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Abstract
Spatiotemporal patterns of vegetation are a ubiquitous feature of semi-arid ecosystems.
On sloped terrain, vegetation patterns occur as stripes perpendicular to the contours.
Field studies report contrasting long-term dynamics between different observation
sites; some observe slow uphill migration of vegetation bands while some report sta-
tionary patterns. In this paper, we show that long-range seed dispersal provides a
mechanism that enables the occurrence of both migrating and stationary patterns. We
utilise a nonlocal PDE model in which seed dispersal is accounted for by a convo-
lution term. The model represents vegetation patterns as periodic travelling waves
and numerical continuation shows that both migrating and almost stationary patterns
are stable if seed dispersal distances are sufficiently large. We use a perturbation the-
ory approach to obtain analytical confirmation of the existence of almost stationary
patterned solutions and provide a biological interpretation of the phenomenon.

Keywords Vegetation patterns · Periodic travelling waves · Wavetrains · Matched
asymptotics · Nonlocal dispersal · Perturbation theory

Mathematics Subject Classification 92B99 · 92C15 · 35B60 · 35Q80

1 Introduction

Patterned vegetation is a characteristic feature of semi-arid ecosystems, with vege-
tated regions alternating with bare ground on scales of tens to hundreds of metres
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(Gandhi et al. 2019). Such patterns are important both because of their direct effect on
ecosystem function, and because they provide an early warning sign of catastrophic
desertification (Elsen et al. 2020; Kéfi et al. 2014; Rietkerk et al. 2021). Mathematical
modelling has been used extensively to better understand these patterns (Gandhi et al.
2019; Merchant and Nagata 2015; Sun et al. 2022); moreover, models have helped to
highlight the presence of closely related patterning processes in a variety of very differ-
ent ecosystems, including mussel beds, salt marshes and peat bogs (Martinez-Garcia
et al. 2022; Rietkerk et al. 2004; Sherratt 2013a; Zhao et al. 2019).

On (gentle) slopes, semi-arid vegetation patterns usually consist of stripes running
parallel to the contours (Valentin et al. 1999). In many cases, careful empirical obser-
vation shows that the patterns move slowly uphill, taking many decades to move one
wavelength [Valentin et al. (1999, Table 5) and Tongway and Ludwig (2001)]. There
is a simple intuitive explanation for such movement: rainwater flows downhill, so that
the uphill edge of a vegetation stripe is relatively wet while the downhill edge is much
drier. Consequently, plants tend to die preferentially at the downhill edge, and seeds
tend to germinate preferentially near the uphill edge. This leads to uphill movement
of the stripe on the time scale of the plant generation time. In many cases, field obser-
vations reveal differences between the uphill and downhill edges of vegetation stripes
that are entirely consistent with this intuitive argument (Montaña et al. 2001; Tongway
and Ludwig 2001).

However, there is also strong empirical evidence that some striped vegetation pat-
terns on hillslopes are stationary (Dunkerley and Brown 2002; Mabbutt and Fanning
1987; Tongway and Ludwig 2001). More recently, Deblauwe et al. (2012) made a
comparison of modern satellite images and declassified spy satellite images from the
1960s and 1970s, showing clear evidence of uphill migration in three of the six cases
considered, but no evidence in the other three cases.

Mathematical models typically predict pattern migration on slopes, as a con-
sequence of the downhill flow of water. Therefore, the observation of apparently
stationary vegetation patterns is in apparent contradiction to models. Two main argu-
ments have been proposed to resolve this contradiction. (1) Changes in soil structure:
the regions between vegetation stripes are bare, and subject to significant surface ero-
sion in run-off. This will tend to lead to hard dense soils, for which the equations of
mathematical models may not be appropriate (Dunkerley and Brown 2002). (2) Seed
dispersal in run-off: the downhill flow of rainwater may lead to a “secondary seed
dispersal” that will counteract the tendency of stripes to move uphill (Saco et al. 2007;
Thompson and Katul 2009). This was investigated in detail by Thompson and Katul
(2009) who showed that it can indeed lead to stationary patterns, but only when the
rates of downhill water flow and secondary seed dispersal are finely balanced.

The widespread evidence of stationary vegetation patterns suggests that neither of
these proposed explanations gives the whole story. In this paper, we show that long-
range seed dispersal (without a directional bias) provides an alternative mechanism for
stationary patterns. Moreover, this potential mechanism is significantly more robust
than those discussed above.
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2 Klausmeier model with long-range seed dispersal

2.1 Klausmeier model

Semi-arid vegetation tends to exhibit spatial patterns because of the presence of short
range activation and long range inhibition (Rietkerk and van de Koppel 2008), the
combination of which is a standard mechanism for patterning (Meron 2015; Murray
2011). The inhibition arises from competition for water, which is long range because
of rapid transport of water bothwithin the soil and on its surface. Short range activation
occurs because the presence of plants increases the infiltration of rain water into the
soil, due to both the break-up of soil by the roots and the presence of organic matter on
the soil surface: this makes it advantageous for plants to cluster together (Meron 2012;
Ursino 2005; Valentin et al. 1999). A second local activation mechanism also occurs
in many species: as plants grow, their root network spreads laterally, increasing water
availability (Gilad et al. 2007; Meron 2012). Amongst the variety of mathematical
models that have been proposed for these mechanisms, that of Klausmeier (1999) has
been most widely used in recent years. It consists of coupled PDEs for plant density
u(x, t) and water density w(x, t), where t is time and x is a spatial coordinate in the
uphill direction:

∂w

∂t
=

rainfall
︷︸︸︷

a −
evaporation

︷︸︸︷

w −

water uptake
by plants
︷︸︸︷

u2w +

water flow
downhill
︷ ︸︸ ︷

ν
∂w

∂x
, (1a)

∂u

∂t
= u2w

︸︷︷︸

plant growth

− bu
︸︷︷︸

plant loss

+ ∂2u

∂x2
︸︷︷︸

plant dispersal

. (1b)

This is a dimensionless form of the model: see Klausmeier (1999) for details of the
dimensionalmodel and the rescalings used to obtain (1). The short range self-activation
of plant growth is reflected in (1) by the assumption that the per capita rate of water
uptake is proportional to plant biomass. The plant growth rate is also assumed to be
proportional to water uptake on the basis that water is the limiting resource; however
it should be noted that in some semi-arid regions nitrogen availability can also limit
plant growth (Hooper and Johnson 1999; Stewart et al. 2014). Plant loss is assumed
to have a simple linear form. Some recent models have included soil toxicity, which
can arise via the decay of dead plant material, showing that this can play a significant
role in vegetation pattern formation (Carteni et al. 2012; Iuorio and Veerman 2021;
Marasco et al. 2014); however this is excluded from (1). Plant dispersal is represented
by linear diffusion: this simplification is made for mathematical convenience, and the
alternative use of a nonlocal dispersal termwill be a key ingredient of the present work.
The (dimensionless) parameter a is proportional to mean annual rainfall. The use of a
constant rainfall rate is a major simplification, since in most semi-arid regions rainfall
occurs principally at certain times of year, and then only in relatively brief storms
(Caylor et al. 2014; Istanbulluoglu and Bras 2006). Both of these complications have
been considered in previous modelling studies (Eigentler and Sherratt 2020a, b; Guttal
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and Jayaprakash 2007; Kletter et al. 2009; Siteur et al. 2014; Ursino and Contarini
2006; Vezzoli et al. 2008). The parameter b reflects both natural plant loss and the
effects of herbivory. As well as grazing by wild and domestic animals, “herbivory” of
woody vegetation includes human removal of trees for fuel, which has a significant
effect on vegetation dynamics in many semi-arid regions (Berg and Dunkerley 2004;
Dembélé et al. 2006; Hejcmanová et al. 2010). The parameter ν measures slope gra-
dient. Some more recent models use representations of downhill water flow that are
more detailed than the simple advection term in (1); in particular Gilad et al. (2004,
footnote 18) derive a representation of surface water flow using shallow water theory.

Some authors have added a water diffusion term to (1) (e.g. Siteur et al. (2014)
and Ursino (2005)), but we omit this in the interests of simplicity; the extension
of our results to such an augmented model is a natural target for future work. A final
simplificationmade in (1) is that all the parameters are homogeneous in space.Wewill
retain this assumption throughout this paper, but it should be noted that somemodelling
research points to the potential importance of parameter heterogeneity in models for
semi-arid vegetation, in particular its ability to increase resilience to reductions in
rainfall (Bonachela et al. 2015; Yizhaq et al. 2014).

When the rainfall parameter is low (a < 2b), the only spatially uniform steady
state of (1) is the plant-free state u = 0, w = a. Intuitively, the rainfall level is
too low to support uniform vegetation. For a > 2b there are two vegetated uniform
steady states. One is unstable to homogeneous perturbations. The other is stable to
homogeneous perturbations but becomes unstable to inhomogeneous perturbations for
sufficiently large values of ν, via a Turing-Hopf bifurcation. Spatial patterns result,
and these move in the positive x direction (uphill). Mathematically, this movement is
most easily understood in terms of the dispersion relation, whose solutions are always
complex-valued as a result of the advection term (Perumpanani et al. 1995; Sherratt
2005).

The most slowly moving of the patterns are unstable as solutions of (1), at least
for the large values of the slope parameter ν that are ecologically realistic (Sherratt
2013a). Therefore, any pattern observed in solutions of (1) must necessarily move
uphill at a speed that would be detectable in empirical studies such as comparison of
satellite images taken several decades apart. As discussed above, only some of the
available field data conforms to this aspect of the solutions of (1); other data reveals
stationary patterns.

Figure 1a illustrates the existence and stability of pattern solutions of (1), via shading
in an a–c plane; here c is the uphill migration speed of the patterns. The key message
from this figure is that stable patterns only exist when the wavespeed c is sufficiently
large.

2.2 A non-local model

Almost all models for patterned vegetation, including (1), assume local dispersal of
plants via a diffusion term, representing the accumulated effect of seed dispersal and
lateral vegetative growth through the continuum limit of a random walk. This is a
convenient mathematical simplification, but is rarely accurate due to the occurrence
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of long range seed dispersal events. The distance a seed can travel from its source
is influenced by external factors such as wind, as well as species specific character-
istics, e.g. height of plant, seed weight—some plant species can even disperse seeds
ballistically (Bullock et al. 2017). Secondary dispersal via animal or water transport
can also affect the distance a seed can travel from its source (Neubert et al. 1995).
A more realistic representation of plant dispersal is given by using an integral term
based on a “dispersal kernel”, which is a probability density function describing the
distribution of distances travelled by seeds originating from a single parent (Bullock
et al. 2017; Nathan et al. 2012). This approach has been used previously in the context
of semi-arid vegetation by Bennett and Sherratt (2018), Eigentler and Sherratt (2018)
and Pueyo et al. (2008); our work builds directly on this foundation.

Replacing the diffusion term by a nonlocal dispersal term in (1) gives

∂w

∂t
= a − w − u2w + ν

∂w

∂x
, (2a)

∂u

∂t
= u2w − bu + d

(∫ ∞

−∞
φ(x − y)u(y, t)dy − u(x, t)

)

, (2b)

where φ(·) is the dispersal kernel and satisfies
∫ ∞
−∞ φ(ξ) dξ = 1. The choice of

dispersal kernel depends on the plant species, and there is an extensive literature
on this topic (see Nathan et al. (2012) or Bullock et al. (2017) for review). From a
mathematical point of view, the “Laplace” kernel function

φ(ξ) = 1

2
η e−η|ξ |, η > 0, (3)

enables significant simplification, and throughout this paper we will restrict ourselves
to this kernel. Equations (2) can then be reduced to a local PDE by writing

j(x, t) =
∫ ∞

−∞
φ(x − y)u(y, t)dy,

and noting that

∂2 j

∂x2
+ η2(u − j) = 0,

which gives

∂w

∂t
= a − w − u2w + ν

∂w

∂x
, (4a)

∂u

∂t
= u2w − bu + d ( j − u) , (4b)

∂2 j

∂x2
= −η2(u − j). (4c)
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This ability to simplify a nonlocal dispersal term with the Laplace kernel has been
exploited by many previous authors (e.g. Avitabile and Schmidt 2015; Faye 2013;
Merchant and Nagata 2015; Sherratt 2016).

Bennett and Sherratt (2018) previously showed that (4) admits periodic travelling
waves that represent vegetation patterns. Periodic travelling wave solutions of (4) are
denoted by W (z) = w(x, t), U (z) = u(x, t), J (z) = j(x, t) and can be expressed in
terms of a single independent variable z = x − ct . Further denoting M(z) = J ′(z),
periodic travelling wave solutions of (4) satisfy

(c + ν)W ′ = U 2W + W − a, (5a)

cU ′ = αU − d J −U 2W , (5b)

J ′ = M, (5c)

M ′ = η2(J −U ), (5d)

where α = b + d. In the present context, transformation of the nonlocal model (2)
into the local model (5) expressed in travelling wave coordinates enables calculation
of the region of the a–c parameter plane in which patterns exist, and in which they are
stable. Briefly, stability for a given periodic travelling wave at a fixed point in the a-c
parameter plane is determined through a calculation of its essential spectrum using a
numerical continuation algorithm developed by Rademacher et al. (2007). Then, by
tracking properties of the essential spectrum that indicate a stability change (i.e. where
it crosses the imaginary axis), stability boundaries in the a-c plane can be calculated
through numerical continuation; for full details of the method see Rademacher et al.
(2007), Sherratt (2012), Sherratt (2013b). This calculation was done previously by
Bennett and Sherratt (2018) and their results are reproduced in Figs. 1b and 1c for
convenience. Note that the numerical bifurcation work used for Fig. 1 is not currently
possible for integrodifferential equations (to our knowledge), making it impossible to
construct figures similar to Fig. 1b and c for other dispersal kernels.

Figure 1 shows that nonlocal seed dispersal results in the existence of spatial pat-
terns at very low migration speeds. Moreover, for the wider dispersal case in Fig. 1c
(η = 0.75), the patterns at almost zero migration speeds are stable. This result was
noted as an aside in Bennett and Sherratt (2018), but it was not explored in any detail.
However, the result has potentially important implications, because it provides an alter-
native mechanism for the empirical observation of stationary (or almost stationary)
vegetation patterns. The objective of this paper is to undertake a detailed investiga-
tion of these almost stationary patterns. One difficulty of the results in Fig. 1c is that
they are purely numerical, and numerical continuations can sometimes indicate spu-
rious results. Therefore, independent confirmation is essential. We will undertake an
analytical study of the patterns by using a perturbation theory approach in which the
migration speed c is taken to be a small parameter. This will provide the required
independent confirmation of the existence of patterns for arbitrarily low speeds, and
will also give important insight into the form of these patterns.

Before proceeding, we make a few comments on the value of the slope parameter
ν. In his original paper, Klausmeier (1999) estimated the value of this parameter as
182.5 for a typical dryland system. This value has been widely used in studies of the
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Fig. 1 Existence and stability of patterns. A classification of the a-c parameter plane into regions of stable
patterns (yellow), unstable patterns (grey), and no pattern existence (white) is shown for the model with
local plant dispersal (a) and nonlocal plan dispersal (b, c). Note the thin region of stable solutions along
the a axis in (c). The pattern existence region is bounded by a homoclinic orbit at low a and by a Hopf
bifurcation at higher a. Stability boundaries are either of Eckhaus (sideband) type (blue) or Hopf type (red);
for full details see Bennett and Sherratt (2018). The annotated grey curves show a selection of wavelength
contours. The parameters are d = 0.5625, η = 0.75, ν = 182.5, b = 0.45, and L = 7.24. The figure is
adapted from Bennett and Sherratt (2018) (color figure online)

model by other authors, and it is the value used in Fig. 1. In the present paper, our focus
is on small values of c and our analytical work applies for any value of ν. However,
numerical results for small c are more difficult to obtain and interpret when ν is large.
Therefore in all subsequent numerical work we will reduce the value of ν by a factor
of 10, to 18.25. An interesting future study (but well outside the scope of this paper)
would be to consider a two-parameter perturbation problem in which c and 1/ν are
both small, but for our purposes ν remains fixed and finite while c → 0.

3 The form of slowly moving patterns

Figure 2 illustrates the form of patterned solutions of (5) when the migration speed
c is small. As c decreases with all other parameters fixed, the vegetation density U
develops a pronounced spike (one spike per pattern wavelength), while an abrupt jump
develops in the water density W , from almost zero to a non-zero finite value. We will
show that this solution has a layered structure, with three “thin” layers, termed “layer
1”, “layer 2”, and “layer 3”, respectively, embedded in a finite-width outer solution
(Fig. 3).Wewill develop appropriate scalings for each of the layers, and will show that
matching enables the various constants of integration to be determined. Of course, the
solutions of (5) depend on the values of the parameters a, b, ν, η and d, as well as the
migration speed c. We will show that the solution structure we develop is only valid if
d is less than a critical value d∗. Numerical solutions for d > d∗ show little difference
from those for smaller d, suggesting a (different) layer structure, and determination
of this is an important target for future work.
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Fig. 2 Development of spike with decreasing c. Solutions of (5) are shown for different values of the
migration speed c. Solution profiles are obtained through numerical continuation and therefore do not nec-
essarily depict stable solutions of the corresponding PDE system (2). The parameters are d = 0.5625, η =
0.75, a = 0.727, ν = 18.25, and b = 0.45. Wavelength L is a function of the migration speed c and thus
varies. Its value is L = 10.03, L = 7.85, L = 7.37, and L = 7.26 for c = 0.1, c = 0.01, c = 0.001, and
c = 0.0001, respectively
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Fig. 3 Example spike solution. An example solution of (5) obtained through numerical continuation for
parameters c = 10−4, d = 0.5625, η = 0.75, ν = 18.25, b = 0.45 is shown. The first column shows the
solution across a whole period for all densities; the second column shows blow-ups of the spike region.
Note the logarithmic axis in plots for W and U
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Fig. 4 Layer scalings. The visualisations in a–c show the dependence of model densities on the migration
speed c as observed in solutions obtained through numerical continuation. The layer solution (for W only)
is shown in d alongside a sketch of the locations of the three layers. The table underneath indicates the
scalings used in all layers and the z coordinates used for matching. Parameter values are d = 0.5625, η =
0.75, ν = 18.25, b = 0.45, a = 0.727 and L = 7.24 a–d and c = 10−3 (d only)

3.1 Layer 2

The most prominent feature of the solutions in Fig. 3 is the spike in the solution for
U ; we denote the location of this spike by zs . As we will show below, the peak of the
spike occurs in the middle layer of the three thin layers; we therefore refer to this layer
as “layer 2”. Careful numerical investigation (Fig. 4b) shows that the height of this
spike scales with 1/c as c → 0+. The scaling relevant to the increase of U towards
the top of this spike must include the positive (αU ) term to leading order, meaning
that z − zs = Os(c) as c → 0+ ( f = Os(g) ⇐⇒ f = O(g) and f �= o(g)). This
implies thatU 2W 	 dW/dz, and thus the only feasible leading order form for (5a) is
U 2W = a, which requires thatW = Os(c2). This suggested rescaling is in agreement
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with the dependence of W on c in numerically obtained solutions (Fig. 4b). Taking
these considerations together, we rewrite the model using

z − zs = cz2, (6a)

W (z) = c2W2(z2) + h.o.t., (6b)

U (z) = c−1U2(z2) + h.o.t., (6c)

J (z) = J2(z2) + h.o.t., (6d)

M(z) = M2(z2) + h.o.t.. (6e)

Here, and throughout the paper, we use “h.o.t.” to denote “higher order terms”. Sub-
stitution of (6) into (5) gives U 2

2W2 = a, U ′
2 = αU2, J ′

2 = 0, and M ′
2 = −η2U2 to

leading order as c → 0+. Therefore, the leading order solution in layer 2 is

W2(z2) = a

k21
e−2αz2 , (7a)

U2(z2) = k1e
αz2 , (7b)

J2(z2) ≡ k2, (7c)

M2(z2) = k3 − η2k1
α

eαz2 . (7d)

Here and throughout the manuscript, ki ∈ R, i ∈ N denote constants of integration
that will be determined by matching the solutions in the various layers (Sect. 3.5).

3.2 Layer 3

To the right of layer 2,U decreases in a separate layer, here termed “layer 3”. The above
rescalings for layer 2 give leading order equations that imply U ′ > 0. Therefore, the
decrease inU from its maximum at the top of the spikemust be governed by a different
set of scalings, which must nevertheless haveU = Os(1/c). The−U 2W termmust be
present to leading order (in order forU to decrease), so thatW · (z− zs) = Os(c2). To
avoid the “−a” term dominating in (5a), we must have W ′ = Os(U 2W ) ⇒ z − zs =
O(c2) and W = Os(1). These considerations are in agreement with the dependence
of model densities on c in layer 3 (Fig. 4c) Hence we rewrite the model densities as

z − zs = c2z3, (8a)

W (z) = W 0
3 (z3) + cW 1

3 + h.o.t., (8b)

U (z) = c−1U−1
3 (z3) +U 0

3 + h.o.t., (8c)

J (z) = J3(z3) + h.o.t., (8d)

M(z) = M3(z3) + h.o.t.. (8e)

Substitution of (8) into (5) gives ν(W 0
3 )′ = (U−1

3 )2W 0
3 , (U−1

3 )′ = −(U−1
3 )2W 0

3 ,
J ′
3 = 0, and M ′

3 = 0 to leading order as c → 0+. Therefore, J3(z3) ≡ k4 and
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M3(z3) ≡ k5. The solution of the remaining two equations can only be obtained
implicitly. We have ν(W 0

3 )′ + (U−1
3 )′ = 0 and therefore νW 0

3 + U−1
3 = k6, say.

Hence, ν(U−1
3 )′ = −(U−1

3 )2(k6 −U−1
3 ), which can be solved to give

k7 + 1

ν
z3 =

∫

1

(U−1
3 )2

(

U−1
3 − k6

) = 1

k6U
−1
3

− 1

k26
log

(

U−1
3

k6 −U−1
3

)

. (9)

As we show below (see Sect. 3.5.4), the layer 3 leading order solutions for W and
U are insufficient for matching to the outer solution. Therefore, we also require the
first order correction terms; this is in contrast to both layer 2 (discussed above) and
layer 1 (discussed below) where leading order behaviour suffices. Substituting (8) into
equations for W and U in (5) and retaining first order correction terms yields

(U 0
3 )′ = αU−1

3 − (U−1
3 )2W 1

3 − 2U−1
3 U 0

3W
0
3 ,

(W 0
3 )′ + ν(W 1

3 )′ = (U−1
3 )2W 1

3 + 2U−1
3 U 0

3W
0
3 ,

where we have used (U−1
3 )′ = −(U−1

3 )2W 0
3 , ν(W 0

3 )′ = (U−1
3 )2W 0

3 , and U−1
3 +

νW 0
3 = k6. Division by (U−1

3 )′ = −(U−1
3 )2W 0

3 gives

dU 0
3

dU−1
3

= − α

U−1
3 W 0

3

+ W 1
3

W 0
3

+ 2
U 0
3

U−1
3

, (10a)

−1

ν
+ ν

dW 1
3

dU−1
3

= −W 1
3

W 0
3

− 2
U 0
3

U−1
3

. (10b)

Addition of both equations yields

d

dU−1
3

(

U 0
3 + νW 1

3

)

= 1

ν
− α

U−1
3 W 0

3

= 1

ν
− αν

U−1
3

(

k6 −U−1
3

) ,

and therefore

U 0
3 + νW 1

3 = k8 + U−1
3

ν
− αν

k6
log

(

U−1
3

k6 −U−1
3

)

.

Thus, substitution into (10a) gives

dU 0
3

dU−1
3

− 2
U 0
3

U−1
3

+ U 0
3

k6 −U−1
3

= − αν

U−1
3

(

k6 −U−1
3

) + k8

k6 −U−1
3

+ U−1
3

ν
(

k6 −U−1
3

) −
αν log

(

U−1
3

k6−U−1
3

)

k6
(

k6 −U−1
3

) ,
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and, after algebraic manipulation,

d

dU−1
3

(

U 0
3

(U−1
3 )2

)

= − αν

(U−1
3 )3

(

k6 −U−1
3

) + k8

(U−1
3 )2

(

k6 −U−1
3

)

+ 1

νU−1
3

(

k6 −U−1
3

) −
αν log

(

U−1
3

k6−U−1
3

)

k6(U
−1
3 )2

(

k6 −U−1
3

) . (11)

3.3 Layer 1

In layer 2, W increases towards ∞ exponentially as z2 → −∞, which prevents
direct matching with the outer solution. Therefore, an intermediate layer, here termed
“layer 1”, is required, in which 1 � U � (1/c) and 1 	 W 	 c2. The only
possible scaling is U = O(c−1/2) and W = O(c), which in turn requires z − zs =
Os(c). Similar to the other layers, these considerations are corroborated by a numerical
investigation of model solutions (Fig. 4a). Hence we rewrite the model densities as

z − zs = cz1, (12a)

W (z) = cW1(z1) + h.o.t., (12b)

U (z) = c− 1
2U1(z1) + h.o.t., (12c)

J (z) = J1(z1) + h.o.t., (12d)

M(z) = M1(z1) + h.o.t.. (12e)

Substitution of (12) into (5) gives νW ′
1 = U 2

1W1 −a,U ′
1 = αU1, J ′

1 = 0, and M ′
1 = 0

to leading order as c → 0+. Therefore, the leading order solution in layer 1 is

W1(z1) = eξ
(

k9 − a

2να
E(ξ)

)

, (13a)

U1(z1) = k10e
αz1 , (13b)

J1(z1) ≡ k11, (13c)

M1(z1) ≡ k2, (13d)

where

ξ = k210
2να

e2αz1 , and E(ξ) =
∫

e−ξ

ξ
dξ, (13e)

denotes the exponential integral.
Note that the scalings for z are the same in the adjacent layers 1 and 2. This implies

an abrupt transition between the two layers at finite values of z1 and z2.
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Fig. 5 Outer solution for U . A
visualisation of the solution for
U obtained through numerical
continuation is compared with
U+
out and U

−
out , the two solutions

of the algebraic equation (14b).
Note that only U−

out shows good
agreement with the AUTO
solution away from the spike.
Parameter values are
c = 10−3, d = 0.5625, η =
0.75, ν = 18.25, b = 0.45,
a = 0.727 and L = 7.24

3.4 Outer solution

Away from the spike, the dynamics for c � 1 are identical to those of the system with
c = 0, the so called “outer system”. To analyse the outer system,wewrite z−zs = zout,
U (z) = Uout(zout), W (z) = Wout(zout), J (z) = Jout(zout) and M(z) = Mout(zout) so
that in the new variables, the layers are located at the boundary of the outer domain.
Substituting c = 0 into (5) then yields

νW ′
out = U 2

outWout + Wout − a, (14a)

0 = αUout − d Jout −U 2
outWout, (14b)

J ′
out = Mout, (14c)

M ′
out = η2(Jout −Uout). (14d)

Note that c = 0 reduces the system of equations to a third order ODE system given
by (14a), (14c) and (14d), which is equipped with the algebraic relation (14b). The
algebraic relation is a quadratic in Uout, which can be solved to give

U±
out = 1

2Wout

(

α ±
√

α2 − 4d JoutWout

)

.

Acomparison ofU+
out andU

−
out with solutions obtained through numerical continuation

shows that Uout = U−
out throughout the entire outer solution (Fig. 5). We thus use

Uout = U−
out in (14). The resulting system is a third order ODE system for Wout(zout),

Jout(zout) and Mout(zout) for zout ∈ [0, L]. To analyse the system, we treat it as a
boundary value problem that can be solved numerically (Sect. 3.6). Suitable boundary
conditions are determined through matching the outer solution to the layer solutions
(see Section 3.5) and are given by (21a).
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3.5 Matching

The layer solutions obtained in the preceding sections contain constants of integration.
These constants can be obtained by matching the layer solutions with each other and
the outer solution.

3.5.1 Matching between outer solution and layer 1

Matching between the outer layer and layer 1 occurs as zout → L− and
z1 → −∞, respectively. For brevity, we write limzout→L− Wout(zout) = WL ,
limzout→L− Uout(zout) = UL , limzout→L− Jout(zout) = JL , and limzout→L− Mout(zout) =
ML . From (13), we have ξ → 0+ as z1 → −∞ and therefore E(ξ) = − log(ξ) −
γ + O(ξ) = −2αz1 + O(1), where γ denotes the Euler–Mascheroni constant. This
yields

W1 ∼ − a
ν
z1 + O(1),

U1 → 0,

J1 → k11,

M1 → k2,

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

as z1 → −∞.

Thus, we have W (z) = cW1(z1) = − a
ν
(z − zs) to leading order in c as c → 0+.

Therefore, leading order matching requires WL = 0 in the outer solution. Leading
order matching for U is automatic because U ∼ c−1/2 in layer 1 and U1 → 0 as
z1 → −∞. Finally, leading order matching requires JL = k11 and ML = k2.

3.5.2 Matching between layer 1 and layer 2

Matching between layer 1 and layer 2 occurs at z1 = 0 and z2 = z∗2(c), respectively.
Due to the different scalings in bothW andU between the layers, matching requires

that either (i) U1 and W2 become infinite at the matching values or (ii) the matching
locus depends on the migration speed c. Our calculations in Sect. 3.3 and 3.1 show
that U1 and W2 remain finite for finite z1 and z2, respectively. Therefore, matching
requires dependence of one of the matching loci on c; here the appropriate relation is
that z∗2(c) ∼ log(c).

For layer 1, the matching location is arbitrary and we choose z1 = 0 for mathemat-
ical convenience. From (13), we have

W1(0) = e
k210
2αν

(

k9 + a

2αν
E

(

k210
2αν

))

,

U1(0) = k10,

J1(0) = k11,

M1(0) = k2.

(15)
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As outlined above, the appropriate choice for the matching location in layer 2 is
z∗2 = 1

2α log c+ β, β ∈ R, noting the dependence on the migration speed c. From (7),
we have

W2
(

z∗2
) = c−1 a

k21
e−2αβ,

U2
(

z∗2
) = c

1
2 k1e

αβ,

J2
(

z∗2
) = k2,

M2
(

z∗2
) = k3 − c

1
2
η2k1
α

eαβ.

(16)

Therefore, recalling that W ∼ c in layer 1 and W ∼ c2 in layer 2, leading order
matching for W requires cW1(0) = c2W2(z∗2) which yields

k9 = a

k21
e−2αβ− k210

2αν − a

2αν
E

(

k210
2αν

)

.

Similarly, recalling that U ∼ c−1/2 in layer 1 and U ∼ c−1 in layer 2, leading
order matching for U requires c−1/2U1(0) = c−1U2(z∗2), which yields k10 = k1eαβ .
Moreover, leading order matching for J requires k11 = k2 and leading order matching
for M requires k2 = k3, noting that M2(z∗2) → k3 as c → 0+.

3.5.3 Matching between layer 2 and layer 3

Matching between layer 2 and layer 3 occurs at a finite value of z2, here chosen to be
z2 = 0, and z3 → −∞ due to the differences in z scalings across both layers. From
(7), we have

W2 (0) = a

k21
,

U2 (0) = k1,

J2 (0) = k2,

M2 (0) = k3 − η2k1
α

,

(17)

for the layer 2 solutions. Similarly, from (9), we have

W 0
3 → 0 with W 0

3 ∼ k13
ν
e
k26
ν
z3 ,

U−1
3 → k6 with U−1

3 ∼ k6 − k13e
k26
ν
z3 ,

J3 → k4,

M3 → k5,

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

as z3 → −∞, (18)
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in layer 3.
Hence, leading order matching for W is automatic because W ∼ c2 in layer

2, W ∼ 1 in layer 3 and W 0
3 → 0 as z3 → −∞. For all other variables,

the scalings in layers 2 and 3 are identical. Thus, leading order matching requires
U2(0) = limz3→−∞ U−1

3 (z3) and similarly for J and M . These lead to the conditions

k1 = k6, k2 = k4 and k5 = k3 − η2k1
α

.

3.5.4 Matching between layer 3 and outer solution

Finally, matching between layer 3 and the outer solution occurs at z3 → ∞
and zout → 0+, respectively. For brevity, we write limzout→0+ Wout(zout) = W0,
limzout→0+ Uout(zout) = U0, limzout→0+ Jout(zout) = J0, and limzout→0+ Mout(zout) =
M0. In layer 3, from (9), we have

W 0
3 → k6

ν
with W 0

3 ∼ k6
ν

− 1
k6z3

,

U−1
3 → 0 with U−1

3 ∼ ν
k6z3

,

J3 → k4,

M3 → k5,

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

as z3 → ∞. (19)

Since W ∼ 1 in layer 3 and W 0
3 → k6/ν as z3 → ∞, we require W0 = k6/ν. Due

to a similar argument, leading order matching also requires J0 = k4. Combined with
conditions derived above, this yields J0 = JL . Similarly, we require M0 = k5 which

yieldsML = M0− η2W0
α

after combining with conditions derived frommatching other
layers. For U , leading order matching would require U0 = 0, because

U (z) = c−1U−1
3 (z3) ∼ ν

ck6z3
= cν

k6z
→ 0 as c → 0+.

However, from the algebraic equation (14b) in the outer system, we have

U0 = Uout(0) = U−
out(0) = 1

Wout(0)

(

α ±
√

α2 − 4d Jout(0)Wout(0)
)

= ν

2k6

(

α ±
√

α2 − 4dk6
ν

)

�= 0.

Thus, we need to consider the first order correction, U 0
3 . Recall that U

−1
3 → 0 as

z3 → ∞. Hence, the right hand side of (11) behaves like αν

k6(U
−1
3 )3

to leading order as

z3 → ∞. Therefore, we obtain the leading order equation

U 0
3

(U−1
3 )2

= αν

k6(U
−1
3 )2

.
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From this, we obtain that

U 0
3 → αν

2k6
, as z3 → ∞. (20)

Combined with the leading order term, this yields

U (z) = c−1U−1
3 (z3) +U 0

3 (z3) → αν

2k6
as c → 0+.

Therefore, matching requiresU0 = αν
2k6

. Combinedwith (14b), this yieldsW0 J0 = α2

4d .

3.5.5 Matching summary

Combined, the considerations of this section lead to the followingmatching conditions:

WL = 0, W0 J0 = α2

4d
, JL = J0, ML = M0 − η2W0

α
, (21a)

k1 = k6 = νW0, k10 = k6e
αβ, k9 = a

k21
e−2αβ− k210

2αν − a

2αν
E

(

k210
2αν

)

, (21b)

k11 = k2 = k4 = J0, k2 = k3 = k5 − η2k1
α

= ML . (21c)

Note that (21a) determine the boundary conditions for the outer system (14) in terms
of model parameters (i.e., no information about the layered solution is required).
Conditions (21b) and (21c) fully determine all constants of integration in all three
layers, noting that information on the outer solution is required.

3.6 Solution of outer equations

The outer equations (14) are a system of three coupled ODEs, with the complication
thatUout depends on the equation variables via a quadratic polynomial. We have been
unable to solve these equations analytically, but numerical solution of the boundary
value problem (14,21a) is straightforward.We used a solution from our numerical con-
tinuation as an initial guess for one reference set of parameters, and then transitioned
to the required parameters via bootstrapping. This procedure revealed an important
and unexpected result: solution is only possible if d is sufficiently small.

The explanation for this lies in the form of the solution at zout = 0. One of the
boundary conditions specifiesWout Jout = α2/4d at this boundary. Also (14b) imposes
the requirement Wout Jout ≥ α2/4d for all zout. Therefore, a necessary condition for
the boundary value problem to have a (real-valued) solution is d/dz(Wout Jout) ≥ 0
at zout = 0 to guarantee Uout ∈ R. Figure 6 shows a plot of d/dz(α2 − 4dWout Jout)
at zout = 0 (calculated numerically) as a function of d, for fixed values of the other
parameters. The derivative decreases as d increases, reaching zero at a finite value

123



Long-range seed dispersal enables almost stationary... Page 19 of 28 15

Fig. 6 Derivative of the discriminant of the quadratic forUout . The derivative of α2−4d JoutWout evaluated
at zout = 0 is plotted against d. Note that the derivative becomes zero at at d = d∗. The densities wout and
Jout were obtained by solving the boundary value problem (14,21a) with parameter values η = 0.75, ν =
18.25, b = 0.45, a = 0.727 and L = 7.24

d = d∗; there does not appear to be a real-valued solution of (14,21a). It is important
to emphasise that these conclusions are based on numerical calculations rather than
analysis, but they suggest that a different solution structure applies for d > d∗.

3.7 Construction of composite solution

With the leading order behaviour of solutions in the layers derived and match-
ing conditions between layers and to the outer solution obtained, we can now
construct a composite solution. For this, it is convenient to represent the solu-
tion in vector form, i.e. we write Y(z) = [W (z),U (z), J (z), M(z)]T . Simi-
larly, we also represent the outer solution and layer solutions in vector form
and write Yout(zout) = [Wout(zout),Uout(zout), Jout(zout), Mout(zout)]T , Y1(z1) =
[cW1(z1), c−1/2U1(z1), J1(z1), M1(z1)]T , Y2(z2) = [c2W2(z2), c−1U2(z2), J2(z2),
M2(z2)]T , and Y3(z3) = [W3(z3), c−1U3(z3), J3(z3), M3(z3)]T . Finally, we also
define vectors containing information on the boundary of the outer solution,
i.e. we set YL = limzout→L− Yout(zout) = [WL ,UL , JL , ML ]T and Y0 =
limzout→0+ Yout(zout) = [W0,U0, J0, M0]T .

Using this notation, we define the composite solution as

Y(z) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

Yout(z̃ + L − zs) + Y1

(

z̃ − zs
c

)

+ Y3

(

z̃ + L − zs
c2

)

− YL − Y0 if
c log c

2α
≤ z ≤ zs + c log c

2α

Y2(z2) if zs + c log c

2α
≤ z ≤ zs

Yout(z − zs) + Y1

(

z − L − zs
c

)

+ Y3

(

z − zs
c2

)

− YL − Y0 if zs ≤ z ≤ L

,
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where z̃ = z − c log c
2α .

This construction splits the composite solution into two distinct zones. First, in the
region in which c log c

2α ≤ z ≤ zs + c log c
2α or zs ≤ z ≤ L (note that this forms one

connected region becauseY is the approximation of one period of a periodic travelling
wave solution), the composite solution is given by the outer solution Yout(zout), the
layer 1 solution Y1(z1) and layer 3 solution Y3(z3), with appropriate duplicate terms
(YL and Y0), obtained through the matching process, subtracted. Second, the layer
2 solution Y2(z2) acts as a bridge to cover the gap zs + c log c

2α ≤ z ≤ zs . Note that

this construction results in a composite solution with period L − c log c
2α that is larger

than the true period L . However, the error in the period is O(c| log c|) and thus tends
to zero as c → 0+. We observe a good fit between the composite solution and the
solution obtained through numerical continuation (Fig. 7).

4 Solution properties

Having constructed a composite solution analytically, we are able to analyse key
solution properties without the need to rely on numerical simulations or numerical
continuation of the full system (2). Indeed, comparison of data obtained from the
composite solution is in good agreement with data obtained using numerical contin-
uation (Fig. 8).

Numerically solving the boundary value problem (“outer system”) (14) equipped
with (21a) provides information on the wavelength of spike solutions of (2). Similar
to results for the local model (1), the solution wavelength decreases L with increasing
rainfall a (Fig. 8a).

The relation between the height of the spike maxU and rainfall a is not mono-
tonic. The height of the spike attains its maximum for intermediate rainfall levels and
decreases on either side of this maximum within the existence region of the spike
solution (Fig. 8b).

5 Discussion

Uphill migration of banded vegetation patterns is predicted by a variety of mathemat-
ical models in which diffusion is used to represent plant dispersal. However, diffusion
fails to reflect the long-range nature of dispersal in the majority of plant species, and a
dispersal kernel in an integral term is more realistic (Nathan et al. 2012; Bullock et al.
2017). Our key result in this paper is that such long-range dispersal can lead to almost
stationary banded vegetation patterns. This is consistent with remote-sensing studies,
which provide clear evidence of migration in some instances of banded vegetation,
but find no detectable movement in other cases (Deblauwe et al. 2012; Tongway and
Ludwig 2001).

There is a clear biological basis for the uphill migration of vegetation patterns.
The downhill flow of rainwater runoff causes the upslope edge of a vegetation band
to be wetter than the downslope edge, causing lower plant mortality and higher seed
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Fig. 7 Comparison of composite solution with solution obtained through numerical continuation. An exam-
ple solution of (5) obtained through numerical continuation (blue) is compared to the constructed composite
solution (yellow). The parameters are c = 10−3, d = 0.5625, η = 0.75, ν = 18.25, b = 0.45, a = 0.727
and L = 7.24. The first column shows the solution across a whole period for all densities; the second
column shows blow-ups of the spike region. Note the logarithmic axis in plots for W and U (color figure
online)
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Fig. 8 Solution properties. Wavelength (a) and the height of the spike (b) obtained from the constructed
composite solution are compared with data obtained through numerical continuation. The parameter values
are c = 10−3, d = 0.5625, η = 0.75, ν = 18.25, b = 0.45

germination rates (Tongway and Ludwig 2001; Valentin et al. 1999). This results in
uphill migration on the timescale of the plant generation time. Therefore, our results
demand an intuitive/biological explanation for why migration can be negligible or
absent for long-range plant dispersal. The key to this explanation lies in the temporal
dynamics of themodel (2). In the absence of spatial variation, the equations comprise a
system of two coupled ordinary differential equations, whose phase plane is illustrated
schematically in Fig. 9a. There are two stable steady states, one vegetated and the other
without vegetation. We denote the basins of attraction of these two steady states by
Bveg and Bno−veg respectively; they are delineated by a separatrix that passes through
the third (unstable) steady state. Although these basins of attraction apply strictly
only in the absence of spatial variation, they also provide a useful intuitive basis for
understanding pattern migration.

Consider first a banded vegetation pattern with local (diffusive) plant dispersal
(Fig. 9b, top). In the peaks of the vegetation pattern the values of plant and water
density are within Bveg, while in the troughs they are in Bno−veg. In the absence of
plant growth and water addition/removal dynamics, (local) plant dispersal increases
the plant density at the periphery of the vegetation band. The (relatively) high water
level on the uphill side means that this increased plant density leads to a transition
of the solution from Bno−vegto Bveg, while the lower water level on the downhill side
means the solution remains in Bno−veg(Fig. 9b, top). The result in an uphill migration
of the vegetation band.

This argument applies in the sameway for nonlocal plant dispersal, enablingmoving
patterns for both large and small widths of dispersal kernel (Fig. 1). However when the
kernel has low amplitude and wide span (small η in (3)), a new solution type becomes
possible, in which sharp peaks of vegetation are separated by regions with very low
vegetation. Then dispersal only increases the vegetation density between the bands by
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Fig. 9 Basins of attraction explain occurrence of almost stationary patterns for wide dispersal kernels.
Basins of attraction in the absence of spatial dynamics are shown schematically in (a). Closed circles
indicate stable steady states. The open circle indicates an unstable steady state which is a saddle point.
The basins of attraction are separated by the two solution trajectories that terminate at the saddle point.
The left column in (b) shows the plant densities of two solutions classified into which basin of attraction it
belongs to for the local model (1) (top) and nonlocal model (2) (bottom) with wide dispersal kernel. For the
nonlocal model, both the whole spatial domain and a blow-up of the spike region are shown. Note that the
classification also depends on the water density (not shown). The column on the right in (b) shows changes
to the plant density due to dispersal over a short time interval in the absence of any non-spatial dynamics.
Bold lines indicate regions in which the classification changes due to dispersal. Note the logarithmic axis
and restriction of the field of view to the spike region in the bottom row

a relatively small amount, and approximately uniformly, because of the small value of
η. Typically this will not be sufficient to move the solution out of Bno−veg. Indeed, this
nonlocal dispersal actually leads to a transition of the solution from Bveg to Bno−veg
on both sides of the vegetation spike (Fig. 9b, bottom). Thus dispersal does not induce
further increase in vegetation density between the bands, and the solution remains
fixed in space.

To conclude, we discuss some future research directions suggested by our work.
Prominent amongst these is whether our results depend in any fundamental way on
the shape of the dispersal kernel. We have restricted attention to the Laplace kernel
(3), but this is for purely mathematical reasons: for this kernel, the travelling wave
equations can be reduced to a system of ordinary differential equations. For more
general kernels, a corresponding reduction is not possible and one must work with
integrodifferential travelling wave equations. We have not been able to generalise
our mathematical results, but investigation of these travelling wave integrodifferential
equations is an important target for future work. In particular, it would be interesting
to study the possibility of almost stationary patterns for “fat” dispersal kernels (with
algebraic rather than exponential decay to zero)—such kernels are realistic for many
plant species (Bullock et al. 2017; Kot et al. 1996). They yield significantly different

123



15 Page 24 of 28 L. Eigentler , J. A. Sherratt

behaviours in the context of travelling wave fronts (Liu and Kot 2019), but to our
knowledge there has not been any work on semi-arid vegetation patterns using fat-
tailed dispersal kernels.

Another natural direction for futurework is to considerwhether long-rangedispersal
can lead to almost-stationary patterns in othermodels of banded vegetation. Themodel
of Rietkerk et al. (2002) differs from the Klausmeier model (1) in having separate
variables for water above ground and in the soil. This was the first model of semi-arid
vegetation into which long-range plant dispersal was introduced (Pueyo et al. 2008),
but these authors restricted attention to flat ground. The possibility of almost-stationary
patterns on a slope is an important topic for future work. Another widely used model
for semi-arid vegetation is that of Gilad et al. (2007), which includes an integral term
to represent the dependence of the growth rate of a plant on soil water levels in a
wide area around it, because of the extensive root systems that characterise semi-arid
vegetation. To our knowledge, this model has never been considered with a separate
integral term for long-range dispersal, and the possibility of almost stationary patterns
in such an extended model is another important topic for future work. Similarly,
nonlocal seed dispersal terms could in the future be included in kernel-based models
for dryland vegetation patterns. In models such as those by Borgogno et al. (2009),
Escaff et al. (2015), Lefever and Lejeune (1997), Martinez-Garcia et al. (2013), plant-
to-plant interactions are represented by nonlocal kernel terms. Thus, this type ofmodel
is ideally suited for the additional inclusion of a kernel-based seed dispersal term in
future work.

A third area for future work is to investigate the form of spatial patterns when
d > d∗. As we have discussed, our layered solution breaks down at d = d∗ because
there is no solution of the outer equations (14) subject to the boundary condition (21a).
However, numerical continuation suggests that almost stationary patterns continue to
exist for d > d∗. Moreover there is no apparent change in pattern form as d increases
through d∗. We have been unable to determine an appropriate solution structure for
d > d∗, and this remains a pressing issue for future research.
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