

• stable to homogeneous perturbations
• and unstable to inhomogeneous perturbations;

we consider these conditions separately.
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3.1. Stability to homogeneous perturbations.We first consider conditions for
the stability of the steady state to homogeneous perturbations, which correspond
to imposingλ = 0 (i.e.,K = 1). This analysis was previously presented inOwen
and Sherratt (1998) and is repeated here for completeness. For a stable steady
state, we require all the roots ofP(α) to have a negative real part. This holds if
a1 > 0,a3(1) > 0 anda1a2(1)−a3(1) > 0. The coefficienta1 is strictly positive, so
it remains to investigate the other two conditions. Algebraic simplification shows
that these define two lines in (A,F) space which delimit the relevant regions. The
conditiona3(1) = 0 yields

L1 : F = ki +
d f (kd + ki )

kaae
+

d f feki

daae
−

d f feA
daae

, (7)

and likewisea1a2(1)− a3(1) = 0 gives

L2 : F = ki + da +
d f fe

ae
+

dad f + (da + d f )(kd + ki )

kaae

+
d2

a(d f + kd + ki )+ daka(d f fe+ daae)+ kaki fe(a1− d f )

kaae(a1− da)

−
fe(a1− d f )A
ae(a1− da)

. (8)

The homogeneous steady state is stable ifF lies below the two lines. These lines
both have negative slope and are positive whenA = 0. Their relative gradients
depend on the relationship betweenda andd f , independent of the other kinetic
parameters: forda < d f , the lineL1 has a more negative gradient than the lineL2;
for da > d f , the opposite is true. Furthermore, forda < d f the two lines intersect at
a positive value ofF , whereas forda > d f the intersection is for positiveA. There
are thus four possible geometries for this region, according to the relative slopes
of the lines and the location of their point of intersection; these are illustrated in
Fig. 1.

3.2. Instability to inhomogeneous perturbations.Within the region of stability
in theA–F plane, we now consider where the steady state is unstable for some
λ 6= 0. Recall thatK is a cosine function of the wavenumberλ and its range is the
interval[0,1]. For instability, we require that at least one root ofP(α) is positive.
Sincea1 is strictly positive, then the conditions for this are either (1)∃K ∈ [0,1]
such thata1a2(K ) − a3(K ) < 0, or (2)∃K ∈ [0,1] such thata3(K ) < 0. We
consider these separately:

(1) We define1(K ) = a1a2(K ) − a3(K ). We know that1(1) > 0 in the re-
gion stable to homogeneous perturbations. The coefficient ofK 2 in1(K ) is
negative, so that the slope of1must always be decreasing. Direct differenti-
ation shows that the gradient of1 at K = 0 is always negative. Thus1(K )
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F F
da < df

da > df

F F

A
(a) (b)

(c) (d)

L1

L1

L2

L2

L2L2

L1

L1

A

A A

Figure 1. Schematic illustration of the possible configurations of the linesL1 (solid) and
L2 (dashed). The region under both lines is such that the steady state is stable to homo-
geneous perturbations. Graphs (a) and (b) are the two possibilities forda < d f , since this
implies that lineL1 has a more negative slope than lineL2, and that the lines must intersect
at a positive value ofF . Similarly, cases (c) and (d) correspond toda > d f .

must be a decreasing function on[0,1] and since it is positive atK = 1,
it must be positive∀K ∈ [0,1]. This means that1(K ) < 0 is not a pos-
sible mechanism for the homogeneous steady state to become unstable to
inhomogeneous perturbations.

(2) a3(K ) is also a quadratic function and as in (1) we know thata3(1) > 0.
However, in this case the sign of the coefficient ofK 2 depends onF . Thus
there are two sub-cases to consider: (a) when the coefficient ofK 2 is negative
and (b) when the coefficient is positive. In the following analysis we will use
the fact that the critical point ofa3(K ) is at:

Kcrit =
d fA

2kaae

(
F − ki −

kdd f

kaae

) . (9)

(a) First we consider the case when the coefficient ofK 2 in a3 is negative,
i.e., whenF < ki +

kdd f

kaae
. Thena3(K ) is a decreasing function on
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[0,1] and by the same argument as in (1),a3(K ) is strictly positive
∀K ∈ [0,1]. Thus for these values ofF the steady state is stable to
inhomogeneous perturbations.

(b) We now assume that the coefficient ofK 2 is positive; we consider those
values ofF > ki +

kdd f

kaae
. ThereforeKcrit is positive and corresponds

to a minimum. This case then subdivides into whether (i)Kcrit > 1 or
(ii) Kcrit ∈ [0,1]; these are separated in theA–F plane by the line

L3 : F = ki +
kdd f

kaae
+

d f

2kaae
A. (10)

(i) ConsiderKcrit > 1. Since the slope ofa3(K ) is always increasing
and is zero atKcrit > 1, a3(K ) must have negative slope over the
interval [0,1]. But a3(1) > 0, soa3(K ) must be positive∀K ∈
[0,1]. ThereforeKcrit > 1 does not give conditions for pattern
formation.

(ii) Now considerKcrit ∈ [0,1]. This holds ifF lies above the line
L3. In order fora3(K ) to be negative for someK its minimum
value,a3(Kcrit), must be less than zero. We therefore look for the
bifurcation whena3(Kcrit) is equal to zero. This occurs on the
following curve

C : F = ki +
d f (2kd + ki )

2kaae
±

d f

2kaae

√
k2

i −
ka feA2

ka fe+ da
. (11)

The minimum value is less than zero whenF lies outside the inter-
val between the two values defined in (11). However, we have al-
ready assumed thatF lies above the lineL3 given in (10). Straight-
forward algebra shows thatL3 intersects the curveC atA = 0 and
at its point of intersection withL1. This means that only those
F greater than the largest of the two values defined in (11) are
relevant for pattern formation.

In summary, we have three conditions that delimit the region in(A,F) space where
patterns may form:

F < ki +
d f (kd + ki )

kaae
+

d f feki

daae
−

d f feA
daae

(12a)

F < ki + da +
d f fe

ae
+

dad f + (da + d f )(kd + ki )

kaae

+
d2

a(d f + kd + ki )+ daka(d f fe+ daae)+ kaki fe(a1− d f )

kaae(a1− da)
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Region I

L2

L4

L3

F

C

A

L1

Region II

Figure 2. Qualitative illustration of the parameter space in theA–F plane where pattern
formation is possible. Below the linesL1 andL2, the homogeneous equilibrium is stable
to homogeneous perturbations; this is configuration (a) of Fig.1. Above the curveC,
the steady state is also unstable to inhomogeneous perturbations. The region for pattern
formation is therefore defined by theF-axis, the linesL1 andL2, and the curveC. For
mathematical convenience, we divide this region into two parts by the lineL4, defined in
equation (14).

−
fe(a1− d f )A
ae(a1− da)

(12b)

F > ki +
d f (2kd + ki )

2kaae
+

d f

2kaae

√
k2

i −
ka feA2

ka fe+ da
. (12c)

A qualitative illustration of these conditions is given in Fig.2. In particular, it is
clear that patterns are possible for zero ligand feedback (A = 0), but not zero
receptor feedback. As we discuss below, the region of pattern formation divides
naturally into two parts.

3.3. Range of unstable wavenumbers.WhenA andF lie in the region de-
fined by (12a)–(c), the range of unstable wavenumbers,λ, satisfies the inequality
a3(K (λ)) < 0. To admit the possibility of a pattern-generating mechanism, the
coefficient of the quadratic term ofa3 must be positive. Thus, the range of unstable
λ are those lying between the two roots ofa3 = 0. Solving this equation forK
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gives the following expression for the roots ofa3:

K±=Kcrit ±

√
(d fA)2+(2kaae)2

(
1+ da

ka fe

)(
F−ki−

kdd f

kaae

)(
F−ki−

d f (kd+ki )

kaae

)
2kaae

(
F−ki−

kdd f

kaae

)
(13)

whereKcrit is defined above in equation (9).
To further investigate those wavenumbers that we would expect to see in the

solution of the full set of nonlinear equations, we wish to find theK corresponding
to the fastest growing mode; this is the pattern that we expect to dominate. Firstly,
we look in more detail at the form of the dispersion relationP(α) = α3

+ a1α
2
+

a2(K )α + a3(K ) = 0 to show that there is only one possible positive real root and
estimate theK which gives the largest value of this root; recall thatα is the growth
rate of perturbations with wavenumberλ.

For the parameter regime where patterns may develop, we already know that
a1 > 0 anda3(K ) < 0. It remains to consider the form of the coefficient ofα,
a2(K ), for K ∈ [0,1]; a2(K ) is defined in (6b). The coefficient ofK 2 is negative,
so that the slope ofa2(K ) is always decreasing, with the maximum value ofa2(K )
at K = −A/2(kaae + kd) < 0. Moreover,a1a2(1) > a3(1) > 0, wherea1 > 0,
so thata2(1) > 0. Thereforea2(K ) > 0 for all K ∈ [0,1]. Thus, the coefficients
of α2 andα are both positive for the whole range ofK , and soP(α) is strictly
increasing forα > 0. SinceP(0) = a3(K ) < 0, P(α)must have a unique positive
real root,α∗ say, which increases as the magnitude ofa3(K ) increases. The exact
way in which this occurs also depends ona2(K ): if we considerP(α) for smallα
and neglect the nonlinear terms,α∗ ≈ −a3(K )/a2(K ). However, it is reasonable to
suggest that a good approximation of theK corresponding to the largest possibleα∗

is given byKcrit, sinceKcrit maximizes−a3(K ) ∀K ∈ [0,1]. Moreover, we expect
Kcrit to be an underestimate, rather than an overestimate, for the value ofK at which
the growth rateα∗ attains its maximum, sincea2(K ) is a decreasing function on
the interval[0,1] and so forK < Kcrit, −a3(K )/a2(K ) < −a3(Kcrit)/a2(Kcrit).
Numerical simulation of the dispersion relation in Fig.3 illustrates this and shows
that the value ofK giving the maximumα∗ is just aboveKcrit.

We will now look at howKcrit and the range of unstableK vary in different areas
of the parameter region. For convenience we divide the region into two parts using
the line

L4 : F = ki +
d f (kd + ki )

kaae
(14)

which intersects the curveC atA = 0 and the lineL1 atA = ki . We refer to
the region of theA–F plane above this line as region I, with region II below the
line, as illustrated in Fig.2. The motivation for this division is that along the line
L4, the smallest root ofa3(K ), K− defined in (13), is zero. If K− < 0, as is the
case for values ofF aboveL4, then the minimum unstableK is always zero, since
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0

–0.0002

0α
*

0.0002

0.2

Kcrit = 0.396

0.4

K

0.6 0.8 1

Figure 3. Dispersion relation plottingα∗, the largest root ofP(α) = 0, for the whole range
of K . Those values ofK for whichα∗ > 0 and perturbations grow satisfy the inequality
a3(K ) < 0. The dotted vertical line denotesKcrit, which is just below the value ofK that
corresponds to the maximum value ofα∗, the fastest growing mode. This suggests that
Kcrit gives a good indication of the pattern mode that we expect to dominate. The values
of the free parameters in the feedback functions areC2 = 8000,m = 1, n = 3. The other
parameters areka = 0.0003 molecule−1 min−1, kd = 0.12 min−1, ki = 0.019 min−1,
da = 0.006 min−1, d f = 0.03 min−1, fe = 3000,be = 3000,r0 = 3000,rm = 25500.

K ∈ [0,1]. Consequently, in region I the range of unstableK is [0, K+], whereas
in region II the range is[K−, K+].

Before considering each region in turn, we need to discuss the relationship be-
tween the functionK and the wavelength (in terms of the number of cells)

ω =
2π

λ
=

2π

cos−1(2K − 1)
. (15)

Since our system is spatially discrete, we are only concerned with integer values of
the wavelengthω that correspond to a periodic pattern of ligand molecules and free
and bound receptors on the cell surface; i.e., thoseω with integer parts≥ 2. Thus,
we need only considerλ ∈ [0, π ], and therefore for all unstableK ∈ [0,1] there
exists a unique wavelength,ω ≥ 2. Figure4 illustrates the relationship betweenω
andK for λ ∈ [0, π ].

For ease of notation in the following discussion, we need to define those wave-
lengths which correspond to the lower and upper limits of the unstableK and to
Kcrit (an approximation of the fastest growing mode). Recall thatK± are the roots
of a3(K ) defined in equation (13), and so the lower limit of the unstableK is de-



Modelling Juxtacrine Patterning 305

0
0

0.2

0.4

0.6

0.8

1

1

λ

2 3 0
0

5

10ωK

15

20

0.2 0.4

K

(a) (b)

0.6 0.8 1
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ship between the wavelengthω and K , whereω is defined in equation (15). This shows
that for all unstableK ∈ [0,1] there is a unique value ofω ≥ 2, which are the values of
interest for fine-grained cellular patterns.

fined as max(0, K−), while the upper limit is given byK+. We therefore denoteω−
as 1 plus the integer part of the minimum unstable wavelength, i.e., the wavelength
corresponding to the minimum unstableK . Similarly,ω+ denotes the integer part
of the maximum unstable wavelength. Finally, we defineωcrit to be the nearest inte-
ger to the wavelength whenK = Kcrit. We note that the term ‘single-mode pattern’
will be used to describe a pattern where only a single wavelength is unstable.

3.3.1. Region I. We first consider possible patterning modes in region I, de-
fined as the area below the linesL1 andL2 and bounded by theF-axis and the line
L4, see Fig.2. The key properties are as follows:

• A wavelength of two cells is always unstable. The range of unstableK is
between 0 andK+, sinceK− is strictly negative forF above the lineL4.
This means that a pattern with wavelength two is possible for all(A,F)
in this region. Consequently, single-mode patterns with wavelength greater
than two are not predicted in region I.
• There is no upper bound on the unstable wavelengths. Figure5 shows the

range of possible wavelengths in different parts of region I for specified pa-
rameter values. The region is divided according to the value ofω+ for each
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(A,F). The range of unstableω is extended as bothA andF increase; in
particular, those values where only a wavelength of 2 is predicted are close
toA = 0 and the lineL4. As (A,F) approaches the lineL1, it appears from
numerical calculations thatω+ is unbounded. Indeed, if we substitute the
equation forL1, (7), into the equation forK+, (13), algebraic manipulation
gives K+ = 1; equivalent toω+ → ∞. Thus, close to the lineL1, ω+ is
unbounded, which implies that there are parameter sets in region I where a
pattern of any wavelength is possible. However, if we now consider how
Kcrit varies, these patterns of arbitrarily long wavelength are not those we
would expect to see.
• The wavelength of the fastest growing mode is bounded. Along the lineL4,

Kcrit =
A
2ki

whereA ∈ [0, ki ]. Above this line, 0≤ Kcrit <
A
2ki

. Therefore,
in region I, Kcrit ∈

[
0, 1

2

)
, i.e.,ωcrit ∈ [2,4). This bound onωcrit in region

I means that we would expect wavelengths of 2 or 3 cells to dominate the
pattern form.

3.3.2. Region II. Region II is the region of parameter space between the line
L4 and the curveC, bounded byL1 (in the caseda < d f ). We analyse the unstable
pattern modes below:

• Single-mode patterns with a wavelength greater than 2 are possible close to
the curveC. The range of unstableK is now betweenK− andK+, sinceK−
takes positive values in region II. Thereforeω− > 2 for all (A,F) in this
region. Along the curveC, the roots ofa3(K ) both equalKcrit. Thus, asC
is approached, the only possible wavelength is that corresponding toKcrit,
where

Kcrit =
A

ki +

√
k2

i −
ka feA2

ka fe+da

. (16)

• There is no upper bound on the unstable wavelengths. Figure6 illustrates
the minimum and maximum values of the range of unstable wavelengths for
region II, as well as those(A,F) where only one pattern mode is predicted
by linear analysis.K− is equal to zero along the lineL4, but varies from 0
to 1 along the curveC and the lineL1. Thus the corresponding wavelength,
ω−, increases asF decreases as shown in Fig.6(a). From region I, we know
thatK+ = 1 alongL1; K+ also varies between 0 and 1 along bothL4 andC.
Thus the maximum unstable wavelength increases without bound with both
A andF , as shown in Fig.6(b). Finally, the single-mode patterns form a
small region close to the curveC, as is expected sinceω± = ωcrit alongC.
• The wavelength of the fastest growing mode is unbounded. We now look at

how Kcrit varies in region II.A takes values between 0 andAmax where

Amax=
2ki (ka fe+ da)

2ka fe+ da
(17)
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Figure 5. Contours of the maximum unstable wavelength in region I. The region is delim-
ited by theF -axis and the linesL1 (solid),L2 (dashed) andL4 (F = 0.049). Together
these two graphics represent region I of the parameter regime. The lower diagram is to a
largerF scale to give a clearer picture of the changes in wavelength near to the lineL4.
The minimum value of the range of unstable wavelengths is always 2; the region is divided
according to the integer part of the upper limit, denoted byω+. Observe that the range
of unstableω extends as bothA andF increase. In particular, those values where only a
wavelength of 2 is predicted are close toA = 0 and the lineL4. Parameter values used in
the calculations are as in Fig.3.

is the value ofA at whichC intersectsL1. SubstitutingAmax into the equa-
tion for Kcrit alongC (16) gives Kcrit = 1. ThereforeKcrit varies over the
whole interval[0,1], asA is varied along the curveC. This corresponds
to ωcrit ∈ [2,∞), and so in contrast to region I, the wavelength of the pat-
tern that we expect to dominate has no upper bound for certain(A,F) in
region II. Although this implies that we would expect to see patterns of any
wavelength, that part of the parameter regime where longer wavelengths are
unstable is very small.

In summary, single-mode patterns with a wavelength greater than 2 are only pos-
sible in region II; and in theory there is no bound on the unstable wavelength for
parts of the parameter space. Multi-mode patterns are possible in both regions,
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with no upper bound for the wavelength in either region; a pattern of wavelength 2
is always unstable in region I. The wavelength corresponding to the fastest growing
mode,ωcrit, takes the values 2 or 3 in region I with no such bound in region II.

4. NUMERICAL SIMULATION OF THE M ODEL

In this section we present the results of numerical simulations testing the predic-
tions of our linear analysis. We begin by briefly discussing the choice of parameter
values and the particular form of the feedback functions.

The parameter values used in the model simulation are for the particular case of
TGFα binding to EGF-R. An explanation of the choice of each individual value
can be found in the work ofOwen and Sherratt (1998). In particular, they based
kinetic parameters on the data ofWaterset al. (1990) for EGF binding toEGF-R.
Following this approach, we fix all parameters not associated with the feedback
functions; these values are listed in the legend of Fig.3. Specifying the forms of
the feedback functions,Pa and Pf , is more difficult since the data available on
production rates of ligand and receptors is extremely limited. However, this can be
achieved to some extent because the functions must satisfy a number of conditions
that relate them to experimentally measurable quantities:

(i) In the absence of any ligand binding at the cell surface, there will be a back-
ground level of receptor expression, sayr0. This is a homogeneous steady
state of the model, and so the equation forf (1b) gives

Pf (0) = d f r0. (18)

(ii) Specifying the equilibrium levels of free and bound receptors,fe andbe, de-
fines the steady state level of free ligand,ae, implicitly through equation (1c)
as well as the values of the feedback functions at the steady state, so that

ae=
be(kd + ki )

ka fe
, Pa(be) = ki be+ daae,

and Pf (be) = ki be+ d f fe. (19)

(iii) There will also be a maximum possible level of receptor expression,rm, say.
This can be estimated experimentally by saturating cells with ligand. Such
saturation means that the rate of internalization of bound receptors must be
equal to the rate of free receptor production, giving

Pf (rm) = ki rm. (20)
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of A andF where a single pattern mode is unstable in region II. The region is delimited
by the curveC and the linesL1 (on this scale the right-hand axis) andL4 (F = 0.049).
Graphs (a) and (b) show the lower and upper limits of the range of unstable wavelengths
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increase. Graph (c) illustrates that, as expected, the single-mode patterns are close to the
curveC; on this scale we can see where patterns of 3, 4 and 5 cells are predicted. Parameter
values used in the calculations are as in Fig.3.
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In our numerical simulations, we will consider feedback functions of Hill form:

Pa(b)=
Cm

1 bm

Cm
2 + bm

(21a)

Pf (b)= C3+
Cn

4bn

Cn
5 + bn

. (21b)

The parametersC1,C3,C4 andC5 are constrained by conditions (18)–(20), leaving
three free parameters,C2, m andn, which can be varied in model simulations. Our
objective is to confirm the types of pattern predicted by linear analysis, where we
tookA andF to be controlling parameters. It is therefore necessary to consider
how we can varyA andF using the free parameters of the model. By fixingC2, m
can be used to varyA andn to varyF . If we increaseC2, a smaller range ofm is
required to varyA over the parameter space.

We solve the nonlinear ordinary differential equations (1a)–(c) numerically us-
ing a fourth- and fifth-order Runge–Kutta method. To simulate cells as part of a
continuum, we take our boundary conditions to be periodic. The initial conditions
are small random perturbations about the homogeneous steady state, within±1%
of the equilibrium.

Before we study the numerical results in detail, we begin by noting that all the
simulations we carried out agree with the analysis concerning when patterns form.
The differences between the predictions of the linear analysis and the numerical
solution of the nonlinear differential equations occur in the pattern wavelengths, as
we shall discuss using the results below.

4.1. Numerical solutions on an array of 30 cells.Firstly, we describe simu-
lations on an array of 30 cells. We would expect to be able to see patterns with
wavelengths of 2, 3, 5, 6, etc. cells, since these are all divisors of 30. Linear analy-
sis predicts that for a few values ofA andF in region I, the unstableK correspond
to a single wavelength of 2 cells. We solve the model for such parameter values;
the results of the simulations are illustrated in Fig.7. None of the solutions for this
set of parameters form a regular pattern, and those that almost develop to a single-
mode pattern tend towards a wavelength of 4 cells. To examine this phenomenon
more closely, we investigate the temporal evolution of the pattern. We therefore
look at a solution of the model for just one of the variables in more detail, at six
time intervals (Fig.8). We use different parameter values for which the uniform
steady state is more unstable to random perturbations and so the pattern evolves
much quicker than in Fig.7. Nevertheless, the behaviour remains the same. We
observe that the formation of the pattern appears to occur once distinct peaks in the
number of free receptors are established. These peaks then grow to the detriment
of the number of free receptors in neighbouring cells; high numbers of receptors
are never found in consecutive cells. It also seems that the distance between the
development of the first peaks determines whether other peaks can evolve between
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them, and if so, with what frequency. We notice from Fig.7 that, over the array of
30 cells, a peak in the number of free receptors corresponds to both a peak in the
number of bound receptors and a trough in the number of ligand molecules.

Intuitively, we can explain this by considering the situation of a particular cell,j
say, where a peak in the number of occupied receptors has formed. The increase in
bound receptors up-regulates production of both ligand molecules and free recep-
tors, although this is more pronounced for free receptors since receptor feedback
is stronger than ligand feedback (i.e.,F > A). This balance in feedback strengths
will be discussed later. The number of ligand molecules decreases due to a com-
bination of weaker ligand feedback and our assumption that the cells are part of
a regular two-dimensional grid; so that there is always an excess of free receptors
on two identical neighbouring cells to bind to ligand in cellj , keeping the level
of ligand low. Once established, the peaks in free and occupied receptors in cellj
grow, while those in neighbouring cells,j − 1 and j + 1, decrease. This can be
explained by the competition to bind to ligand molecules in cellj : those cells with
fewer free receptors will bind to less ligand and form fewer bound receptor com-
plexes. The number of occupied receptors on the surface of cellsj − 1 and j + 1
therefore decreases, and consequently reduces their production of free receptors.
The relative size and position of initial peaks in bound receptors thus dictates the
subsequent development of the pattern.

The differences between the linear analysis and the numerical solutions for pa-
rameters in region I prompted us to test the analysis by solving the linearized equa-
tions (3a)–(c) numerically. For different parameter sets, the pattern wavelength
observed in each case was in agreement with the linear analysis. Therefore, we
can only conclude that the nonlinearities in the model override the wavelengths
predicted by the linearized system.

For parameters in region II, single-mode patterns of a range of wavelengths are
predicted by linear analysis and this is confirmed in numerical simulations. More-
over, the separation of the peaks depends crucially on the feedback strengths; nu-
merical investigation demonstrates that increasing the strength of ligand production
induces longer range patterns. Figure9 shows the results of simulations in which
the strength of receptor up-regulation (F) is kept fixed while the strength of ligand
feedback (A) is allowed to vary. In these simulations, we observe patterns with
wavelengths of between 5 and 15 cells as ligand feedback is increased. The out-
come of these numerical studies agrees qualitatively with our analytical predictions
for ωcrit, the wavelength that we expect to dominate in the solution of the model.
If the strength of receptor feedback is also increased, then numerical results (not
shown) indicate that the average wavelength decreases. Therefore, the longer range
wavelengths are generated by the strongest feedback in ligand production and the
weakest feedback in receptor production that still enable patterns to evolve.

4.2. Numerical solutions on an array of 60 cells.By doubling the number of
cells in the model, regular patterns of wavelength 4 are now a possible solution
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Figure 7. Three solutions of the model for 30 cells, each corresponding to different
(random) initial conditions. Linear analysis predicts the formation of a pattern with a
wavelength of 2 cells. In all the simulations of the nonlinear equations for these parameter
values we observe no regular form of pattern. The nearest solution to a pattern with a
wavelength of four cells is illustrated in (a); a regular pattern of mode 4 is not possible
in this case since 4 is not a divisor of 30. Notice that peaks in the number of free and
bound receptors, which are always at least four cells apart, correspond to troughs in the
number of ligand molecules. Intuitively, we can explain this by considering the situation
of a particular cell,j say, where a peak in the number of occupied receptors has formed.
Production of ligand molecules and free receptors is up-regulated by bound receptors until
the point of saturation; hence the high number of free receptors. However, the number of
ligand molecules decreases due to our assumption that the cells are part of a regular two-
dimensional grid; so that the high number of free receptors in two identical neighbouring
cells bind to the ligand molecules in cellj . The values of the free parameters in the
feedback functions areC2 = 2500,m = 0.1013 andn = 3.1059. The other parameters
are as in Fig.3. The profiles are fort = 1800 h.
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Figure 8. Temporal evolution of the free receptor profile in a solution of the nonlinear
model. Between 18 and 24 hours, several distinct peaks appear. Once established, these
peaks grow to the detriment of the number of free receptors in neighbouring cells. This
can be explained by the ‘competition’ to bind to ligand molecules in cells with such high
numbers of receptors. From Fig.7 we can see that cells where these peaks occur have
the smallest numbers of ligand molecules, and so free receptors in neighbouring cells have
fewer ligands to bind to. Therefore the number of occupied receptors on the surface of
neighbouring cells decreases, which reduces their production of free receptors. The dis-
tance between the early peaks appears to determine whether other peaks will consequently
form between them, and if so, with what frequency. The values of the free parameters in
the feedback functions areC2 = 2500,m = 1 andn = 3.5. Timet is given in hours. The
other parameters are as in Fig.3.
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Figure 9. The bound receptor profile for five different simulations of the model. Longer
range patterns are generated by increased ligand feedback: the distance between the peaks
in occupied receptors increases as the strength of the ligand production increases, the weak-
est feedback being in (a) and the strongest in (e). This agrees qualitatively with the predic-
tions of the linear analysis for the wavelength that we expect to dominate in the solution of
the full model. The values of the free parameters in the feedback functions areC2 = 2500,
n = 3 andm varies in each simulation as follows: (a) 0.8, (b) 1.0, (c) 1.5, (d) 1.87 (e) 1.95.
As m increases, the strength of ligand up-regulation,A, increases. The other parameters
are as in Fig.3. Time t = 1800 h.

form. We start by looking at simulations for those parameters in region I where
linear analysis predicted pattern formation with a wavelength of 2 cells. This is the
situation illustrated in Fig.7 for 30 cells. Figure10shows that, as in the case of 30
cells, we do not observe a regular form of pattern in the solution of the nonlinear
model: as the initial conditions vary, the pattern form changes. To check that a pat-
tern of mode 2 was unstable for these parameters, we used as our initial conditions,
perturbations of wavelength equal to 2 cell lengths about the homogeneous steady
state, and observed the solution over time. The pattern did not decay and so we
conclude that the linear analysis is correct in predicting that a wavelength of two
cells is unstable for these parameter values.
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Figure 10. Three solutions, (a), (b), (c) of the model for 60 cells, each corresponding to
different (random) initial conditions. The parameter values are the same in all three cases,
as given in Fig.7. Linear analysis predicts the formation of a pattern with a wavelength
of 2 cells. In all the simulations of the nonlinear equations for these parameter values we
observe no regular form of pattern. Timet = 3600 h.

4.3. Multi-mode solutions. The parameter values used in the above simulations
were all for regions where linear analysis predicts a single unstable wavelength.
We now consider some parameter regions where linear analysis predicts a range
of unstable wavelengths. Solution of the nonlinear equations for parameter values
in region I where wavelengths 2, 3 and 4 are predicted to be unstable by linear
analysis results in no regular form of pattern (not shown). However, the peaks in
the number of free and bound receptors are at similar levels to those in solutions
with previous parameter sets. Figure11 illustrates simulations for values ofA and
F in region I where the unstable wavelengthsω range from 2 to 56. Theωcrit

corresponding toKcrit—an approximation of the fastest growing mode—is 2. The
solution is quite different from previous simulations: again there is no regular form
of pattern, but here we see many more peaks in the number of receptors, and much
lower levels of ligand molecules and occupied receptors.
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Figure 11. Solution of the nonlinear model for 60 cells. Linear analysis predicts the forma-
tion of a pattern with a wavelength between 2 and 56 cells. The pattern we expect to dom-
inate is of mode 2; this wavelength corresponds to the fastest growing mode. The levels
of each variable in the solution are quite different from those seen in previous simulations:
the peaks in free receptor numbers are double those in Fig.10, while there is a marked
reduction in the number of ligand molecules and bound receptors. Although no regular
pattern forms, there are fewer cells between each peak in the number of free and bound
receptors. The values of the free parameters in the feedback functions areC2 = 2500,
m= 1.1170 andn = 12.3041. The other parameters are as in Fig.3. Time t = 10 000 h.

In summary, even with the variety of patterns described above, the mechanism
exhibits a robustness throughout the numerical results: each pattern consists of
high isolated peaks. In terms of cell development, this means that there are always
two distinct fates, one adopted by the cells with high levels of bound receptors and
another by their neighbours.

5. DISCUSSION

Previous work has shown that juxtacrine signalling can generate patterns of wave-
length 2 cells, as one might expect for a nearest-neighbour mechanism. In particu-
lar, Collier et al. (1996) studied a discrete model for Delta–Notch signalling during
development. Their model is considerably different from ours because of the par-
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ticular details of the Delta–Notch system; the model includes lateral inhibition of
neighbouring cells via a negative feedback loop involving two variables—in con-
trast to our three-variable model which has positive feedback. They found that this
feedback mechanism only gives rise to patterning with a length scale of one or
two cells, which is consistent with the fine-grained patterns seen in a number of
developmental processes.

Here we have shown the much more surprising result that, when combined with
positive feedback in ligand and receptor expression levels, juxtacrine signalling can
generate a wide range of longer wavelength patterns. Linear analysis of our model
predicts that patterns of a length scale longer than one or two cells are possible;
and we observe such patterns in the numerical simulations. Indeed, patterns with a
longer range have been characterized during early development in the fruit fly. One
such example is during neuroblast segregation in theDrosophilaembryo (Skeath
and Carroll, 1992). Another is in the developing eye of theDrosophila, which
consists of a reiterated pattern of 800 unit eyes known as ommatidia. In each
ommatidium there are eight photoreceptor neurons or retinula cells. Juxtacrine
signalling by the ligand Boss to the receptor Sevenless triggers just one of the
retinula cells (R7) to differentiate, enabling the fly to detect ultraviolet light, while
the other seven cells adopt different fates (Zipursky and Rubin, 1994). A similar
patterning process takes place in the developing eye of the flour beetleTribolium
(Friedrich, 1996).

The patterns we observe in our simulations are generated over timescales ranging
from hours to days, depending on the strength of the pattern-generating instability.
The model we are proposing is generic, and the timescale of pattern formation
implied by our parameter values may be inappropriate for particular applications.
Indeed, some of the mechanisms involved in early development are likely to be
quicker than the binding ofTGFα to EGF-R. However, this is a ligand–receptor
system for which there exists an extensive amount of empirical data, and in the
absence of complete data sets for other juxtacrine signalling molecules, we have
used this system in our simulations for consistency.

We have shown that pattern formation in our model for juxtacrine signalling is
dependent on parameters of the feedback functions. The linear analysis we carried
out to derive the conditions for pattern formation is similar to techniques used
by Turing (1952) to investigate diffusion-driven instability in reaction–diffusion
systems. Furthermore, the juxtacrine term in our model appears to be similar to
the discretized form of one-dimensional diffusion. However, it is the nature of
the spatial coupling that distinguishes the patterning mechanism considered in this
work from Turing models. For the purposes of this discussion, the average can be
written in a more general form, such that

〈a j 〉 ≡
a j−1+ µ1a j + a j+1

µ2
,

for constantsµ1 andµ2, whereµ1 = 2, µ2 = 4 gives the specific form used in our
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model. There is an argument for allowingµ1 > 2, in the case where the molecule
acts in both a juxtacrine and autocrine manner. Also, if we setµ1 = 0 then this
corresponds to the purely one-dimensional case of a single row of cells. However
the substitutionµ1 = −2, which gives the central difference approximation, would
not make sense biologically within the context of our model; likewiseµ1 = +2
does not give the discretized form of a partial derivative. As an aside, we mention
that for the caseµ1 = 0, the patterns we observe in numerical simulations (not
shown) have one distinct difference from those of our model; the absence of a
contribution from cell j to the local average allows peaks of receptors to form in
consecutive cells. Another important distinction between the Turing mechanisms
and ours is the need for thresholds. Continuum patterning mechanisms require the
imposition of thresholds in order to determine cell fate. In contrast, the nature of
the patterns generated by our model with their high isolated peaks gives a robust
framework for determining cell fate, without the need for such arbitrary levels.
Additionally, there are known systems of juxtacrine signalling molecules whereas
evidence of diffusing morphogens in developmental biology remains elusive.

There are numerous extensions which could be carried out to the present work.
A natural step would be to consider the problem in two dimensions for varying
geometrical structures;Collier et al. (1996) investigated pattern formation on a
hexagonal cellular network. The model itself could be extended to incorporate
other biologically relevant features, such as cell movement and cell polarization;
the latter could arise from receptors moving on the cell surface while remaining
bound within the cell membrane. As mentioned in Section1, some growth factors
that are primarily membrane bound can also be cleaved to give a freely diffusing
form; we would therefore need to include some paracrine signalling in the model.
This is particularly relevant to signalling via theEGF-R pathway in the developing
eye ofDrosophila(Freeman, 1997).
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Massagúe, J. and A. Pandiella (1993). Membrane-anchored growth factors.Ann. Rev.
Biochem.62, 515–541.

Monk, N. A. (1998). Restricted-range gradients and travelling fronts in a model of jux-
tacrine cell relay.Bull. Math. Biol.60, 901–918.

Murray, J. D. (1993).Mathematical Biology, 2nd edn, Berlin: Springer-Verlag.
Murray, J. D., G. F. Oster and A. K. Harris (1983). A mechanical model for mesenchymal

morphogenesis.J. Math. Biol.17, 125–129.
Murray, J. D., R. T. Tranquillo and P. K. Maini (1988). Mechanochemical models for

generating biological pattern and form in development.Phys. Rep.171, 59–84.
Olsen, L., J. A. Sherratt and P. K. Maini (1995). A mechanochemical model for adult

dermal wound contraction: on the permanence of the contracted tissue displacement
profile.J. Theor. Biol.177, 113–128.

Oster, G. F., J. D. Murray and P. K. Maini (1985). A model for chondrogenic condensations
in the developing limb: the role of extracellular matrix and cell tractions.J. Embryol.
Exp. Morphol.89, 93–112.

Owen, M. R. and J. A. Sherratt (1998). Mathematical modelling of juxtacrine cell sig-
nalling.Math. Biosci.152, 125–150.



320 H. J. Wearinget al.

Owen, M. R., J. A. Sherratt and S. R. Myers (1999). How far can a juxtacrine signal travel?
Proc. R. Soc. Lond. Ser. B266, 579–585.

Reilly, K. M. and D. A. Melton (1996). The role of short-range and long-range signalling in
mesoderm induction and patterning duringXenopusdevelopment.Sem. Cell Dev. Biol.
7, 77–85.

Serrano, N. and P. H. O’Farrell (1997). Limb morphogenesis: connections between pat-
terning and growth.Curr. Biol. 7, R186–R195.

Skeath, J. B. and S. B. Carroll (1992). Regulation of proneural gene expression and cell fate
during neuroblast segregation in theDrosophilaembryo.Development114, 939–946.

Turing, A. M. (1952). The chemical basis of morphogenesis.Phil. Trans. R. Soc. Ser. B
237, 37–72.

Varea, C., J. L. Aragon and R. A. Barrio (1997). Confined Turing patterns in growing
systems.Phys. Rev. E56, 1250–1253.

Voroney, J. P., A. T. Lawniczak and R. Kapral (1996). Turing pattern formation in hetero-
geneous media.Physica D99, 303–317.

Waters, C. M., K. C. Oberg, G. Carpenter and K. A. Overholser (1990). Rate constants
for binding, dissociation, and internalization of EGF: Effect of receptor occupancy and
ligand concentration.Biochem.29, 3563–3569.

Zigmond, S. H., S. J. Sullivan and D. A. Lauffenburger (1982). Kinetic analysis of chemo-
tactic peptide receptor modulation.J. Cell. Biol.92, 34–43.

Zipursky, S. L. and G. M. Rubin (1994). Determination of neuronal cell fate: lessons from
the R7 neuron ofDrosophila. Ann. Rev. Neurosci.17, 373–397.

Received 7 July 1999 and accepted 14 October 1999


	Introduction
	Mathematical Model
	Linear Analysis of Pattern Formation
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6

	Numerical Simulation of the Model
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11

	Discussion
	References

