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Abstract. The stimuli for the increase in epidermal mitosis during wound healing
are not fully known. We construct a mathematical model .which suggests that
biochemical regulation of mitosis is fundamental to the process, and that a single
chemical with a simple regulatory effect can account for the healing of circular
epidermal wounds. The numerical results of the model compare well with
experimental data. We investigate the model analytically by making biologically
relevant approximations. We then obtain travelling wave solutions which provide
information about the accuracy of these approximations and clarify the roles of
the various model parameters.
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1. Biological background

Mammalian skin in composed of two parts. The outer part is the epidermis,
which consists of several layers of cells, with the bottom layer undergoing
frequent mitosis to renew the layers above. As cells are displaced upwards,
keratin (a tough, fibrous protein) accumulates in their interior, gradually replac-
ing cytoplasm until the cells die. Such dead “keratinised” cells constitute the
external surface of the skin, and are gradually sloughed. Beneath the epidermis
is the dermis, which contains, in addition to several cell types, blood vessels,
nerves and protein fibres, all of which are absent from the epidermis.

When the epidermis is injured, healing occurs by “epidermal migration”, in
which epidermal cells spread across the wound. This also occurs in deeper
wounds, at the same time as much more complicated healing processes in the
dermis. Thus epidermal wounds provide a relatively simple context in which to
study epidermal migration.

The mechanism of epidermal migration is only partially understood. Normal
epidermal cells are non-motile. However, in the neighbourhood of the wound
they undergo marked phenotype alteration (“mobilisation’) that gives the cells
the ability to move via lamellipodia (Clark 1989). The main factor controlling
cell movement seems to be contact inhibition (Irvin 1984; Bereiter-Hahn 1986).
However, chemotaxis and contact guidance may also be involved (Clark 1988).
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Remnants of glands and hair follicles can act as sources of migrating cells
(Rudolph 1980) but we consider only wounds in which all such appendages are
removed at injury. Extension of the model would be possible by regarding the
wound as a series of micro-wounds extending from one appendage to the next,
a representation proposed by Winter (1972).

Two mechanisms have been proposed for the movement of the cell sheet. In
the ‘rolling mechanism’, the leading cells are successively implanted as new basal
cells, and other cells roll over these (Krawczyk 1971; Winstanley 1975; Ortonne
et al. 1981). In the ‘sliding mechanism’, on the other hand, the cells in the interior
of the sheet respond passively to the pull of the marginal cells. However, all of
the migrating cells have the potential to be motile: for example, if a gap opens
up in the migrating sheet, cells at the boundary of this develop lamellipodia and
move inwards to close the gap (Trinkaus 1984). Though the morphological data
of mammalian epidermal wound healing is convincingly explained by the rolling
mechanism (Stenn and DePalma 1988), unequivocal evidence is lacking, whereas
the sliding mechanism is well documented in simpler systems such as amphibian
epidermal wound closure (Radice 1980).

Soon after the onset of epidermal migration, mitotic act1v1ty increases in a
band (about 1 mm thick) of the new epidermis near- the wound edge, providing
an additional population of cells (Bereiter-Hahn 1986). The greatest mitotic
activity is actually at the wound edge, where it can be as much as 15 times the
rate in normal epidermis (Winter 1972); activity decreases rapidly across the band,
going away from the wound. The stimulus for this increase in mitotic activity is
uncertain. Two factors that are certainly involved are the absence of contact
inhibition, which applies to mitosis as well as to cell motion (Clark 1988), and
change in cell shape: as the cells spread out they become flatter, which tends to
increase their rate of division (Folkman and Moscona 1978). There is also
experimental evidence, which we now briefly review, for production by epidermal
cells both of chemicals that inhibit mitosis and of chemicals that stimulate it.

The former are “chalones”, a generic term for inhibitors of cell proliferation
that are produced by the cell types on which they act. Although the term itself
has acquired a somewhat bad reputation (Iversen 1985), the evidence for such
inhibitory growth regulators is now considerable. There are two established
epidermal chalones, which act at different points in the cell cycle. Their chemical
properties are summarized in Fremuth (1984, pp. 37-38). Experimental work to
investigate dose-response relationships has shown a general increase in inhibitory
effect with dosage (e.g. Hondius-Boldingh and Laurence 1968; Iversen 1978;
Marks 1973) although beyond this it is inconclusive, which Iversen (1981)
attributes to the fact that one has to use skin extracts since the chalones are not
yet available in pure form. There are few direct experimental studies of the role
of chalones in wound healing, although Yamaguchi et al. (1974) investigated the
variation of proliferation rate with time near the edge of wounds in mice,
concluding that inhibition occurs at three distinct points in the cell cycle.

Turning to epidermal growth activators produced by epidermal cells them-
selves, evidence for these is provided in recent work by Eisinger et al. (1988a, an
in vivo study; 1988b, an in vitro study). In the in vivo study, an extract derived
from epidermal cell cultures was found to increase the rate of epidermal migration
when applied, on a dressing, to wounds in pigs. In the in vitro study, the same
extract was found to increase the growth rate of cultures of epidermal cells. It is
unclear whether the chemical(s) causing activation of mitosis in these studies are
growth factors that have already been characterised or ‘new’ growth factors.
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There is also recent evidence that the production by epithelial cells of the
chemical SPARC (secreted protein acidic and rich in cysteine) increases follow-
ing wounding. Since SPARC affects the proliferation rate of cells, this is another
possible activator (Mason et al. 1986; Engel et al. 1987; Sage et al. 1989).

2. Derivation of the model

Two simple models were proposed by Sherratt and Murray (1990) who, based
on comparison with experiment, concluded that the following was the more
biologically realistic. The model consists of two conservation equations, one for
the cell density per unit area (n) and one for the concentration (c) of the
mitosis-regulating chemical. We consider two cases, one in which the chemical
activates mitosis and the other in which it inhibits it. The epidermis is sufficiently
thin that we consider the wound to be two dimensional. This is a reasonable
assumption since we consider wounds whose linear dimensions are O(cms) while
the thickness of the epidermis is O(10~2 cm) (Odland 1983). The general form of
the governing equations is: -
y

Rate of increase = Cell + Mitotic — Natural

of cell density migration generation  loss

Rate of increase of = Diffusion + Production — Decay of
chemical concentration by cells active chemical.

We use a diffusion term to model contact inhibition controlled cell migration.
Following the representations of short-range cellular diffusion in models dis-
cussed by Murray (1989), this diffusion term has a constant diffusion coefficient,
independent of n. Sherratt and Murray (1990) show that a density dependent
diffusion term, in the absence of biochemical control, is unable to capture crucial
aspects of the healing process. We consider the mathematical representation of
each reaction term in turn.

Time decay of active chemical. Such decay is typically governed by first order
kinetics, so we model this term by — Ac, where A is a positive rate constant. In
the absence of the other terms on the right hand side of the equation this gives
an exponential decay with time.

Production of chemical by the cells. This is a function of n, which must equal zero
when n =0 (when there are no cells, nothing can be produced by them) and Ac,
when n = ng, so that the unwounded state is a steady state. Here n, and ¢, are
the unwounded cell density and chemical concentration: we assume a non-zero
concentration of chemical in the unwounded state. Further, the chemical produc-
tion function, f(n) say, must reflect an appropriate cellular response to injury
depending on whether the chemical activates or inhibits mitosis. The qualitative
form of f(n) in the two cases is as shown in Fig. 1. We take simple functional
forms that conform to these requirements, namely:
n3+a?

n
=Acy-— | ———=] for the activator
f(n) Co o (n2,+ az)

f(n)=—"-n for the inhibitor,
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Fig. 1. The qualitative form of the function f(n), which reflects the rate of chemical production by
epidermal cells: a activator; b inhibitor

}

where « is a positive constant which relates to the maximum rate of chemical
production.

Rate of natural cell loss. This is due to the sloughing of the outermost layer of
epidermal cells, and we take it as proportional to n, say kn.

Chemically controlled cell division. We choose this term so that when ¢ = ¢y, the
unwounded concentration, the sum of this term and the previous one is of
logistic growth form, kn(1 — n/n,). This is a commonly used metaphor for simple
growth in population biology models; & is the linear mitotic rate. Thus we model
this term with s(¢) - n - (2 —n/ny), where s(c) reflects the chemical control of
mitosis, and s(c,) = k; s(c) has the qualitative form shown in Fig. 2. In the case

a b
s{c) sic)
k
k x\
?
0 ¢ c 0 Co c

Fig. 2. The qualitative form of the function s(c), which reflects the chemical control of mitosis: a
activator; b inhibitor. Here ¢, represents the steady state chemical concentration in the unwounded
state, and k is a parameter equal to the reciprocal of the cell cycle time
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of a chemical activator, a decrease of s(c) to s(0) for large ¢ is included because
it is found experimentally (Eisinger et al. 1988a); we will show that it has little
effect on the solution of the model equations. In both cases we require
0 <5, <Smax = hk, say, where h is a constant, and we take s, = k/2. Again we
take simple functional forms satisfying these criteria, namely:

. f2cm(h —P) 4 _ ¢y +ck — 2hcycy,
s(c) =k { ey +B} where f = )

for the activator, where c,, (>¢,) is a constant parameter which relates to the
maximum level of chemical activation of mitosis, and

_(h—l)c+hco. e
s(c) = 20— e +e k for the inhibitor.

Thus the model system is

on ) n -
E—-DV”‘*‘S(C) n (2—-;;)—’01 Ty
de ’

5;=Dch+f(n)—Ac,

with initial conditions
n=c=0 at¢=0 inside the wound domain,
and boundary conditions
n=n, and c¢=c, on the wound boundary, for all ¢.
There is a debate in the biological literature as to whether mitosis drives cell
migration or vice versa (see, for example, Potten et al. 1984; Wright and Alison
1984, chap. 14). The biologically reasonable results given by our model and

discussed below are based on the assumption that, in fact, both processes are
dependent on the local cell density.

3. Nondimensional form and linear analysis
To clarify the roles of the various parameters, we nondimensionalise the model
using a length scale L (a typical linear dimension of the wound) and time scale
1/k (the cell cycle time seems the most relevant time scale). We define the
following dimensionless quantities (denoted by *):
n* =nfn,, c* =c/c,, F* =F[L, t* =kt, D*=D/(kL?
D* =D_[(kL?), A* = Ak, ck =¢,/Cos oa* =aln,.

With these definitions, the dimensionless model equations are (dropping the
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asterisks for notational simplicity):

%?=DV2n +s(c)-n-(2—n)—n

de (N
Frin D_V?c + ig(n) — Ac,
with initial conditions ‘
n=c=0 att=0 inside the wound domain,
and boundary conditions
n=1 and c¢=1 on the wound boundary, for all ¢.

Here, for the activator

n(1 +a?) 2¢,.(h — B)c 1+ ¢2 — 2he,,
gn) = pEapER s(c) = 2 te? +p where = ey
and for the inhibitor
th—Dc+h

gn)=n, s(c)= m ,
where we assume A > 1 and ¢, > 1.

We require the unwounded state to be stable to small perturbations, while
the wounded state is unstable. Straightforward linear analysis shows that these
conditions are satisfied provided s(0) > 1/2. For the activator, this condition is

Cm > (2h — 1) + /(2h — 1)2 — 1; for the inhibitor, it is simply 4 > 1/2.

4. Parameter values

It is possible to estimate the parameters 4 and k from experimental data. We
estimate A in the case of a chemical inhibitor using data on chalones. Brugal and
Pelmont (1975) found a decrease in the proliferation rate in intestinal epithelium
during the 12 h after injection with epithelium extract. Also Hennings et al.
(1969) were able to maintain suppression of epidermal DNA synthesis by
repeated injection of epidermal extract at 12 h intervals. Based on these studies,
we take the half-life of chemical decay as 12 h. If we consider only the decay
term in the second equation this gives exponential decay with a half-life of
A~ 'log 2. We thus take 4 = 0.05 (~{;log2) h=".

In the case of a chemical activator, there is little quantitative experimental
data. However, comparison of the work of Eisinger et al. (1988a,b) on chemical
activators in wound healing and the clinical studies of chalone effects by
Rytémaa and Kiviniemi (1969, 1970) suggests a longer time scale for the chalone
activity, by a factor of about 6, so we take 1 =0.3 h~! for the activator.

The parameter k is simply the reciprocal of the epidermal cell cycle time. This
varies from species to species, but is typically about 100 h (Wright 1983), so we
take k = 0.01 h~'. The diffusion coefficients D and D, were estimated by Sherratt
and Murray (1990) based on a best fit analysis with data on wound healing, since
there is at present no direct experimental data from which they can be deter-
mined. This gave values D =3.5x 10~ cm?s~!, D, =3.1 x 1077 cm?*s~" for
the activator, and D =69 x 10~ "' cm?s~!, D, =59 x 10~¢cm?s~"' for the
inhibitor. These are not biologically unreasonable for cells and biochemicals of
relatively low molecular weight, respectively.
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5. Numerical solution of the model

We solved (1) numerically in a radially symmetric geometry using the method of
lines, with a uniform space mesh of 201 points. The numerical solutions were
compared with data from Van den Brenk (1956), one of the more careful
experimental studies of such epidermal wounds. In this study the full thickness of
epidermis was removed from a circular region, 1 cm in diameter, in the ears of
rabbits. In particular, care was taken not to leave behind any hair follicles so
that our model with no ‘internal’ sources of epidermal cells is appropriate. The
change in wound radius with time was recorded. To capture the concept of
‘wound radius’ from our model, we take the wound as ‘healed’ when the cell
density reaches 80% of its unwounded value, that is when n = 0.8 for the
nondimensional equations. The choice of this level as 80% is somewhat arbi-
trary, but does not significantly affect the results since the solutions for # and ¢
have travelling wave form, as discussed below.

Figs. 3 and 4 show the numerically calculated decrease in wound radius with
time compared with the data, and plots of » and ¢ against r at a selection of
equally spaced times. As well as good overall agreement with the data, the
numerical solutions exhibit the two phases (a lag phase and then a linear phase)
that characterise epidermal wound healing (e.g. Snowden 1984). The (constant)
speed. of the linear phase can be approximately calculated visually from the
graph of n against r. For a wound radius of 0.5 cm, this gives dimensional wave
speeds of 2.6 x 107> mm h~' for the activator and 1.2 x 10~>mm h~! for the
inhibitor. These compare with the speed 8.6 x 10> mm h~! found in Van den
Brenk’s (1956) study.

1.0 —P\.‘O\ 1.0 —.\O\KR

0.8 - \ 0.8
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Fig, 3a,b. Numerically calculated decrease in wound radius with time from Eqs. (1) as compared
to the data, denoted by @ and O (Van den Brenk 1956). Time is expressed as a percentage of
total healing time, since this is how Van den Brenk’s data is presented. a Biochemical
activation of mitosis with parameter values D=5x 1074 D, =045 1=30, h=10, a« =0.1,
¢, =40; b biochemical inhibition of mitosis with parameter values D =10~%, D, =0.85, 1 =S5,
h=10
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Fig. 4. Cell density (n) and chemical concentration (c) as a function of radius (r) at a selection of
equally spaced times, from Egs. (1). a Biochemical activation of mitosis with parameter values
D=5x10"% D,=045, A=130, h =10, «a =0.1, c,, =40; b biochemical inhibition of mitosis with
parameter values D = 1074, D, =0.85, A =5, h =10

6. Travelling wave solutions

For both types of chemical, the qualitative form of the solution in the linear
phase is of a wave moving with constant shape and constant speed. Such a
solution is amenable to analysis if we consider a one dimensional geometry,
rather than the two dimensional radially symmetric geometry considered above.
This is biologically relevant for large wounds of any shape, since to a good
approximation these are one dimensional during much of the healing process.
Numerical solutions of the model equations for this new geometry are not
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significantly different from those in Figs. 3 and 4; the dimensionless wave speeds
are approximately 0.048 for the activator and 0.03 for the inhibitor.

Mathematically, we look for travelling wave solutions of the form
n(x, t) = N(z2), c(x, t) = C(2), z = x + at, where a is the wave speed, positive since
here we consider waves moving to the left. Substituting these forms into (1) gives
the following system of ordinary differential equations:

aN’=DN" +s(C)-N-(2—-N) =N
aC’ = D,C" + Ag(N) — iC

where primes denote differentiation with respect to z. Biologically appropriate
boundary conditions are N(—)=C(—w) =0, N(+x)=C(+»0)=1,
N' (£ ) =C'(+w)=0.

Since the system of ordinary differential equations is fourth order, and thus
difficult to analyse globally, we consider two reasonable approximations which
reduce the order of the system: firstly treating A as infinite and secondly treating
D as zero. For the parameter values we are using, the values of these dimension-
less parameters are D = 5 x 1074, A = 30 for the activator,and D =10"% A =5
for the inhibitor. Biologically, the first approximation corresponds to the chemi-
cal kinetics always being in equilibrium, while the second corresponds to an
absence of cellular diffusion, so that increase in cell density is due only to mitosis.

In the numerical solution ¢ <c,, for all r and ¢, and thus it is a good
approximation in the activator case to take s(c) as a simple linear function.
Specifically, we approximate

(2

2(h-1)

Cm—2

The numerical solution of (1) using this form differs negligibly from that with the
original. We use this linear approximation in the subsequent analysis, since it

makes this analysis much easier algebraically. The approximation is valid
provided ¢, > 1.

s(c)~yc+1—y wherey=

Travelling wave solutions with A = co. Here we consider that the derivative
terms in the second equation are negligible compared with the reaction terms.
Intuitively this seems a reasonable approximation in the case of an inhibitor
(A =5), and a good approximation in the case of an activator (4 = 30). The
system then reduces to a second order ordinary differential equation for N,
namely

N”=%N’-—%¢(N) where Y(N) = s[g(N)] - 2N — N?) — N. 3)
We look for a solution with boundary conditions N(+ o) =1, N(—o0) =0 and
N’(+£00) =0, and of course with N >0 throughout.

A straightforward plot shows that, on the interval (0, 1), y(N) has an
essentially parabolic shape in both cases. Thus this equation can be analysed in
an analogous way to the standard analysis for travelling wave solutions of the
Fisher equation, u, = u,, + u(1 — u). This shows that there is a unique solution
of the required form for each wave speed a = ap;, = 2{D(2s(0) — 1)}'/* (see, for
example, Murray (1989) for a summary of this standard analysis). In the usual
way we expect the solution to evolve to a travelling wave with a = a;;, for initial
conditions such that N = 1 for sufficiently large z and N = 0 for sufficiently small
z; biologically relevant initial conditions for our problem certainly satisfy this.
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The parameter values we are using give dimensionless values a,;, = 0.01 for the
activator and a,,;, = 0.09 for the inhibitor. These compare to the wave speeds
0.05 and 0.03 respectively found in the numerical solution of (1). The dis-
crepancy indicates inadequacies in the approximation of chemical decaying as it
is formed; intuitively we expect this approximation to give a lower wave speed
for the activator and a higher wave speed for the inhibitor.

In the inhibitor case an approximate analytic solution for the travelling wave
can also be obtained. Rescaling the independent variable (z,.,, = z,q/a) gives

eN" =N +y(N)=0 (4

where € = D/a® and primes denote d/d{, { = z/a. This looks intuitively like a
singular perturbation problem in the small parameter ¢ ~ 0.01, but it can in fact
be solved by regular perturbation techniques. There is an analogous standard
method for solving the travelling wave problem for the Fisher equation: see, for
example, Murray (1989). In the activator case the method fails because ¢ ~ 5.
We look for a solution of (4) in the form

N(;6) = No(0) +eN () + N () + -
Substituting this into (4) and equating coefficients ‘of, powers of ¢ gives
No = ¥(No)
. W(No)
1\.’ 1 =N, an,

+ Ng

The boundary conditions are
Noy(—0) =0, No(0)=1/2, . Ny(+x)=1
N,(—0)=N;(0) =N,(+0)=0 foriz>1

The value of N(0) is arbitrary; it must be specified to give a unique solution (this
simply fixes the origin of z). We choose N(0) = 1/2, so that

No dé
[
2h —
- (g ) 2w - (5= ) 2t - oy

(4h —3)h —1) In 2(h — DNy +2(2h - 1)
(2h — 1)(3h = 2) 5h—3
for the inhibitor, assuming 4 > 1 as above. This cannot be inverted explicitly.

However, observing that { is a monotonically increasing function of N,, we
consider N,, rather than {, as the independent variable. Now
dN, dy d’N,
— =N, — s
Z an,tae
which on dividing by dN,/d{ gives
W N ), d(dNy
dN, dN,/d{ dN, a

_ N dY(No) dll/(No) dN, _
_‘//(No) an, + an, on using & = Y(Ny).
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Dividing through by y/(N,) gives
d N,
[—’ ~ ln[l/’(No)]] =0.

dNy | ¥(No)
Thus, since N, =0 when N,=1/2 (at { =0),
_ Y(No)
Ny =y¥(No) ln[‘/’(l/z)]-

Plots of N, and N, + ¢N, against z are shown in Fig. 5 and compared to the
numerical solution of (1) at a time in the middle of the linear phase of wound
repair. These show that the first order correction is already small. The analytic
solution agrees reasonably with the partial differential equation solution in
regard to the slope of the linear portion of the wave-front. However, it fails to
capture the important feature that » > 1 in part of the wave-front. This is an
inadequacy in the approximation A = .

Travelling wave solutions with D = 0. Given the shortcomings of the previous
approximation we consider now the approximation D =0. Recall that
D =5 x 10~* for the activator model and D = 10~* for the, inhibitor model. The
fourth order system (2) now reduces to a third order system:

nv=_" +1s(C)(2N —N?)
a a

&)
cr=tcrtc L
D, D, D, ’
We look for a solution subject to boundary conditions N(¢— o) = C(—o0) =0,
N(+ o) =C(+00) =1, C'(+ o) =0, with N, C >0 for all z.

We solved this system numerically by treating N(z,) + C(z;) and
N(z,) + C(z,) — 2 as functions of C(z,) and C’(z,), where we consider the
equations in the interval [z, z,] with z,, an intermediate point. The value of
N(z,,) was fixed at its value in the numerical solutions of (1). Initially we took

12}

{
{
/
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'./ e .
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e,
e,
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Fig. 5. Comparison of N, (full
curve) and the numerical solution of
(1) (curve and dots) for the inhibitor
model. The O(¢) correction ¢N, to
the leading order term N, in the
asymptotic solution of (4) is so small
that it is not visible in a graphical
representation. The parameter values
) are D=10"% D =085 4=35,
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2;=0, z, =1 and solved the equations using the Powell hybrid method. The
initial estimates for C(z,,) and C’(z,,) were taken from the numerical solutions of
(1). The ordinary differential equations were integrated both forwards and
backwards from z,, using a Merson form of the Runge—Kutta method. With the
solutions thus obtained for C(z,,) and C’(z,,) as initial estimates, we repeated the
simulation with z, = —0.5, z, = 1.5 and continued this process of expanding the
interval until the effect on the solution within [0, 1] was negligible. The solutions
thus obtained are compared with the numerical solutions of (1) in Fig. 6: for
both the activator and inhibitor models, the reasonably close agreement indicates
that the approximation D =0 is a good one.

1.2 4 2.0 1

1.5 1

1.0 1

N(z), n(r.t)
)
[=,]
Clz),clr.t)

0.5 -

124

1.0 1

I
™
1

o
[o4]
1

N(z).nlr,t)
Clz).clr.b)

o
~
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o
N
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0 0.2
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0 02 04 06 0.8 1.0
zZ,r

Fig. 6. Comparison of the numerical solutions of (1) (full curves) and (5) (dotted curves). a Activator
model with parameter values D =5 x 10~%, D, =045, A =30, h =10, a = 0.1, c,, = 40, a = 0.048;
b inhibitor model with parameter values D = 10~%, D, =0.85, A =S5, h = 10, a = 0.03. These values
for the wave speed a are those calculated from the numerical solutions of (1)



Basic model for epidermal wound healing 401

For the activator, phase space considerations give an upper bound on the
wave speed. The solution of (5), obtained numerically, approaches the steady
state monotonically. However, for parameter values close to those we are using,
Eq. (5) has two eigenvalues with negative real parts at this steady state, with the
third eigenvalue real and positive. Further, the two eigenvalues with negative real
parts are complex unless a < a,,,, where a,, is the value of a at which the
eigenvalue equation has two equal negative roots. This condition gives a cubic in

amax:
{[(1+ A)2 = 4I/4D_}aS,., + {4T'(3 + D2) — 18(1 + AT +2(1 + A)*(1 + 2A)}af..x

+ D {(1+4)2+3I(6A+2—90I}az. +4D:I =0
where I' = 2[1 — s'(1)g’(1)].
For the parameter values we are using, this equation has a unique solution in
(0.0, 0.1); numerical solution gives the upper bound as a,, = 0.0546. This
compares with the dimensionless wave speed 0.05 found in the numerical
solution of (1).

Also for the activator, we can obtain an analytic solution df (5), again by
regular perturbation theory. We write the equations as |

aN’=e(C — 1)2N —N?) + (N = N?) '~

(1+a’)N
N%+o?
and treat € (=2(h — 1)/(c,, — 2) ~0.47) as a small parameter. With this value for

¢, we will require the O(e) correction to the O(1) solution. We look for a solution
of the form

D.C"—aC’ —AC = —A-

N(z; €) = No(2) + €N, (2) + €2N,(2) +" - )

’ C(z;€) = Co(2) + €C1(2) + €2Cr(2) + - -
Substituting this into the ordinary differential equations, changing the indepen-
dent variable to £ = e?* and equating coefficients of ¢° gives

ENo=No— N3

N , (1+a®)N
KEQCH) = ECo—ACo= —A g,
where ¥ = a 2D, and primes denote d/d¢. The relevant boundary conditions are
No(+ ) = Co(+ ) =1, Ny(0) = Co(0) =0, with Ny(1) = 1/2 for uniqueness.
Straightforward separation of variables gives N, = £/(1 + £). For C,, the method
of variation of parameters gives the general solution of

KEEY (O] — &) — &) = F(©) as (&) =y, (" +y_(E ()
where
, +1 F© d qi_li\/l+4ﬂ.x

Y= Jiram B M OST
Using this,
oo Ml+a?) R S I No(%)
7+ 4k e x9THD N2+ a?
¢
+ & f : No() dx]. (8)

b X9T*D Ny(x)2+0a?
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Here the values of the two constant limits of integration are necessary (but not
sufficient) for convergence at ¢ =0 and + o0.

We consider now the boundary conditions (which imply convergence) by
investigating the behaviour of each of the two integrals in (8) as ¢ approaches 0
and +o0. We have

lim &%
¢+ +oo

'[‘“” 1 Noi)
4

x(q+ +1) ) No(x)2+ az X

= lim ELEN R . No) x
009" e X9TED Ny(x)?+ a2
. 1 —07(1+1/0)
- glf})q‘fo‘q* V07 +a¥(1+1/6)? (-6
_ 1
S gt(1+a?d)’ ‘
where we used L’Hépital’s rule and the expression for N, in the third step.
Similarly o Vo
1 No(x) B

¢
li - . =— .
{—-}Toof J; x@ D Ny(x)? + a? g1 +a?)

_2)

Thus

2
v =K (1)

J1+4c 1+a? \g* ¢~

using the expressions for ¢ *. Similarly the condition at ¢ =0 is satisfied.
Now consider the first order perturbations. Equating coefficients of ¢ gives

ENy = Ny(1 = 2N,) +(Co — 1)(2N, — N)
N’ ’ 2 az__N%
KEEC) —8C— A0 = —A(1+a%) - | oo s | M.
The relevant boundary conditions are now
Ni(0) = N,(+0) = C,(0) = C,(+ ) = N, (1) =0.

In the first equation, substituting for N, multiplying through by the integrating
factor (1 + 1/£)? and integrating gives

1 ¢
N, =€—;‘2+—1/6J; (Co(x) — D(1 + 2/x) dx.

Use of L’Hoépital’s rule as above shows that the boundary conditions are
satisfied. Then (7) gives C,, and again we use L’Hopital’s rule to confirm that the
boundary conditions are satisfied. By repeating this process we can derive all the
terms in the expansion, showing in particular that A, D, and a occur in each term
of the series (6), and thus in the solution as a whole, only in the groupings ¢ *

and 1//1 + 4ik.
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7. Conclusion

We have constructed a simple model for epidermal wound healing in which the
parameter values are based as far as possible on experimental fact. Numerical
solutions of the model with either chemical activation or inhibition of mitosis
compare well with experimental data on the normal healmg of circular wounds,
supporting the view that biochemical regulation of mitosis is fundamental to the
process of epidermal migration in wound healing. Analytical investigation of the
solutions has been possible because these solutions have approximately travelling
wave form during most of the healing process. We have studied the travelling
wave ordinary differential equations under two biologically relevant approxima-
tions. This provided information about the accuracy of these approximations
and the roles of the various model parameters in the speed of healing of the
wound.
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