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a b s t r a c t 

The savanna biome is characterised by a continuous vegetation cover, comprised of herbaceous and 

woody plants. The coexistence of species in arid savannas, where water availability is the main limit- 

ing resource for plant growth, provides an apparent contradiction to the classical principle of compet- 

itive exclusion. Previous theoretical work using nonspatial models has focussed on the development of 

an understanding of coexistence mechanisms through the consideration of resource niche separation and 

ecosystem disturbances. In this paper, we propose that a spatial self-organisation principle, caused by a 

positive feedback between local vegetation growth and water redistribution, is sufficient for species coex- 

istence in savanna ecosystems. We propose a spatiotemporal ecohydrological model of partial differential 

equations, based on the Klausmeier reaction-advection-diffusion model for vegetation patterns, to inves- 

tigate the effects of spatial interactions on species coexistence on sloped terrain. Our results suggest that 

species coexistence is a possible model outcome, if a balance is kept between the species’ average fitness 

(a measure of a species’ competitive abilities in a spatially uniform setting) and their colonisation abili- 

ties. Spatial heterogeneities in resource availability are utilised by the superior coloniser (grasses), before 

it is outcompeted by the species of higher average fitness (trees). A stability analysis of the spatially 

nonuniform coexistence solutions further suggests that grasses act as ecosystem engineers and facilitate 

the formation of a continuous tree cover for precipitation levels unable to support a uniform tree density 

in the absence of a grass species. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Savannas are characterised by the coexistence of herbaceous

egetation ( grasses ) and woody plant types ( shrubs and trees )

 Scholes and Walker, 1993 ). They are a dominating feature of many

eographical regions worldwide, occupying over one eighth of the

lobal land surface ( Scholes and Walker, 1993; Scholes, 2003 ). Sa-

annas stretch across a wide range of different climate zones, and

n particular different aridity zones. If the total precipitation vol-

me in savannas is low, they are referred to as water-limited or

semi-)arid savannas ( Sankaran et al., 2005 ). 

The coexistence of grass and trees in arid savannas, in which

ater is the main limiting resource for vegetation growth, has been

f particular interest for many decades (see Yatat et al., 2018b for

 review of mathematical models on the subject), as it provides an

pparent contradiction to the classical competitive exclusion prin-

iple, which states that under competition for the same limiting
∗ Corresponding author. 
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esource only one species can survive (e.g. Hutchinson, 1961 ). In

road terms, two different mechanisms that facilitate the coexis-

ence of species in savannas have been established using math-

matical modelling: resource niche differentiation and environ-

ental disturbances. The former is based on Walter’s hypothesis

 Walter, 1971 ), which assumes niche differentiation into different

oot zones. According to this hypothesis, trees have exclusive ac-

ess to water in deeper soil layers, while grasses are more effi-

ient in their water uptake in the topsoil layer. Early modelling ap-

roaches used Walter’s hypothesis to provide an explanation for

he coexistence of grasses and trees in savannas ( Walker et al.,

981; Van Langevelde et al., 2003; Walker and Noy-Meir, 1982 ). 

However, empirical studies later suggested that Walter’s hy-

othesis does not always hold in savannas so that it cannot be

egarded as a universal mechanism responsible for species co-

xistence in water-limited ecosystems ( Seghieri, 1995; Mordelet

t al., 1997; Belsky, 1994 ). Modelling efforts consequently shifted

owards other mechanisms, such as disturbances due to fires (e.g.

taver et al., 2011; Beckage et al., 2009 ), disturbances due to

razing and browsing (e.g. Scheiter et al., 2007; Synodinos et al.,

015 ), asymmetric competitive effects that trees impose on grass

https://doi.org/10.1016/j.jtbi.2019.110122
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.110122&domain=pdf
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(e.g. Tilman, 1994 ), different com petitive abilities of trees in dif-

ferent life stages ( D’Onofrio et al., 2015; Baudena et al., 2010 ),

or a combination thereof. The main characteristics in which ex-

isting models of the savanna biome differ are their representa-

tion of the state variables, water dynamics and disturbance oc-

currences. Many models (e.g. Touboul et al., 2018 ) represent the

plant state variables as area fraction covers, following the early

model by Tilman (1994) . However, to account for the fact that

plant types are typically not mutually exclusive, other modelling

frameworks (e.g. Beckage et al., 2011 ) characterise plant variables

by the plants’ biomass per unit area. The model by Tilman and

many of its extensions incorporate the plant species’ competi-

tion for water implicitly, but extensions (e.g. Accatino et al., 2010 )

consider water dynamics explicitly in an ecohydrological frame-

work. The occurrence of fire or grazing/browsing disturbances is

described either in a probabilistic (e.g. D’Odorico et al., 2006 ) or

a deterministic sense. Models assuming the latter either provide

a time-continuous (e.g. Yu and D’Odorico, 2014 ), a time-discrete

( Higgins et al., 2010 ) or a time-impulsive ( Tchuinté Tamen et al.,

2016; 2017; Yatat et al., 2017; 2018a ) description of the ecosystem

dynamics. 

Existing models describing savannas mostly use systems of or-

dinary differential equations or impulsive differential equations,

with the spatiotemporal model for tree cover in mesic savannas by

Martinez-Garcia et al. (2013) being a notable exception. Such mod-

els are nonspatial and do not take into account any spatial effects

that affect the plant populations. However, spatial self-organisation

of plants into patterns of alternating patches of high biomass and

bare soil are known to be an essential element in the survival of

plants in drylands ( Deblauwe et al., 2008; Valentin et al., 1999 ).

The formation of patterns is usually induced by a positive feedback

between local vegetation growth and water redistribution, caused,

for example, by the formation of infiltration-inhibiting soil crusts

that induce overland water flow towards existing biomass patches

( Meron, 2016; Rietkerk and van de Koppel, 2008 ). A very common

type of patterned vegetation is stripes that occur on sloped ground

(up to 2% gradient) parallel to the terrain contours ( Valentin et al.,

1999 ). Similar to savanna ecosystems, coexistence of trees and

grasses (on the level of single vegetation patches) also occurs in

patterned vegetation ( d’Herbès et al., 2001; Seghieri et al., 1997 ). In

striped vegetation, grass species are usually observed to dominate

the uphill region of a stripe, while woody vegetation is more dom-

inant towards the centre and downslope end of a stripe ( Seghieri

et al., 1997; d’Herbès et al., 2001 ). 

Spatially explicit mathematical modelling using partial differen-

tial equations (PDEs) has explored different mechanisms that en-

able species coexistence in patterned ecosystems of dryland vege-

tation. For example, if a pattern-forming species and a non-pattern

forming (in the absence of any competitors) species are consid-

ered, the pattern-forming species can act as an ecosystem engi-

neer by altering the environmental conditions (in particular the

availability of water) and thus facilitate coexistence with a non-

pattern-forming species superior in its water uptake and disper-

sal capabilities ( Baudena and Rietkerk, 2013; Nathan et al., 2013 ).

A different mechanism that provides a possible explanation for

the stability of coexistence patterns is the plant species’ adap-

tation to different soil moisture levels, using the stabilising ef-

fect of resource niche differentiation, similar to the early savanna

models based on Walter’s hypothesis ( Callegaro and Ursino, 2018;

Ursino and Contarini, 2006 ). Coexistence of species in patterned

form may not necessarily be observed as a stable solution of the

system, but can also as a long transient, often referred to as a

metastable state ( Gilad et al., 2007b; Eigentler and Sherratt, 2019 ).

Such metastable patterns occur if the facilitative effects that cause

the formation of patterns occur on a much shorter timescale than
he competitive effects that yield the eventual extinction of the in-

erior species. In-phase spatial patterns are not the only context in

hich coexistence of plant species in patterned form is studied in

athematical models of dryland ecosystems. Alternatively, coexis-

ence of species can occur through the existence of a multitude

f localised patterns of one species in an otherwise uniform so-

ution of a competitor (homoclinic snaking) ( Kyriazopoulos et al.,

014 ) in a model that assumes a trade-off between root and

hoot growth and the associated competition for water and

ight. 

Most models describing species coexistence in dryland ecosys-

ems are extensions of either the Gilad et al. model ( Gilad et al.,

0 04; 20 07a ) or the Klausmeier model ( Klausmeier, 1999 ), which

re both phenomenological single-species models that capture the

ormation of vegetation patterns in water-limited ecosystems. The

atter in particular stands out due to its deliberately basic de-

cription of the plant-water dynamics and thus provides an ex-

ellent framework for mathematical analysis and model exten-

ions (e.g. Bastiaansen et al., 2018; Bennett and Sherratt, 2018;

onsolo et al., 2019; Consolo and Valenti, 2019; Eigentler and

herratt, 2019; Eigentler and Sherratt, 2018; Marasco et al., 2014;

herratt, 2010; Sherratt, 2005; Sherratt, 2011; Sherratt, 2013a;

herratt, 2013c; Sherratt, 2013d; Sherratt, 2013e; Sherratt and

ord, 2007; Siero, 2018; Siero et al., 2019; Siteur et al., 2014;

ang and Zhang, 2019; Wang and Zhang, 2018; Ursino and Con-

arini, 2006 ). Other modelling frameworks that address the dy-

amics of vegetation patterns exist (see Borgogno et al., 2009;

artinez-Garcia and Lopez, 2018 for reviews), but, to the best

f our knowledge, have not been utilised to address species

oexistence. 

In this paper, we introduce a spatially explicit ecohydrological

DE model to investigate the role of spatial self-organisation prin-

iples in the stable coexistence of trees and grasses on sloped ter-

ain in savannas ( Section 2 ). To solely focus on the effects of spatial

eterogeneities caused by a pattern formation feedback, we delib-

rately assume that both species only differ in their basic param-

ters, but not in any of their functional responses. We base our

odel on the Klausmeier model for vegetation patterns and find

table solutions of the multispecies model in which both species

oexist, representing a savanna biome. More precisely, these sta-

le solutions are periodic in space, but, unlike in the single-species

lausmeier model, plant densities in the troughs of the pattern

re not close to zero. Instead, both plant densities oscillate be-

ween two non-zero values. In Section 3 we perform a bifurca-

ion analysis of the model to disentangle the origins of the co-

xistence state and establish key conditions required for the ex-

stence of coexistence patterns. We augment our results on pat-

ern existence by an analysis of their stability in Section 4 and

ddress the phase difference between the oscillations in both

lant densities in Section 5 . Our analysis is restricted to a one-

imensional space domain which is assumed to represent a sloped

errain, as the inclusion of a term describing the flow of wa-

er in the downhill direction facilitates the application of a nu-

erical continuation method to study pattern existence and sta-

ility. We briefly comment on model solutions on a flat spa-

ial domain in Section 6 and discuss the relevance and implica-

ions of our results. Section 7 provides an outline of the numer-

cal continuation methods used in our bifurcation and stability

nalysis. 

. The model 

In this section, we present the modelling framework used

n this paper to study the coexistence of plant species in

ater-deprived ecosystems. Our model is based on the reaction-
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dvection-diffusion model by Klausmeier (1999) , which in nondi-

ensional form reads 

∂u 

∂t 
= 

plant growth ︷︸︸︷ 
u 

2 w −
plant loss ︷︸︸︷ 

Bu + 

plant dispersal ︷︸︸︷ 
∂ 2 u 

∂x 2 
, (2.1a) 

∂w 

∂t 
= A ︸︷︷︸ 

rainfall 

− w ︸︷︷︸ 
evaporation and 

transpiration 

− u 2 w ︸︷︷︸ 
water uptake 

by plants 

+ ν
∂w 

∂x ︸ ︷︷ ︸ 
water flow 

downhill 

+ d 
∂ 2 w 

∂x 2 ︸ ︷︷ ︸ 
water 

diffusion 

. (2.1b) 

The density u ( x, t ) denotes the dry biomass per unit area, and

 ( x, t ) quantifies the mass of water per unit area at time t > 0 at a

pace point x ∈ R on a one-dimensional infinite spatial domain, on

hich x increases in the uphill direction if the terrain is considered

o be sloped. It is assumed that rainfall is continuous and that both

iomass density and water density decay due to plant mortality

nd water transpiration and evaporation, respectively, at constant

ates. The nonlinearity in the terms describing water consumption

y plants and the consequential increase in biomass accounts for

art of the positive feedback between local vegetation growth and

he redistribution of water. Water uptake is the product of the con-

umer density ( u ), the resource density ( w ) and a term that ac-

ounts for the infiltration of water into soil layers where roots are

resent ( u ). The latter’s dependence on the biomass density stems

rom the plants’ infiltration-enhancing soil modifications and the

ormation of soil crusts in regions of low biomass. Both densities

ndergo diffusion and water flow in the downhill direction is mod-

lled by an advection term, if the model is considered on sloped

errain. Diffusion of water was not part of Klausmeier’s original

odel, but is a well-established addition to account for water flow

n flat terrain (e.g. Kealy and Wollkind, 2012; Siteur et al., 2014;

an der Stelt et al., 2013; Zelnik et al., 2013 ). The parameters A, B,

and d are combinations of several dimensional parameters, but

epresent precipitation, plant mortality rate, the speed of water

ow downhill and the ratio of the diffusion coefficients, respec-

ively. 

In a previous paper ( Eigentler and Sherratt, 2019 ), we have

xtended the single-species Klausmeier model (2.1) by separating

he biomass density u into two species, u 1 and u 2 with differing

rowth and mortality rates, diffusion coefficients and water infil-

ration enhancement strengths. In this paper, we follow a similar

pproach and analyse the two-species model, which, after a suit-

ble nondimensionalisation (see Eigentler and Sherratt, 2019 1 ), is

∂u 1 

∂t 
= 

plant growth ︷ ︸︸ ︷ 
wu 1 ( u 1 + Hu 2 ) −

plant 
mortality ︷︸︸︷ 
B 1 u 1 + 

plant dispersal ︷ ︸︸ ︷ 
∂ 2 u 1 

∂x 2 
, (2.2a) 

∂u 2 

∂t 
= 

plant growth ︷ ︸︸ ︷ 
F wu 2 ( u 1 + Hu 2 ) −

plant 
mortality ︷︸︸︷ 
B 2 u 2 + 

plant dispersal ︷ ︸︸ ︷ 
D 

∂ 2 u 2 

∂x 2 
, (2.2b) 

∂w 

∂t 
= A ︸︷︷︸ 

rainfall 

− w ︸︷︷︸ 
evaporation and 

transpiration 

− w ( u 1 + u 2 ) ( u 1 + Hu 2 ) ︸ ︷︷ ︸ 
water uptake by plants 

+ ν
∂w 

∂x ︸ ︷︷ ︸ 
water flow 

downhill 

+ d 
∂ 2 w 

∂x 2 ︸ ︷︷ ︸ 
water 

diffusion 

. (2.2c) 
1 The advection parameter ν is not given in the nondimensionalisation in 

 Eigentler and Sherratt, 2019 ), but ν = ̃  ν(k 1 k 2 ) 
−1 / 2 , where ˜ ν, k 1 and k 2 are dimen- 

ional parameters describing water flow speed, diffusion of species u 1 and water 

vaporation rate, respectively. 

o  

o  

b  

t  

f  
As in (2.1) , u i (x, t) , i = 1 , 2 and w ( x, t ) denote the respective

lant densities and the water density at time t > 0 and point x ∈ R ,

here the space coordinate increases in the uphill direction of the

loped terrain. The modelling assumptions are identical to those

n the single-species model, i.e. all three densities diffuse, where

he nondimensional diffusion coefficients D and d are ratios of the

espective dimensional diffusion coefficient and the diffusion co-

fficient of species u 1 ; water flows downhill; plant loss of both

pecies occurs at constant rates B i ; evaporation and transpiration

ffects reduce the water density at a constant rate; and precipi-

ation continuously supplies the system with water at a constant

ate, represented by the nondimensional precipitation parameter

 . The water uptake term is composed of the total consumer den-

ity ( u 1 + u 2 ), the resource density ( w ), and the enhancement of

ater infiltration caused by plants ( u 1 + Hu 2 ). The constant H ac-

ounts for the unequally strong effects of different plant species

n the soil’s permeability. Plant growth of species u 1 directly cor-

esponds to the resource consumption by u 1 and thus occurs at

ate w (u 1 + Hu 2 ) . Similarly, the biomass of species u 2 increases at

ate F w (u 1 + Hu 2 ) , where F is the ratio of the species’ water to

iomass conversion coefficients. The multispecies model (2.2) is a

imple extension of the single-species Klausmeier model (2.1) . The

lant species only differ in their parameters, with all functional

esponses being identical. In particular, each species satisfies the

ingle-species model (2.1) in the absence of its competitor. 

While the multispecies model (2.2) is similar to the model anal-

sed in our previous paper ( Eigentler and Sherratt, 2019 ), the re-

ults presented in this paper address a solution type with appli-

ations to a fundamentally different ecosystem. In Eigentler and

herratt (2019) , we focussed on species coexistence in vegeta-

ion patterns, which are characterised by a mosaic of colonised

round and bare soil. In this context, we found that coexistence

an occur as a metastable state, that is an inherently unstable

tate which appears as a long transient in the system. The nov-

lty of the work presented in this paper is twofold. Firstly, we ad-

ress the effect of spatial interactions on species coexistence in

avannas, an ecosystem in which plant cover is continuous, but

ot necessarily uniform. With the notable exception of Martinez-

arcia et al. (2013) , spatial effects on savanna ecosystems have not

een considered in mathematical models before. Secondly, we are

ble to show that, unlike in the context of patterned vegetation

onsidered in Eigentler and Sherratt (2019) , coexistence states of

he multispecies model (2.2) that represent a savanna biome are

table solutions. 

The model introduced in Eigentler and Sherratt (2019) further

ncludes an asymmetric direct competition term through which

ne species increases the mortality rate of its competitor (e.g. due

o shading). However, the inclusion of such a direct competition

erm in either or both of the equations does not yield any qual-

tative differences in the results on species coexistence presented

n this paper (but may, in general, add to the richness of solu-

ion types in the system). Quantitative effects of direct interspe-

ific competition include changes to the notion of the local average

tness of a species, but in the interest of providing a basic repre-

entation of the self-organisation principle as a coexistence mecha-

ism, we do not consider any direct interaction between the plant

pecies in (2.2) . Instead, the two plant species only compete indi-

ectly through the depletion of the limiting resource. 

The main focus of this paper is a description of coexistence of

rass and trees or shrubs in water-deprived ecosystems. Thus, we

enceforth consider u 1 to be a herbaceous species and u 2 to be

f woody type. This assumption allows for qualitative statements

n the parameters in the system. For example, mortality rates can

e inferred from the lifespan of a species. The difference in the

ypical lifespans of grasses and trees yields that grasses die at a

aster rate ( B 1 > B 2 ) ( Accatino et al., 2010 ). Similarly, plant growth
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parameters can be deduced from the time necessary for a plant

population to reach its equilibrium density. Grasses require signif-

icantly shorter periods to attain steady state biomass levels than

trees, which suggests that grasses are superior in their water-to-

biomass conversion ( F < 1) ( Accatino et al., 2010 ). If other system

parameters are known, the strength of a plant species’ enhance-

ment of water infiltration into the soil can be estimated from its

equilibrium density ( Klausmeier, 1999 ). As steady state biomass

densities for tree species are in general much higher than those of

grass species in dryland ecosystems, this yields that grasses cause

a larger increase in soil permeability per unit biomass than trees

( H < 1) ( Mauchamp et al., 1994 ). The plant species’ diffusion coeffi-

cients relate the spatial spread of vegetation with time. The longer

generation time of trees suggests slower dispersal of trees ( D < 1). 

All our parameter estimates are based on previous modelling

studies (e.g. Klausmeier, 1999; Siteur et al., 2014 ), as there is a

lack of empirical data that would allow for an accurate parame-

ter estimation. However, all our assumptions on parameter differ-

ences between tree and grass species are in agreement with pa-

rameter estimates in previous multispecies models (e.g. Baudena

and Rietkerk, 2013; Gilad et al., 2007a ). Unless otherwise stated,

we set B 1 = 0 . 45 , B 2 = 0 . 0486 , D = 0 . 109 , F = 0 . 109 , H = 0 . 109 ,

ν = 50 and d = 500 . 

3. Existence and onset of patterns in which species coexistence 

occurs 

In this section, we discuss the existence of solutions of (2.2) in

which both species coexist. Such solutions are periodic travel-

ling waves, i.e. spatially periodic solutions that move in the up-

hill direction of the domain at a constant speed. Numerical con-

tinuation shows that the branches of periodic travelling waves, in

which both plant species are strictly positive, terminate at a single-

species pattern at either end. The key ingredient in understanding

the onset and existence of coexistence states is information on the

single-species patterns’ stability. An investigation of the essential

spectrum of the single-species pattern reveals that bifurcations to

coexistence states occur as a single-species pattern loses/gains sta-

bility to the introduction of its competitor. 

3.1. Stability of spatially uniform equilibria 

The starting point of our bifurcation analysis is the equilibrium

states in a spatially uniform setting. Depending on the level of

precipitation, the multispecies model (2.2) has up to five spatially

uniform steady states: a trivial desert steady state (0 , 0 , w 

D ) =
(0 , 0 , A ) which exists and is stable in the whole parameter space;

a pair of single-species grass equilibria ( u G, ±
1 , 0 , w 

G, ±) that ex-

ist for sufficiently high rainfall volumes A > A 

G 
min 

; and a pair of

single-species tree states (0 , u T, ±
2 , w 

T, ±) that exist for A > A 

T 
min 

. In

both cases, the pair of single-species equilibria meet in a fold at

their respective existence thresholds, and the lower branches, here

denoted by a minus sign in the superscripts, are unstable. The

remaining single-species grass equilibrium ( u G, + 
1 , 0 , w 

G, + ) is lin-

early stable to spatially uniform perturbations if B 2 − F B 1 > 0 and

B 1 < 2, while the tree steady state (0 , u T, + 
2 , w 

T, + ) is linearly stable

to spatially homogeneous perturbations if B 2 − F B 1 < 0 and B 2 < 2.

Eigentler and Sherratt (2019) . Parameter estimates consistently im-

ply that plant mortality is sufficiently low to assume B i < 2 , i =
1 , 2 . 

These two stability criteria emphasise the critical role of the

quantity B 2 − F B 1 in the system, as B 2 − F B 1 = 0 is a separatrix of

the stability regions of the single species equilibria in the spatially

uniform setting. We thus refer to B 2 − F B 1 as the average fitness

difference between the two species, because its sign determines
he single-species state to which the system converges in the ab-

ence of any spatial interactions (provided the precipitation level

 is sufficiently high). In dimensional parameters, the average fit-

ess of a species in the model is the ratio between its water-to-

iomass conversion capabilities (growth rate) and its mortality rate

 Eigentler and Sherratt, 2019 ). 

.2. Single-species patterns 

If spatial interactions are included, the multispecies model

2.2) admits single-species patterns that move in the uphill di-

ection of the domain at a constant speed. Such regularly pat-

erned solutions moving through the spatial domain are classi-

ed as periodic travelling waves, an important solution type for

eaction-advection-diffusion equations and other partial differen-

ial equations. Periodic travelling waves can be represented by a

ingle variable z = x − ct only, where c ∈ R is the migration speed

f the periodic solution, and u 1 (x, t) = U 1 (z) , u 2 (x, t) = U 2 (z) and

 (x, t) = W (z) . This coordinate transformation reduces the PDE

ystem (2.2) to the corresponding travelling wave ODE system 

 U 1 ( U 1 + HU 2 ) − B 1 U 1 + c 
d U 1 

d z 
+ 

d 

2 
U 1 

d z 2 
= 0 , (3.1a)

 W U 2 ( U 1 + HU 2 ) − B 2 U 2 + c 
d U 2 

d z 
+ D 

d 

2 
U 2 

d z 2 
= 0 , (3.1b)

 − W − W ( U 1 + U 2 ) ( U 1 + HU 2 ) + (c + ν) 
d W 

d z 
+ d 

d 
2 
W 

d z 2 
= 0 . (3.1c)

Patterned solutions of the PDE system (2.2) correspond to limit

ycles of (3.1) . In the PDE setting of (2.2) , we would typically inves-

igate the interval of a given control parameter, here the precipita-

ion parameter A , in which patterned solution exist. Moreover, the

ransformation to the comoving frame introduces an additional pa-

ameter: the migration speed c . If a patterned solution of (2.2) ex-

st for a given set of the PDE parameters, limit cycles of (3.1) exist

or a range of values of the migration speed c . We thus need to

onsider a pattern forming region in the ( A, c ) parameter plane,

nstead of an interval of A only. 

The existence of single-species patterns is examined using the

umerical continuation software AUTO-07p ( Doedel et al., 2012 )

nd form part of the bifurcation diagrams visualised in Fig. 3.3 .

n particular, since the multispecies model (2.2) reduces to the

ingle-species Klausmeier model (2.1) in the absence of one of

he species, the bifurcation structure of the system’s single-species

tates is identical to that of the single-species Klausmeier model.

ore precisely, the pair of spatially uniform single-species grass

quilibria ( u 1 
G, ±

, 0 , w 

G, ±) meet in a fold. In the spatial model, the

ranch stable to spatially uniform perturbations loses its stabil-

ty at a Turing-Hopf bifurcation. This is the onset locus of the

ingle-species pattern. A multitude of stable and unstable pat-

erned states at different wavelengths and migration speeds ex-

st (only one solution branch is shown in the bifurcation dia-

rams 3.3 ), which all originate at a Hopf-bifurcation and termi-

ate in a homoclinic orbit as the control parameter A is decreased

 Sherratt and Lord, 2007 ). Due to the symmetry in the model, iden-

ical considerations hold true for the single-species tree states. 

.3. Multispecies patterns 

Even though there is no spatially uniform equilibrium in which

oth plant species coexist, numerical simulations of the full sys-

em ( Fig. 3.1 ) suggest the existence of stable patterned solutions of

2.2) in which species coexistence occurs. Such solutions also move

n the uphill direction, but are distinctly different from the single-

pecies patterns that occur in both the single-species Klausmeier
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Fig. 3.1. Numerical simulation of the multispecies model. This figure shows a typical patterned solution of (2.2) in which both species coexist. The red, blue and yellow 

vertical lines indicate the location of local minima of the grass density u 1 , the tree density u 2 and the total plant density u 1 + u 2 respectively, and highlight that the total 

plant density and the water density are antiphase, as well as the existence of a phase difference between the plant patterns. The solution is obtained through a numerical 

simulations with precipitation parameter A = 4 . 5 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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odel (2.1) and the multispecies model (2.2) . In single-species pat-

erned solutions, the plant density oscillates between a high level

f biomass and a biomass level close to zero ( Fig. 4.1 (a) and (b)).

cologically, such solutions represent a transect of a striped veg-

tation pattern in which patches of high biomass alternate with

egions of bare soil. By contrast, in the multispecies patterns, both

lant densities oscillate between two nonzero levels ( Fig. 3.1 and

ig. 4.1 (c) and (d)). In this solution type, there are no patches de-

oid of biomass, as occurs in a savanna ecosystem. 

.3.1. Onset of multispecies patterns 

Branches of single-species periodic travelling waves originate

rom bifurcations of the spatially uniform equilibria. Further bifur-

ations may occur along those solution branches, and these are the

rigin of other solution branches in which both plant species co-

xist (with non-negative densities) in a patterned state. An insight

nto the onset of these coexistence patterns is gained through a

tability analysis of the single-species patterns in both the single-

pecies Klausmeier model (2.1) and the multispecies model (2.2) .

he stability of a periodic travelling wave can be determined

hrough a calculation of its essential spectrum. 

The essential spectrum S ⊂ C of a periodic travelling wave so-

ution determines the leading order behaviour of small pertur-

ations to the periodic travelling wave. Since periodic travelling

aves are translation invariant, the origin is always part of the es-

ential spectrum. Hence, the origin is excluded from the follow-

ng definition of stability. If the essential spectrum lies entirely in

he � (λ) < 0 , λ ∈ C half-plane, then the periodic travelling wave

s spectrally stable, otherwise it is spectrally unstable. The essen-

ial spectrum can be calculated using the numerical continuation

ethod by Rademacher et al. (2007) and we provide a brief out-

ine of how the method is applied to (3.1) in Section 7 . 
To understand the onset of coexistence patterns, the essential

pectrum of a given pattern in the single-species Klausmeier model

2.1) is compared with that of the same single-species solution of

he multispecies model (2.2) ( Fig. 3.2 ). The spectrum of the pattern

n the multispecies model includes additional components that de-

cribe the behaviour of perturbations in the plant type absent in

he single species pattern. The bifurcation to the coexistence pat-

erns occurs where the single species pattern loses stability to the

ntroduction of the competitor species. This does not necessarily

orrespond to a stability change of the single species pattern, since

t may be unstable in the single-species model either side of the

ifurcation. In more formal words, if S 1 denotes the spectrum of a

ingle-species pattern in the single-species model (2.1) ( Fig. 3.2 a)

nd S 2 denotes the spectrum of the same solution in the multi-

pecies model (2.2) ( Fig. 3.2 b), then S 1 ⊂ S 2 and the bifurcation

o the coexistence pattern occurs as max {� (λ) : λ ∈ S 2 \ S 1 } = 0 ,

.e. as S 2 \ S 1 crosses the imaginary axis � (λ) = 0 ( Fig. 3.2 c). Due

o the symmetry in the model, these considerations hold for both

pecies in the model. 

The coexistence solution branches either connect both single-

pecies solution branches or connect two bifurcations along the

ame single-species pattern branch. However, coexistence patterns

o not originate or terminate at these bifurcations. Instead, the

lant density which is zero at the bifurcation changes its sign and

he coexistence solution branch continues beyond the bifurcation

ut is biologically irrelevant (not shown in Fig. 3.3 ). We henceforth

se coexistence pattern to describe those with positive densities in

oth species only, and with a slight abuse of terminology refer

o the branching points along the single species pattern solution

ranches as their origins or termini . The exception to the consider-

tions detailed above is large migration speeds c , for which only

ne of the single-species pattern exists. In this case, the branch of

atterned coexistence solutions terminates in a homoclinic orbit. 



6 L. Eigentler and J.A. Sherratt / Journal of Theoretical Biology 487 (2020) 110122 

Fig. 3.2. Spectra of single-species patterns. The visualisations in (a) and (b) compare the spectrum of a patterned solution in the single-species Klausmeier model to that 

of the identical periodic travelling wave in the multispecies model. The pattern’s spectrum in the single-species model is a subset of its the pattern’s spectrum in the 

multispecies model, as the latter contains additional components corresponding to perturbations in the plant density absent in the single species pattern. In (c), the spectra 

of a single-species pattern in the multispecies model is shown around the origin for different values of the precipitation parameter A (either side of and at the bifurcation 

to the multispecies pattern) to visualise that the bifurcation to coexistence patterns occurs as the single-species loses/gains stability to the introduction of a second species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. Existence of multispecies patterns 

A critical requirement for the existence of coexistence patterns

is a sufficiently slow (compared to its competitor) growth rate of

the species with superior average fitness. If B 2 − F B 1 < 0 ( u 2 has

higher average fitness) then coexistence patterns only occur if F is

below a critical threshold F exist . A second significant change of the

bifurcation structure occurs at F = F split < F exist , at which the pre-

cipitation interval in which coexistence patterns occur is split into

two disjoint intervals. Assuming that the average fitness difference

B 2 − F B 1 and the migration speed c are kept constant, changes to

the system’s bifurcation structure under increases in F (and associ-

ated decreases in B 2 ) can be characterised as follows ( Fig. 3.3 ): 

F � F split : For sufficiently small F , there is only one branch

of periodic travelling waves in which both species coexist,

which connects branching points on either branch of the

single species patterns ( Fig. 3.3 (a)). 
F ≈ F split and F < F split : As the growth rate ratio F is gradually

increased, a second pair of branching points moves along

each of the single species pattern branches from the ho-

moclinic solution towards the Turing-Hopf bifurcation and a

second branch of coexistence patterns connects both branch-

ing points ( Fig. 3.3 (b)). 

F split < F < F exist : A further increase of F causes a significant

change in the bifurcation structure. At the critical thresh-

old F = F split both coexistence solution branches coincide for

some precipitation level. For F > F split the origins and ter-

mini of the solution branches are exchanged and each so-

lution branch connects both branching points on the same

single species pattern branch ( Fig. 3.3 (c)). This breaks up the

existence interval of the coexistence solutions into the union

of two disjoint intervals. 

F ≈ F exist and F < F exist : Further increases of F increase the gap

between the existence intervals and consequently reduce the
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Fi g. 3.3. Bifurcation diagrams under varying growth rate ratio F and constant aver- 

age fitness. Bifurcation diagrams for a number of different values of F and B 2 , keep- 

ing the average fitness difference B 2 − F B 1 < 0 constant, are shown. For sufficiently 

small F , i.e. a sufficiently slow growth rate of the species of higher average fitness, 

only one branch of coexistence patterns occurs (a). Increases in F cause the ap- 

pearance of a second branch (b), before the precipitation interval in which patterns 

exist is split into two (c). Further increases of F reduce the size of the parameter 

region in which coexistence patterns occur (d), before the coexistence state ceases 

to exist as F passes through a critical threshold (not shown). Solution branches of 

patterned states are only shown for fixed migration speed c = 0 . 15 and no stability 

information is shown. The chosen values of the growth rate ratio F are F = 0 . 109 (in 

(a)), F = 0 . 73 (in (b)), F = 0 . 7543 (in (c)) and F = 0 . 9 (in (d)). Note the difference to 

the bifurcation diagrams presented in Fig. 3.4 , in which only B 2 is varied and the 

average fitness difference undergoes changes. 
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size of the existence region ( Fig. 3.3 (d)). Increases in F also

reduce the distance between both branching points along

the single species branch, until they meet in a fold at a

threshold F = F (i ) 
exist 

, i = 1 , 2 , where F (1) 
exist 

and F (2) 
exist 

may differ

and depend on other parameters in the model, in particular

the diffusion rate ratio D . 

F > F exist : For F > F (i ) 
exist 

, no branching points along the respec-

tive single species pattern branch exist. For the species of

inferior average fitness ( u 1 ) this is due to the instability of

the single-species pattern to the introduction of the sec-

ond species u 2 caused by the combination of the competi-

tor’s higher average fitness and sufficiently fast growth rate.

In terms of the essential spectrum, this is characterised by

the subset S 2 \ S 1 of the essential spectrum of the single-

species pattern, which always extends into the � ( λ) > 0 half-

plane, i.e. max {� (λ) : λ ∈ S 2 \ S 1 } > 0 along the whole so-

lution branch if F > F (1) 
exist 

. Vice versa, max {� (λ) : λ ∈ S 2 \
S 1 } < 0 for the species of higher average fitness ( u 2 ) along

the branch of single species pattern, if F > F (2) 
exist 

, correspond-

ing to the pattern’s stability to the introduction of u 1 . Thus,

patterned solutions in which both species coexist cease to

occur at F = F exist := max { F (i ) 
exist 

} . The level of F exist depends

on the dispersal behaviour of both plant species and in-

creases monotonically with |log ( D )|. In particular, if D =
1 , i.e. the species’ diffusion coefficients are equal, F exist =
F (1) 

exist 
= F (2) 

exist 
= 1 and coexistence patterns cease to occur if

both species growth rates are equal. 

The crucial role of the balance between the average fitness dif-

erence B 2 − F B 1 and the growth rate ratio F is further empha-

ised by an analysis of the bifurcation structure under changes to

he average fitness difference if the growth rate ratio F is fixed.

f B 2 − F B 1 < 0 and F is sufficiently small, i.e. u 2 has superior av-

rage fitness but a slower growth rate than u 1 , then coexistence

attern occur, as outlined above ( Fig. 3.5 (a)). If the average fitness

s gradually increased, the branching points, at which the coexis-

ence patterns originate, move along the single species branch to-

ards the Turing-Hopf bifurcation and cease to exist at B 2 − F B 1 =
 ( Fig. 3.5 (b)). Hence, no coexistence patterns occur if the faster

rowing species has superior average fitness ( Fig. 3.5 (c)). In terms

f the essential spectrum of the single-species pattern, this is be-

ause S 2 \ S 1 does not extend into the � ( λ) > 0 half-plane for any

recipitation levels. This corresponds to the pattern’s stability to

he introduction of a competitor with slower growth rate and in-

erior average fitness. 

Moreover, the amplitudes of all densities in the coexistence pat-

ern tend to zero as B 2 − F B 1 → 0 . In other words, the coexistence

attern approaches a spatially uniform state as the average fitness

ifference tends to zero. If a coexistence pattern is a stable solution

f (2.2) for B 2 − F B 1 (but see Section 4 for more details on stabil-

ty), then it automatically loses its stability at B 2 − F B 1 = 0 as no

oexistence equilibrium state is admitted for B 2 − F B 1 > 0 . The fur-

her evolution of such a solution as B 2 − F B 1 > 0 was addressed in

 previous paper ( Eigentler and Sherratt, 2019 ) for a slightly differ-

nt model. Those differences (flat ground instead of sloped terrain

nd an additional term accounting for an asymmetric interspecific

ompetition), however, do not qualitatively affect the relevant re-

ults presented here. If the average fitness difference B 2 − F B 1 > 0

emains sufficiently small, then coexistence of both plant species

ccurs as a metastable state. A metastable solution is a long tran-

ient state which eventually converges to a stable single-species

tate. Hence, a coexistence solution of (2.2) remains in a coexis-

ence state for a significant amount of time after it ceases to exist

t B − F B = 0 , provided that B − F B � 1 (see Fig. 3.4 ). 
2 1 2 1 
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Fig. 3.4. Behaviour of a solution as the average fitness difference changes its sign. This illustration shows the decrease in solution amplitudes of a patterned solution of 

(2.2) in which both species coexist, as the average fitness difference B 2 − F B 1 gradually tends to zero from below. At B 2 − F B 1 = 0 the solution loses its stability, but no rapid 

regime shift to a stable single-species state occurs. Instead, both species continue to coexist in a spatially uniform metastable state. The precipitation parameter used in the 

simulation is A = 4 . 5 . The average fitness difference is changed by variations in B 2 only. 
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4. Stability of coexistence pattern 

The analysis presented in the previous section provides an in-

sight into the existence of patterned coexistence solutions of (2.2) .

Ecologically, however, it is key to gain an understanding of the sta-

bility of such solutions. In Section 3 , we investigated pattern on-

set and existence for fixed migration speed c . In this section, how-

ever, we present stability (and existence) results in the whole ( A,

c ) plane to gain a comprehensive understanding of a pattern’s be-

haviour under changes of the precipitation parameter A . 

The (in)stability of a pattern with given precipitation level A

and migration speed c can be determined through a calculation of

its essential spectrum. To avoid the computationally expensive cal-

culation of a large number of essential spectra on a fine grid in the

( A, c ) parameter plane, an extension of the numerical continuation

method by Rademacher et al. (2007) ; Sherratt (2013b) can be used

to trace stability boundaries in parameter space (see Section 7 and

Rademacher et al., 2007; Sherratt, 2013b for more details). Stabil-

ity changes of periodic travelling waves under variations of either

the PDE parameters or the migration speed c can be classified into

two types ( Rademacher and Scheel, 2007 ). A stability change of

Eckhaus (sideband) type is characterised by a sign change of the

curvature of the spectrum at the origin, which is always part of

the spectrum due to translation invariance of periodic travelling

waves. If instead a pair of folds in the essential spectrum crosses

the imaginary axis with nonzero real imaginary part, then the sta-

bility change is said to be of Hopf type. Tracing both Eckhaus and

Hopf stability boundaries allows us to create a map of stability in

the ( A, c ) plane, often referred to as the Busse balloon ( Busse, 1978 ).

Such a Busse balloon for the coexistence patterns in (2.2) is shown

in Fig. 4.2 , where it is embedded into the solution type’s existence

region. The boundaries for pattern existence in the ( A, c ) are also

obtained by numerical continuations of pattern onset loci and folds

along the solution branches. Note that due to the existence of folds
n the solution branches of coexistence patterns, an ( A, c ) pair does

ot necessarily uniquely define a member of the coexistence pat-

ern solution family. However, our stability analysis indicates that

f more than one periodic travelling wave solution of (2.2) exists

or a given ( A, c ) pair, then only a maximum of one of the solu-

ions is stable. For simplicity, we make no distinction between ( A,

 ) pairs that uniquely define a stable pattern and parameter val-

es for which additional unstable patterns exist in our definition

f the Busse balloon. Hence, a pair ( A, c ) is a member of the stabil-

ty region in the visualisations ( Figs. 4.2 and 4.3 ), even if additional

nstable patterns exist. 

A crucial ecological aspect of patterned solutions of (2.2) is

heir behaviour as they become unstable due to changes in pre-

ipitation. To gain some information on the evolution of a solu-

ion under changing rainfall, it is instructive to superimpose wave-

ength contours on the stability diagram ( Fig. 4.2 ). Given a stable

attern with given wavelength L , the solution follows the wave-

ength contour if the precipitation parameter is varied, until it

eaches a stability boundary. Unlike in previous work on pattern

tability in ecological systems ( Bennett and Sherratt, 2018; Dag-

ovie and Sherratt, 2014 ), we do not observe any qualitative dif-

erences between the effects of an instability caused by crossing

n Eckhaus boundary and a destabilisation that occurs after a sta-

ility boundary of Hopf type is crossed. As the stability bound-

ry is crossed, a new wavelength is selected. Significantly, wave-

ength selection for the coexistence patterns differs from that of

oth single species patterns. In the case of a single-species solu-

ion, a decrease of precipitation across a stability boundary causes

 switch to a higher wavelength pattern, increasing the size of the

aps of bare ground between the vegetation stripes ( Fig. 4.1 (a) and

c)). Conversely, a destabilisation of a coexistence pattern due to

ecreasing precipitation causes the selection of a shorter wave-

ength pattern ( Fig. 4.1 (b) and (d)). To understand this difference,

t is worth recalling a key difference between the two solution
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Fig. 3.5. Bifurcation diagrams under changing average fitness difference. Bifurcation 

diagrams for different values of the average fitness difference B 2 − F B 1 are shown. 

As the average fitness difference increases, the origin of coexistence patterns moves 

along the single species pattern branches towards the Hopf bifurcation at which 

the single-species pattern originate. No coexistence pattern occur for B 2 − F B 1 > 0 . 

The average fitness difference is varied by changes in B 2 . Plant mortality of the tree 

species is B 2 = 0 . 0486 (in (a)), B 2 = 0 . 04904 (in (b)) and B 2 = 0 . 04906 (in (c)). Note 

the difference to the bifurcation diagrams shown in Fig. 3.3 , in which both F and B 2 
are varied to keep the average fitness difference constant. 
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ypes. The troughs of single species patterns in (2.2) attain val-

es close to u i = 0 and represent alternating areas of high biomass

nd bare ground regions, while the coexistence patterned solu-

ions oscillate between two nonzero biomass levels, correspond-

ng to a savanna-like state. The selection of a smaller wavelength

n the coexistence pattern for decreasing precipitation is associ-

ted with a simultaneous decrease of the relative pattern ampli-

ude ( max u i − min u i ) / ‖ u i ‖ , i = 1 , 2 in both species. A reduction

n the relative amplitude allows for a compensation of the higher

ensity of vegetation peaks associated with a shorter wavelength

o achieve the overall reduction in biomass caused by a decrease

n the rainfall parameter A . 

A second key difference between coexistence and single-species

atterns in the system is the patterns’ migration speed close to

tability boundaries for decreasing precipitation A . Single-species

atterns experience a decrease in their migration speed c before

 destabilisation due to decreasing rainfall occurs. This behaviour

s an example of a warning sign of an imminent deterioration

f the ecosystem that may be used in predicting regime shifts

owards desert in water limited ecosystems ( Dakos et al., 2011;
owda et al., 2016; Kéfi et al., 2007; Corrado et al., 2014; Rietkerk

t al., 2004; Saco et al., 2018 ). Such a reduction in uphill move-

ent is not in general observed for patterned solutions in which

oth species coexist. Depending on a pattern’s wavelength, its mi-

ration speed may be increasing or decreasing as the wavelength

ontour passes through a stability boundary and no clear paramet-

ic trends of the uphill movement of the pattern close to a wave-

ength change can be deduced. 

A further significant result obtained from a comparison of sta-

ility regions for the three patterned solution types in (2.2) is that

ey features of the coexistence pattern, such as its wavelength and

igration speed, are dominated by and very similar to those of

he single-species pattern of the species with faster growth rate

 Fig. 4.3 ). Moreover, if F is sufficiently small, i.e. the species with

igher average fitness is growing sufficiently slowly, the Busse bal-

oon of the coexistence patterns and the single-species patterns of

he fast-growing species do not overlap, as coexistence patterns are

table for precipitation levels that are higher than those in which

he single-species patterns are stable. By contrast, the rainfall lev-

ls in which both the coexistence patterns and the single-species

atterns of the slow growing species are stable overlap. An impor-

ant implication of this is a facilitative effect of the fast growing

pecies on the species with a slower growth rate. More precisely,

here exist precipitation levels in which, in the absence of a second

pecies, the slow growing species assumes a patterned state with

 2 close to zero in the troughs of the pattern, but in which also

oexistence patterns are stable. Hence, while min u 2 �‖ u 2 ‖ in the

bsence of a competitor, min u 2 ≈‖ u 2 ‖ if a faster growing species

s present in the system. Thus, u 2 can attain relatively high densi-

ies throughout the whole domain, if it coexists with a faster grow-

ng species, instead of appearing as an oscillation between a high

ensity and a biomass level close to zero. This facilitative effect is a

ase of ecosystem engineering , a term coined to describe changes to

nvironmental conditions caused by a species that creates a habi-

at for other species ( Jones et al., 1994 ). 

. Phase difference 

A striking feature of periodic travelling wave solutions of

2.2) in which both species coexist (see e.g. Fig. 3.1 ) is a slight

hase difference between the oscillations of the two plant species.

ll model parameters affect the slight shift in the solution pro-

le, but the ratio of the plant species’ diffusion coefficients D is

ound to play the most significant role, as it determines which

lant species has higher biomass in the uphill direction. 

In the one-species Klausmeier model, the plant density and wa-

er density of a patterned solution are typically antiphase (i.e. the

eaks in the plant density are at the same locations as the troughs

f the water density and vice versa) ( Sherratt, 2011; Kinast et al.,

014 ). Similarly, in the multispecies model (2.2) , the total plant

ensity u 1 + u 2 and the water density w are also antiphase. The

wo components of the total plant density (i.e. the grass density

 1 and the tree density u 2 ), however, are slightly out of phase. In

he solution shown in Fig. 3.1 , for example, local maxima of the

rass density u 1 are located a short distance in the uphill direction

increasing x ) away from the corresponding local maxima in the

ree density u 2 . 

Numerical continuation can be used to obtain an insight into

he effects of variations in the PDE parameters on the phase differ-

nce ( Fig. 5.1 ). Changes in parameters can have large effects on the

eriod of the patterned solution. We therefore consider the relative

hase difference φ := ( arg max (u 1 ) − arg max (u 2 )) /L, where the

axima are taken over one period 0 < x < L , instead of the abso-

ute distance between the two maxima. The tracking of the relative

hase difference in solutions obtained through numerical continu-

tion shows that the diffusion coefficient D , which describes the
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Fig. 4.1. Wavelength changes due to decreasing precipitation. Single-species patterns ((a) and (c)) and multispecies patterns ((b) and (d)) are shown for different precipitation 

levels to visualise the difference in the wavelength selection at destabilisations due to decreasing rainfall. The first row shows stable patterns for A = 5 . As A is gradually 

decreased to A = 4 , both patterns lose their stability. The single-species pattern ((a) and (c)) selects a solution of higher wavelength, while the multispecies pattern ((b) and 

(d)) assumes a pattern of lower wavelength. 

Fig. 4.2. Existence and stability of coexistence patterns. The Busse balloon (param- 

eter region of stable patterns) of patterned solutions of (2.2) in which both species 

coexist is shown embedded in the existence regions of such solutions in the ( A, 

c ) parameter plane. Existence and stability boundaries are computed using the nu- 

merical continuation methods outlined in Section 7 . Wavelength contours are vi- 

sualised using black solid lines. Note that stability boundaries may extend into re- 

gions that are neither marked as stable nor unstable, since biologically irrelevant 

coexistence patterns with negative densities occur outside the shaded parameter 

region. 

Fig. 4.3. Busse balloons of patterns in the system. This figure visualises the Busse 

balloons (regions of stable patterns) for the coexistence patterns and both single 

species patterns that occur as solutions of (2.2) . Wavelength contours are given as 

solid lines, and their colour indicates the solution type they represent. Solid lines 

correspond to stable solutions (inside the respective Busse balloon), dashed lines to 

unstable patterns. 

r  

s  

t  
atio of the two plant species’ diffusion coefficients, has the most

ignificant effect on the phase difference between the species. If

he phase difference φ is defined as above, then it decreases mono-
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Fig. 5.1. Phase difference between the plant species. This figure visualises the ab- 

solute value of the relative phase difference in coexistence solutions of (2.2) under 

changes to the diffusion coefficient D , obtained through numerical continuation. The 

colours indicate the sign of φ, which changes at D ≈ 1, i.e. when the species’ disper- 

sal behaviour is similar. Note the logarithmic scale. The precipitation parameter is 

A = 4 . 5 and the migration speed is set to c = 0 . 15 . 

t  

D  

c  

d  

f  

c  

t  

a  

t  

s

6

 

O  

2  

f  

k  

t  

f  

(  

i  

w  

(  

s  

i  

i  

s  

c  

T  

s  

s  

r  

s

 

t  

g  

t  

t  

u  

s  

e  

c  

i  

b  

m  

t  

t  

g  

u  

(  

t  

s  

b  

c  

c  

b

 

w  

s  

a  

o  

t  

d  

c  

r  

H  

T  

i  

t  

t  

t

 

s  

s  

v  

r  

b  

s  

p  

a  

s  

t  

t  

r  

h  

a  

t  

o  

a  

w  

t  

d  

e  

c  

G  

r  

p  

t  

a  

i  

a  

t  

o  

m  

l  

d  
onically with increasing D . In particular, it changes its sign close to

 = 1 . In other words, if both plant species have similar diffusion

oefficients, then their phase difference is small. Note that φ = 0

oes not necessarily occur at D = 1 , as other model parameters af-

ect the phase difference. The sign change of φ corresponds to a

hange in the species which leads the uphill movement of the pat-

ern. Neglecting the phase difference’s behaviour in the immedi-

te vicinity of D = 1 , it can be summarised that over one period,

he faster dispersing species’ maximum and minimum is located a

mall distance ahead in the uphill direction of the spatial domain. 

. Discussion 

Previous modelling of the savanna biome using nonspatial

DE and impulsive differential equations models (see Yatat et al.,

018b for a review) has successfully identified a range of dif-

erent mechanisms that stabilise species coexistence based on

ey differences between grasses and trees. Examples include dis-

urbances that affect species asymmetrically, such as different

unctional responses in the description of grazing and browsing

 Synodinos et al., 2015 ) or variations in the species’ susceptibil-

ty to fires ( Yu and D’Odorico, 2014 ); an age structure of trees

ith different competitive abilities of tree seedlings and adult trees

 Baudena et al., 2010; D’Onofrio et al., 2015 ); or resource niche

eparation ( Van Langevelde et al., 2003 ). Model results presented

n this paper suggest that the consideration of spatial interactions

n savanna ecosystems can provide an alternative mechanism for

pecies coexistence, as spatial self-organisation principles can fa-

ilitate the stable coexistence of grasses and trees in savannas.

he novelty of the tree-grass coexistence in model solutions pre-

ented in this paper is that both species considered in our multi-

pecies model (2.2) differ only in basic parameters, such as growth

ate and mortality rate, and, in particular, satisfy the same single-

pecies model (2.1) for their respective parameter sets. 

Solutions of (2.2) in which both species coexist occur, provided

hat the species with inferior average fitness has a sufficiently large

rowth rate ( Section 3 ). The average fitness difference B 2 − F B 1 be-

ween the species only depends on the species’ growth and mor-

ality rates and determines the system’s behaviour in a spatially

niform setting. In particular, B 2 − F B 1 = 0 separates the disjoint

tability regions of the system’s spatially uniform single-species

quilibria. The consideration of spatial interactions enables species
oexistence as it allows for the capture of effects caused by a pos-

tive feedback between local vegetation growth and water redistri-

ution. Patterns of biomass and water densities in the multispecies

odel (2.2) and the single-species Klausmeier model (2.1) are an-

iphase (i.e. high water densities in regions of low biomass densi-

ies and vice versa). This is due to the depletion of water in re-

ions of high biomass due to the nonlinear dependence of water

ptake on the plant densities. The species with faster growth rate

but inferior average fitness) can utilise the higher resource densi-

ies in regions of lower biomass through a fast increase in its den-

ity in such regions. In the long term, however, it is outcompeted

y the species of higher average fitness. This balance between lo-

al facilitation by the species of higher average fitness and the fast

olonisation ability of the species with larger growth rate creates a

alance in which coexistence of both species is possible. 

This result is at odds with those by Durrett and Levin (1998) ,

ho show that the interplay of local competitiveness and disper-

al behaviour it is not sufficient to explain species coexistence in

 general competition model, even though it has significant effects

n the asymptotic behaviour of the system. A crucial difference be-

ween the model by Durrett and Levin and our multispecies ecohy-

rological model (2.2) is the lack of spatial self-organisation prin-

iples in the former. Indeed, if the pattern-inducing feedback is

emoved from (2.2) , i.e. the infiltration enhancement terms (u 2 +
u 2 ) are set to unity, no species coexistence occurs in the model.

his further emphasises that stable coexistence of the two species

s indeed enabled by the spatial heterogeneity in the environmen-

al conditions (water density), which is itself caused by the posi-

ive feedback between local plant growth and water redistribution

owards high density biomass patches. 

The model presented in this paper can capture two distinct

patially nonuniform outcomes. Single-species patterns of either

pecies are stable solutions of the system and resemble bands of

egetation that alternate with stripes of bare soil on sloped ter-

ain. In terms of the biomass density, the plant density oscillates

etween a high level and a level close to zero. By contrast, the

econd stable patterned solution type features oscillations of both

lant species between two non-zero biomass levels. This resembles

 savanna state, as plant cover is continuous and no regions of bare

oil exist. For typical parameter values of a grass species u 1 and a

ree species u 2 , the precipitation intervals of stable single-species

ree patterns and stable savanna solutions overlap ( Fig. 4.3 ). This

esults in the existence of precipitation volumes in which grasses

ave a local facilitative effect on trees. Under such rainfall regimes

nd in the absence of a grass species, trees can only attain a pat-

erned state in which tree density oscillates between a high level

f biomass and biomass level close to zero. However, if addition-

lly a grass species is considered in the system, trees can coexist

ith grasses in the whole space domain without the troughs of

he oscillations being close to zero. While the total tree biomass

ecreases if trees coexist with grass, grasses have local facilitative

ffects on trees as they cause local increases in the tree density. Fa-

ilitation occurs due to improvements in environmental conditions.

rasses increase water infiltration into the soil and thus increase

esource availability which is utilised by trees, if they are the su-

erior species in a spatially uniform setting. This type of facilita-

ion due to alterations in environmental conditions is referred to

s ecosystem engineering ( Jones et al., 1994 ). It is well documented

n both empirical (e.g. Pugnaire and Luque, 2001; Moro et al., 1997 )

nd modelling studies (e.g. Gilad et al., 2007b; Meron et al., 2007 )

hat trees can act as ecosystem engineers and facilitate the growth

f grass in their vicinity. Our model results suggest that grasses

ay act as ecosystem engineers too, a mechanism that was estab-

ished to be the driving force of species coexistence in a model for

ryland vegetation patterns by Baudena and Rietkerk (2013) and



12 L. Eigentler and J.A. Sherratt / Journal of Theoretical Biology 487 (2020) 110122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

t  

r  

N  

g  

t  

u  

w  

d  

ν  

c  

t  

i  

o  

p

 

o  

(  

c  

e  

t  

t  

(  

l  

n  

c  

i  

p  

p  

t  

a  

v  

i  

I  

l  

t  

f  

c  

n  

h  

a  

A  

s  

t  

s

 

h  

w  

a  

t  

g  

a  

2  

n  

r  

c  

o  

v

 

m  

i  

t  

s  

h  

H  

d  
backed up by field studies ( Anthelme and Michalet, 2009; Maestre

et al., 2003 ). 

The plant species’ diffusion coefficients ratio D has a signifi-

cant influence on the coexistence solution dynamics. In particu-

lar, it quantitatively affects the size of the parameter region giving

species coexistence ( Section 3 ). If both species diffuse at the same

rate ( D = 1 ), then coexistence patterns occur if the species with

superior average fitness has a slower growth rate. In this case, the

inferiority of one species’ competitive abilities is balanced by its

advantage in its colonisation abilities. The requirement of this cru-

cial balance for species coexistence has already been noted in the

early savanna model by Tilman (1994) . However, in any nonspatial

model, spatial spread cannot be distinguished from local growth

in the description of a species’ colonisation abilities. In the PDE

model in this paper, a comparison of local growth rates is only

equivalent to a comparison of the plant species’ colonisation abili-

ties if the plant species do not differ in their diffusion coefficients.

If, however, the inferior competitor in the spatially uniform setting

diffuses at a faster rate, then higher growth rates of the superior

species are tolerated. Similarly, coexistence patterns also occur if

the species of higher average fitness is also superior in its spatial

spread, provided that its local growth rate is sufficiently small. 

In the context of species coexistence in vegetation patterns,

Nathan et al. (2013) found that under the assumption that two

species decay at an equal rate, coexistence requires a species that

is superior in both its competitive (defined by plant growth only)

and dispersal abilities, due to a trade-off between spatial spread

and local growth. Our results on pattern existence attempt to

bridge a gap between the apparent mismatch between the pre-

dictions by Tilman (1994) and Nathan et al. (2013) . We empha-

sise that it is essential to consider spatiotemporal models that

consider growth and death of plants separately, to gain an un-

derstanding of species coexistence. Our results show that, in this

case, the complex system dynamics enable species coexistence in

different parameter regimes that cover the predictions by both

Tilman (1994) and Nathan et al. (2013) . In particular, the spatial

self-organisation of plants that induces a nonlinear description of

biomass growth, renders it insufficient to consider a plant species’

competitive ability by one parameter only. The use of the notion of

the average fitness of a plant species, comparing its growth rate to

its mortality rate, as a measure of its competitive abilities instead,

allows to overcome the proposed trade-off between spatial disper-

sal and local plant growth and enables coexistence of species if the

superior competitor diffuses at a slower rate. 

Coexistence of species as a model outcome is not limited to

the parameter regions discussed above. If no solution with species

coexistence occurs in the model, coexistence can occur as a long

transient state (towards a stable single-species state), provided

that the average fitness difference between the two species is

sufficiently small ( Fig. 3.4 ). We have discussed the concept of

metastability as a coexistence mechanism in a previous paper

( Eigentler and Sherratt, 2019 ), using a model very similar to the

multispecies model considered in this paper. The differences be-

tween the two models do, however, not qualitatively affect the

metastability property. Metastability is characterised by the small

(but positive) growth rates of perturbations to a single-species

equilibrium that becomes unstable as a competitor is introduced.

The size of the growth rate is controlled by the average fitness dif-

ference between both species and thus coexistence can occur as a

long transient state if the species’ competitive abilities are similar,

even if coexistence is unstable. 

The metastability property is a feature of the spatially uni-

form model and thus independent of the slope parameter ν
( Eigentler and Sherratt, 2019 ). Hence, metastable coexistence also

occurs in the system if the terrain is assumed to be flat. The analy-

sis of the stable coexistence states in Sections 3–5 , however, is only
alid on a sloped terrain, as the application of the numerical con-

inuation techniques used in the bifurcation and stability analyses

ely on the advection term in the equation for the water dynamics.

umerical integration of the PDE system, however, shows that a

radual decrease of the slope parameter to ν = 0 does not qualita-

ively change the behaviour of a stable coexistence state (in partic-

lar the phase difference between the total plant density and the

ater density). By contrast, PDE simulations starting from a ran-

omly perturbed uniform state with the slope parameter fixed to

= 0 yield coexistence solutions in which the pattern wavelength

hanges frequently. While there is a clear indication that coexis-

ence of species is a potential model outcome on flat ground, the

nvestigation of the system dynamics would require an application

f different analytical tools, which is beyond the scope of this pa-

er. 

A distinctive feature of spatially nonuniform solutions of

ut model is a slight phase difference between both species

 Section 5 ). Such phase differences have been recorded in empiri-

al studies on species coexistence in vegetation bands of semi-arid

cosystems, with grasses reported to be the dominant species in

he uphill regions of a stripe, while trees were observed to at-

ain their maximum densities in the central regions of a stripe

 d’Herbès et al., 2001 ). Our model is unable to reproduce stable so-

utions that represent species coexistence in vegetation bands, but

evertheless predicts a phase difference between the two species

oexisting in a spatially non-uniform savanna state. In particular,

n the context of coexistence of grasses and trees (grasses dis-

erse faster than trees), our analysis suggests that the biomass

eaks of the herbaceous species are located in the upward direc-

ion of the biomass peaks of the woody species. While we are not

ware of any data on species-specific biomass distribution in sa-

anna ecosystems, this finding agrees with the empirical data that

s available for banded vegetation patterns. d’Herbès et al. (2001) .

n our model, we describe plant spread by diffusion, which is a

ocal mode of dispersal derived from a random walk, and charac-

erise differences in the plant species dispersal behaviour by dif-

erent diffusion coefficients only. In reality, however, nonlocal pro-

esses affect seed dispersal (e.g. Bullock et al., 2017 ). Effects of

onlocal plant dispersal on vegetation in semi-arid environments

as previously been studied in single-species models ( Eigentler

nd Sherratt, 2018; Bennett and Sherratt, 2018; Pueyo et al., 2008 ).

 similar approach could be used in an extension of the multi-

pecies model presented in this paper to gain more information on

he biomass distribution of both species across a single vegetation

tripe. 

In this paper, we investigated the facilitative effects of spatial

eterogeneities on species coexistence in arid savannas. However,

e restricted the extent of spatial heterogeneities to those in the

vailability of resources caused by a self-organisation principle in

he plant populations. In doing so, we neglected potential hetero-

eneities in the topography of the spatial domain, which may have

 significant influence on the ecosystem dynamics ( Gandhi et al.,

018 ). In particular, topographic nonuniformity may alter the dy-

amics of water flow and thus increase the heterogeneity in the

esource availability. Such a promotion of resource niche creation

ould be exploited in a future model extension to extend the the-

ry on the facilitative effects of spatial interactions in patterned

egetation and arid savannas. 

The work presented in this paper not only suggests a novel

echanism for species coexistence in savannas, but also provides

nsights into other properties of the ecosystem dynamics, such as

he slow uphill movement of biomass peaks or the slight phase

hift in the species distribution, as discussed above. To test these

ypotheses, a comparison with empirical data would be desirable.

owever, data acquisition for dryland ecosystems is notoriously

ifficult. Some relevant types of data on dryland ecosystems are
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vailable. In particular, Deblauwe et al. (2012) were able to es-

imate the uphill movement of vegetation stripes by comparing

ecent satellite images with those taken by spy satellites in the

960’s, but this relied on the clear contrast between vegetation

nd bare ground - changes in vegetation type within savannas are

uch more difficult to detect. Data on precipitation (both current

nd historical ( Sherratt, 2015 )) and on elevation (and hence slope)

 Sugarbaker et al., 2014 ) are also available. But these are insuffi-

ient to provide an effective empirical test of model (2.2) . However,

dvances in technologies (e.g. image processing) may in the future

e utilised to extract more data from satellite images to estimate

cosystem properties of savannas, such as species composition or

iomass densities, over large spatial scales. 

The study of facilitation between species and mechanisms that

romote coexistence is widespread across ecology. In particular,

patial self-organisation has been established as a key element

romoting species coexistence in a variety of ecosystems. For ex-

mple, self-organisation of a macrophyte species in streams en-

ances environmental conditions through deflection of water and

hus facilitates other species through a reduction in environmen-

al stress ( Cornacchia et al., 2018 ). Similarly, self-organised shellfish

eefs (in particular mussel beds) are shown to cause a significant

ncrease in species richness and diversity ( Christianen et al., 2017 ).

 detailed understanding of facilitative mechanisms caused by spa-

ial self-organisation principles is therefore relevant not only in the

egetation dynamics of semi-arid environments, but also in a wide

ange of other ecosystems, as it can provide valuable information

or restoration and conservation efforts ( Cornacchia et al., 2018 ). 

. Methods of calculating pattern existence and stability 

In this section we outline the numerical continuation method

y Rademacher et al. (2007) to calculate the essential spectrum of

 periodic travelling wave and trace stability boundaries of periodic

ravelling waves in a parameter plane, which we utilised in our bi-

urcation and stability analysis in Sections 3 and 4 . We provide an

verview of the implementation of the method to (2.2) , but refer

he reader to ( Rademacher et al., 2007; Sherratt, 2012; 2013b ) for

ull details. The method described below is implemented using the

umerical continuation software AUTO-07p ( Doedel et al., 2012 ). 

.1. Single-species pattern existence 

Single-species patterns of both the multispecies model (2.2) and

he single-species Klausmeier model (2.1) originate at a Hopf bi-

urcation and terminate in a homoclinic orbit. Numerical continu-

tion of the Hopf locus in the ( A, c ) parameter plane is straight-

orward. The homoclinic orbits, yielding the lower bounds on the

recipitation parameter A for pattern existence, may also be calcu-

ated by means of numerical continuation. In this context, however,

t suffices to approximate homoclinic orbits by periodic travelling

aves of large period L . Up to some constants in the equilibria and

he parameter bounds, identical considerations hold for the second

lant species u 2 , due to the symmetry in the model. 

.2. Calculation of the essential spectrum 

The starting point for the calculation of the essential spectrum

f a patterned solution of (2.2) is the travelling wave system (3.1) ,

.e. 

f ( U 1 , U 2 , W ) + c 
d U 1 

d z 
+ 

d 

2 
U 1 

d z 2 
= 0 , (7.1a)

 ( U 1 , U 2 , W ) + c 
d U 2 + D 

d 

2 
U 2 

2 
= 0 , (7.1b)
d z d z 
 ( U 1 , U 2 , W ) + (c + ν) 
d W 

d z 
+ d 

d 

2 
W 

d z 2 
= 0 , (7.1c)

here 

f ( U 1 , U 2 , W ) = W U 1 ( U 1 + HU 2 ) − B 1 U 1 , 

g ( U 1 , U 2 , W ) = F W U 2 ( U 1 + HU 2 ) − B 2 U 2 , 

h ( U 1 , U 2 , W ) = A − W − W ( U 1 + U 2 ) ( U 1 + HU 2 ) . 

To determine the essential spectrum, it is further convenient

o rewrite the PDE system (2.2) in terms of z and t . Denot-

ng ̂ u 1 (z, t) = u 1 (x, t) , ̂ u 2 (z, t) = u 2 (x, t) and 

̂ w (z, t) = w (x, t) thus

ields 

∂ ̂  u 1 

∂t 
= f ( ̂  u 1 , ̂  u 2 , ̂  w ) + c 

∂ ̂  u 1 

∂z 
+ 

∂ 2 ̂ u 1 

∂z 2 
, (7.2a)

∂ ̂  u 2 

∂t 
= g ( ̂  u 1 , ̂  u 2 , ̂  w ) + c 

∂ ̂  u 2 

d z 
+ D 

∂ 2 ̂ u 2 

∂z 2 
, (7.2b)

∂ ̂  w 

∂t 
= h ( ̂  u 1 , ̂  u 2 , ̂  w ) + (c + ν) 

∂ ̂  w 

∂z 
+ d 

∂ 2 ̂ w 

∂z 2 
. (7.2c)

Given a periodic travelling wave solution V (z) =
( U 1 (z) , U 2 (z) , W (z)) of (7.2) (i.e. a triplet ( U 1 (z) , U 2 (z) , W (z))

hat satisfies (7.1) ), its stability is determined by the behaviour

f small perturbations to the periodic travelling wave. Under the

ssumptions that temporal perturbations to V (z) are proportional

o exp ( λt ), λ ∈ C , i.e. setting ̂ v (z, t) = V (z) + exp (λt) ̃  V (z) , and

inearising (7.2) about the travelling wave solution V (z) yields that

he leading order behaviour of perturbations is determined by the

igenvalue problem 

˜ V (z) = J ̃  V (z) + c ̃  V 

′ (z) , (7.3) 

here the prime denotes differentiation with respect to z and J is

he Jacobian of the right hand side of (7.2) with respect to ̂  v and

ts derivatives, i.e. 

 

 

⎛ 

⎜ ⎜ ⎝ 

∂ f 
∂ ̂  u 1 

+ c d 
d z 

+ 

d 
2 

d z 2 
∂ f 
∂ ̂  u 2 

∂ f 
∂ ̂  w 

∂g 
∂ ̂  u 1 

∂g 
∂ ̂  u 2 

+ c d 
d z 

+ D 

d 
2 

d z 2 
∂g 
∂ ̂  w 

∂h 
∂ ̂  u 1 

∂h 
∂ ̂  u 2 

∂h 
∂ ̂  w 

+ (c + ν) d 
d z 

+ d d 
2 

d z 2 

⎞ 

⎟ ⎟ ⎠ 

, 

valuated at the periodic travelling wave solution V . 

The eigenvalue problem (7.3) is formulated over one period L of

he travelling wave solution V (z) and needs to be equipped with

oundary conditions. By definition, V (0) = V (L ) . The eigenfunction
 

 (z) , however, is not necessarily periodic. The amplitude of ˜ V (z)

eeds to be conserved to prevent growth to ± ∞ , but phase shifts

re admissible. An appropriate boundary condition thus is 

 

 (0) = ̃

 V (L ) e γ i , (7.4) 

or γ ∈ R which can be derived using Floquet theory ( Rademacher

t al., 2007; Deconinck and Kutz, 2006; Sandstede, 2002 ). 

The spectral stability of periodic travelling wave solutions V can

hen be determined by finding the set of eigenvalues λ for which

he eigenvalue problem (7.3) with boundary condition (7.4) has a

ontrivial solution. To do this, it suffices to find the essential spec-

rum of the periodic travelling wave, as the point spectrum is al-

ays empty ( Sandstede, 2002 ). 

The calculation of the essential spectrum is performed in two

tages. First, the special (and simpler) case of periodic boundary

onditions (i.e. γ = 0 ) is considered. This simplification allows for a

ransformation of the eigenvalue problem (7.3) into a matrix eigen-

alue problem by discretising the domain and approximating the
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〈  
derivatives through finite differences. The matrix eigenvalue prob-

lem can be solved by standard means and provides a starting point

for a numerical continuation in γ to complete the computation of

the essential spectrum. 

To implement the numerical continuation, it is convenient to

rewrite the eigenvalue problem (7.3) as the first order system 

 

 

 (z) ′ = ( Y (z) + λX ) ̃
 ˜ V ( z) , 

˜ ˜ V ( 0) = ̃

 ˜ V (L ) e iγ , 

where 

 (z) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 0 0 0 

− ∂ f 

∂U 1 

−c − ∂ f 

∂U 2 

0 − ∂ f 

∂W 

0 

0 0 0 1 0 0 

− 1 

D 

∂g 

∂U 1 

0 − 1 

D 

∂g 

∂U 2 

− c 

D 

− 1 

D 

∂g 

∂W 

0 

0 0 0 0 0 1 

− 1 

d 

∂h 

∂U 1 

0 − 1 

d 

∂h 

∂U 2 

0 − 1 

d 

∂h 

∂W 

− c + ν

d 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

evaluated at the periodic travelling wave solution V and 

X = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 

1 

D 

0 0 0 

0 0 0 0 0 0 

0 0 0 0 

1 

d 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The boundary condition is transformed into a periodic boundary

condition by setting ̃
 ˜ V (z) = exp (iγ z/L ) α(z) . Together with the nor-

malisation z = Lξ of the domain, this yields 

α′ (ξ ) = ( L ( Y (ξ ) + λX ) − iγ I ) α(ξ ) , α(0) = α(1) , (7.5)

where I is the identity matrix. Implementation in AUTO requires

separation of real and imaginary parts of (7.5) . This yields 

� (α) ′ = ( L ( Y + � (λ) X ) ) � (α) + ( γ I − L � (λ) X ) � (α) , (7.6a)

� (α) ′ = ( L ( Y + � (λ) X ) ) � (α) + ( −γ I + L � (λ) X ) � (α) , (7.6b)

� (α(0)) = � (α(1)) , � (α(0)) = � (α(1)) . (7.6c)

The eigenvalue problem (7.5) is not sufficient to uniquely deter-

mine the eigenfunctions α. The periodic boundary conditions al-

low for arbitrary phase shifts. Thus, (7.5) is supplemented with the

phase fixing condition 

� ( 〈 αold , α〉 ) = 

∫ 1 

0 
( � ( αold ) · � (α) − � ( αold ) · � (α) ) d ξ = 0 , (7.7)

where αold is the eigenfunction α at any previous step of the nu-

merical continuation or the initial eigenfunction from which the

continuation is started, and the inner product is defined by 

〈 α1 , α2 〉 = 

∫ 1 

0 

α1 · α∗
2 d ξ , 

where the asterisk denotes the complex conjugation. Further, the

eigenfunction is normalised by imposing the integral condition 

〈 α, α〉 = 

∫ 1 

0 
( � (α) · � (α) + � (α) · � (α) ) d ξ = 1 . (7.8)

Similar to the phase fixing condition (7.7) for the eigen-

function α, also the periodic travelling wave solution V =
(U 1 , U 

′ 
1 
, U 2 , U 

′ 
2 
, W, W 

′ ) of (7.1) with periodic boundary conditions

requires a phase fixing condition to prevent arbitrary translations

in z . The appropriate integral condition is ∫ 1 

V 

′ 
old · ( V old − V ) d z = 0 . (7.9)
0 
Given a solution of the eigenvalue problem (7.3) with periodic

oundary conditions (i.e. γ = 0 ), the full essential spectrum can

hen be found by continuing the travelling wave Eq. (7.1) with pe-

iodic boundary conditions and the eigenfunction Eq. (7.6) with the

ntegral constraints (7.7)–(7.9) , starting from each of the eigenval-

es λ and corresponding eigenfunctions α obtained from the ma-

rix eigenvalue problem for γ = 0 . The principal continuation pa-

ameter is 0 < γ < 2 π , while � ( λ), � ( λ) and L are chosen as sec-

ndary continuation parameters. In practise, not the whole essen-

ial spectrum needs to be computed to determine the spectral sta-

ility of a given periodic travelling wave solution. It is sufficient to

erform the numerical continuation starting only from the, say 20,

argest eigenvalues obtained form the matrix eigenvalue problem

or γ = 0 . 

.3. Numerical continuation of stability boundaries 

The method described in the previous section allows for the

alculation of the essential spectrum of a periodic travelling wave

olution for a set of given parameters. The algorithm can further be

xtended to trace stability boundaries of periodic travelling waves

n a parameter plane, such as ( A, c ). Full details of this algorithm

re found in Rademacher et al. (2007) ; Sherratt (2013b) . 

To locate and trace stability boundaries, derivatives of the

igenfunctions α with respect to γ are required. Implicit differen-

iation of (7.5) with respect to γ gives 

′ 
γ = ( L ( Y + λX ) − iγ I ) αγ + 

(
Lλγ X − iI 

)
α, αγ (0) = αγ (1) , (7.10)

here the prime denotes derivatives with respect to ξ and the

ubscript γ derivatives with respect to γ . Further implicit differ-

ntiation yields 

′ 
γ γ = ( L ( Y + λX ) − iγ I ) αγγ + 2 

(
Lλγ X − iI 

)
αγ

+ Lλγγ X α, αγγ (0) = αγγ (1) . (7.11)

s previously discussed, implementation in AUTO requires separa-

ion of real and imaginary parts. This yields 

 

(
α′ 

γ

)
= L ( Y + � (λ) X ) � 

(
αγ

)
+ ( −L � (λ) X + γ I ) � 

(
αγ

)
+ L � 

(
λγ

)
X � (α) + 

(
−L � 

(
λγ

)
X + I 

)
� (α) , (7.12a)

 

(
α′ 

γ

)
= ( L � (λ) X − γ I ) � 

(
αγ

)
+ L ( Y + � (λ) X ) � 

(
αγ

)
+ 

(
L � 

(
λγ

)
X − I 

)
� (α) + L � 

(
λγ

)
X � (α) , (7.12b)

 

(
αγ (0) 

)
= � 

(
αγ (1) 

)
, � 

(
αγ (0) 

)
= � 

(
αγ (1) 

)
, (7.12c)

nd 

 

(
α′ 

γ γ

)
= L ( Y + � (λX ) ) � 

(
αγγ

)
+ ( −L � (λ) X + γ I ) � 

(
αγγ

)
+ 2 L � 

(
λγ

)
X � 

(
αγ

)
+ 2 

(
−L � 

(
λγ

)
X + I 

)
� 

(
αγ

)
+ L � 

(
λγγ

)
X � (α) − L � 

(
λγγ

)
X � (α) , (7.13a)

 

(
α′ 

γ γ

)
= ( L � (λ) X − γ I ) � 

(
αγγ

)
+ L ( Y + � (λX ) ) � 

(
αγγ

)
+ 2 

(
L � 

(
λγ

)
X − I 

)
� 

(
αγ

)
+ 2 L � 

(
λγ

)
X � 

(
αγ

)
+ L � 

(
λγγ

)
X � (α) + L � 

(
λγγ

)
X � (α) , (7.13b)

 

(
αγγ (0) 

)
= � 

(
αγγ (1) 

)
, � 

(
αγγ

)
= � 

(
αγγ (1) 

)
, (7.13c)

espectively. 

Eqs. (7.10) and (7.11) cannot determine the derivatives αγ and

γ γ uniquely, as they may contain components in the nullspace of

7.5) . Hence, they are equipped with integral conditions given by 

 α, αγ 〉 = 0 (7.14)
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nd 

 α, αγγ 〉 = 0 (7.15) 

A stability change of Eckhaus (sideband) type is detected

hrough a numerical continuation of the travelling wave Eq. (7.1) ,

he eigenfunction Eq. (7.6) , the imaginary part of the eigenvalue

quation differentiated with respect to γ (7.12b) and the real part

f the eigenvalue equation differentiated twice with respect to

(7.13a) with the corresponding boundary and integral condi-

ions. The continuation is started at the eigenvalue λ = 0 and its

orresponding eigenfunction obtained from the matrix eigenvalue

roblem that is solved in the initial stage of the algorithm. The

rincipal continuation parameter is the migration speed c (or the

DE parameter A ), and the five secondary continuation parameters

ust include � ( λγγ ). If a locus with � (λγ γ ) = 0 is found, a stabil-

ty change of Eckhaus type is detected. The secondary continuation

arameter � ( λγγ ) is then replaced by the PDE parameter A (or the

igration speed c ) to trace out the stability boundary in the ( A, c )

arameter plane. 

The continuation of a stability change of Hopf type follows the

ame idea, but contains some caveats. First, a fold in the spectrum

s detected by a numerical continuation of the travelling wave

q. (7.1) , the eigenfunction Eq. (7.6) and both the real and imag-

nary parts of the eigenvalue equation differentiated with respect

o γ (7.12) with the corresponding boundary and integral condi-

ions. The spectrum may contain many folds, but only the fold with

argest real part is of interest and the continuation must start suf-

ciently close to that fold. The principal continuation parameter

s γ and the five secondary continuation parameters must include

 ( λγ ). A fold in the spectrum is located, when a zero of � ( λγ )

s found. The zero of � ( λγ ) is subsequently fixed and the migra-

ion speed c (or the PDE parameter A ) is then chosen as the prin-

ipal continuation parameter. The equations are continued in this

arameter until a zero of � ( λ), which needs to be one of the sec-

ndary continuation parameters, is found. This corresponds to a

tability change of Hopf type. Finally, � ( λ) is replaced as a sec-

ndary continuation parameter by the PDE parameter A (or the

igration speed c ) to trace out the locus of the stability change

f Hopf type in the ( A, c ) plane. 

RediT authorship contribution statement 

L. Eigentler: Conceptualization, Methodology, Formal analysis, 

riting - original draft, Writing - review & editing, Visualization.

.A. Sherratt: Conceptualization, Methodology, Writing - review &

diting. 

cknowledgements 

Lukas Eigentler was supported by The Maxwell Institute Grad-

ate School in Analysis and its Applications, a Centre for Doctoral

raining funded by the UK Engineering and Physical Sciences Re-

earch Council (grant EP/L016508/01 ), the Scottish Funding Council,

eriot-Watt University and the University of Edinburgh. 

eferences 

ccatino, F., De Michele, C., Vezzoli, R., Donzelli, D., Scholes, R.J., 2010. Tree–grass

co-existence in savanna: Interactions of rain and fire. J. Theor. Biol. 267 (2), 235–
242. doi: 10.1016/j.jtbi.2010.08.012 . 

nthelme, F., Michalet, R., 2009. Grass-to-tree facilitation in an arid grazed environ-
ment (Aïr Mountains, Sahara). Basic Appl. Ecol. 10 (5), 437–446. doi: 10.1016/j.

baae.20 08.10.0 08 . 
astiaansen, R., Jaïbi, O., Deblauwe, V., Eppinga, M.B., Siteur, K., Siero, E., Mer-

moz, S., Bouvet, A., Doelman, A., Rietkerk, M., 2018. Multistability of model and

real dryland ecosystems through spatial self-organization. Proc. Natl. Acad. Sci.
201804771. doi: 10.1073/pnas.1804771115 . 

audena, M., D’Andrea, F., Provenzale, A., 2010. An idealized model for tree grass
coexistence in savannas: the role of life stage structure and fire disturbances. J.

Ecol. 98 (1), 74–80. doi: 10.1111/j.1365-2745.2009.01588.x . 
audena, M., Rietkerk, M., 2013. Complexity and coexistence in a simple spatial
model for arid savanna ecosystems. Theor. Ecol. 6 (2), 131–141. doi: 10.1007/

s12080-012-0165-1 . 
eckage, B., Gross, L.J., Platt, W.J., 2011. Grass feedbacks on fire stabilize savannas.

Ecol. Model. 222 (14), 2227–2233. doi: 10.1016/j.ecolmodel.2011.01.015 . 
eckage, B., Platt, W.J., Gross, L.J., 2009. Vegetation, fire, and feedbacks: a

disturbance-mediated model of savannas. Am. Nat. 174 (6), 805–818. doi: 10.
1086/648458 . 

elsky, A.J., 1994. Influences of trees on savanna productivity: tests of shade, nutri-

ents, and tree-grass competition. Ecology 75 (4), 922–932. doi: 10.2307/1939416 .
ennett, J.J.R., Sherratt, J.A., 2018. Long-distance seed dispersal affects the resilience

of banded vegetation patterns in semi-deserts. J. Theor. Biol. 481, 151–161.
doi: 10.1016/j.jtbi.2018.10.002 . 

orgogno, F., D’Odorico, P., Laio, F., Ridolfi, L., 2009. Mathematical models of vegeta-
tion pattern formation in ecohydrology. Rev. Geophys. 47:RG1005. doi: 10.1029/

20 07RG0 0 0256 . 

ullock, J.M., González, L.M., Tamme, R., Götzenberger, L., White, S.M., Pärtel, M.,
Hooftman, D.A.P., 2017. A synthesis of empirical plant dispersal kernels. J. Ecol.

105 (1), 6–19. doi: 10.1111/1365-2745.12666 . 
usse, F.H., 1978. Non-linear properties of thermal convection. Rep. Prog. Phys. 41

(12), 1929–1967. doi: 10.1088/0 034-4885/41/12/0 03 . 
allegaro, C., Ursino, N., 2018. Connectivity of niches of adaptation affects vegeta-

tion structure and density in self-organized (dis-connected) vegetation patterns.

Land Degrad. Dev. 29 (8), 2589–2594. doi: 10.1002/ldr.2759 . 
hristianen, M., van der Heide, T., Holthuijsen, S., van der Reijden, K., Borst, A.,

Olff, H., 2017. Biodiversity and food web indicators of community recovery in
intertidal shellfish reefs. Biol. Conserv. 213, 317–324. doi: 10.1016/j.biocon.2016.

09.028 . 
onsolo, G., Currò, C., Valenti, G., 2019. Supercritical and subcritical Turing pattern

formation in a hyperbolic vegetation model for flat arid environments. Phys. D

398, 141–163. doi: 10.1016/j.physd.2019.03.006 . 
onsolo, G., Valenti, G., 2019. Secondary seed dispersal in the Klausmeier model of

vegetation for sloped semi-arid environments. Ecol. Model. 402, 66–75. doi: 10.
1016/j.ecolmodel.2019.02.009 . 

ornacchia, L., van de Koppel, J., van der Wal, D., Wharton, G., Puijalon, S.,
Bouma, T.J., 2018. Landscapes of facilitation: how self-organized patchiness of

aquatic macrophytes promotes diversity in streams. Ecology 99 (4), 832–847.

doi: 10.1002/ecy.2177 . 
orrado, R., Cherubini, A.M., Pennetta, C., 2014. Early warning signals of desertifi-

cation transitions in semiarid ecosystems. Phys. Rev. E 90, 062705. doi: 10.1103/
PhysRevE.90.062705 . 

agbovie, A.S., Sherratt, J.A., 2014. Pattern selection and hysteresis in the Rietkerk
model for banded vegetation in semi-arid environments. J. R. Soc. Interface 11

(99), 20140465. doi: 10.1098/rsif.2014.0465 . 

akos, V., Kéfi, S., Rietkerk, M., van Nes, E.H., Scheffer, M., 2011. Slowing down in
spatially patterned ecosystems at the brink of collapse. Am. Nat. 177 (6), E153–

E166. doi: 10.1086/659945 . 
eblauwe, V., Barbier, N., Couteron, P., Lejeune, O., Bogaert, J., 2008. The global bio-

geography of semi-arid periodic vegetation patterns. Global Ecol. Biogeogr. 17
(6), 715–723. doi: 10.1111/j.1466-8238.20 08.0 0413.x . 

eblauwe, V., Couteron, P., Bogaert, J., Barbier, N., 2012. Determinants and dynamics
of banded vegetation pattern migration in arid climates. Ecol. Monogr. 82 (1),

3–21. doi: 10.1890/11-0362.1 . 

econinck, B., Kutz, J.N., 2006. Computing spectra of linear operators using the
Floquet–Fourier–Hill method. J. Comput. Phys. 219 (1), 296–321. doi: 10.1016/j.

jcp.2006.03.020 . 
’Herbès, J.-M., Valentin, C., Tongway, D.J., Leprun, J.-C., 2001. Banded Vegetation

Patterns and Related Structures. In: Tongway, D.J., Valentin, C., Seghieri, J. (Eds.),
Banded Vegetation Patterning in Arid and Semiarid Environments: Ecological

Processes and Consequences for Management. Springer New York, New York,

NY, pp. 1–19. doi: 10.1007/978- 1- 4613- 0207- 0 _ 1 . 
’Odorico, P., Laio, F., Ridolfi, L., 2006. A probabilistic analysis of fire-induced tree-

grass coexistence in savannas. Am. Nat. 167 (3), E79–E87. doi: 10.1086/500617 . 
oedel, E.J. , Oldeman, B.E. , Champneys, A.R. , Dercole, F. , Fairgrieve, T. , Kuznetsov, Y. ,

Paenroth, R. , Sandstede, B. , Wang, X. , Zhang, C. , 2012. AUTO-07p: Continuation
and Bifurcation Software for Oridinary Differential Equations. Technical Report . 

’Onofrio, D., Baudena, M., D’Andrea, F., Rietkerk, M., Provenzale, A., 2015. Tree-

grass competition for soil water in arid and semiarid savannas: the role
of rainfall intermittency. Water Resour. Res. 51 (1), 169–181. doi: 10.1002/

2014WR015515 . 
urrett, R., Levin, S., 1998. Spatial aspects of interspecific competition. Theor Popul

Biol 53 (1), 30–43. doi: 10.1006/tpbi.1997.1338 . 
igentler, L., Sherratt, J.A., 2018. Analysis of a model for banded vegetation patterns

in semi-arid environments with nonlocal dispersal. J. Math. Biol. 77 (3), 739–

763. doi: 10.10 07/s0 0285- 018- 1233- y . 
igentler, L., Sherratt, J.A., 2019. Metastability as a coexistence mechanism in a

model for dryland vegetation patterns. Bull. Math. Biol. 81 (7), 2290–2322.
doi: 10.1007/s11538- 019- 00606-z . 

andhi, P., Werner, L., Iams, S., Gowda, K., Silber, M., 2018. A topographic mech-
anism for arcing of dryland vegetation bands. J. R. Soc. Interface 15 (147),

20180508. doi: 10.1098/rsif.2018.0508 . 

ilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E., 2004. Ecosys-
tem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93,

098105. doi: 10.1103/PhysRevLett.93.098105 . 
ilad, E. , von Hardenberg, J. , Provenzale, A. , Shachak, M. , Meron, E. , 2007. A mathe-

matical model of plants as ecosystem engineers. J. Theor. Biol. 244 (4), 680–691 .
j.jtbi.20 06.08.0 06 

https://doi.org/10.13039/501100000266
https://doi.org/10.1016/j.jtbi.2010.08.012
https://doi.org/10.1016/j.baae.2008.10.008
https://doi.org/10.1073/pnas.1804771115
https://doi.org/10.1111/j.1365-2745.2009.01588.x
https://doi.org/10.1007/s12080-012-0165-1
https://doi.org/10.1016/j.ecolmodel.2011.01.015
https://doi.org/10.1086/648458
https://doi.org/10.2307/1939416
https://doi.org/10.1016/j.jtbi.2018.10.002
https://doi.org/10.1029/2007RG000256
https://doi.org/10.1111/1365-2745.12666
https://doi.org/10.1088/0034-4885/41/12/003
https://doi.org/10.1002/ldr.2759
https://doi.org/10.1016/j.biocon.2016.09.028
https://doi.org/10.1016/j.physd.2019.03.006
https://doi.org/10.1016/j.ecolmodel.2019.02.009
https://doi.org/10.1002/ecy.2177
https://doi.org/10.1103/PhysRevE.90.062705
https://doi.org/10.1098/rsif.2014.0465
https://doi.org/10.1086/659945
https://doi.org/10.1111/j.1466-8238.2008.00413.x
https://doi.org/10.1890/11-0362.1
https://doi.org/10.1016/j.jcp.2006.03.020
https://doi.org/10.1007/978-1-4613-0207-0_1
https://doi.org/10.1086/500617
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0026
https://doi.org/10.1002/2014WR015515
https://doi.org/10.1006/tpbi.1997.1338
https://doi.org/10.1007/s00285-018-1233-y
https://doi.org/10.1007/s11538-019-00606-z
https://doi.org/10.1098/rsif.2018.0508
https://doi.org/10.1103/PhysRevLett.93.098105
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0033


16 L. Eigentler and J.A. Sherratt / Journal of Theoretical Biology 487 (2020) 110122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

 

S  

 

S  

S  

 

S  

 

S  

S  

 

S  

 

 

S  

 

S  

S  

 

 

S  

 

S  

 

S  

 

 

 

S  

 

S  

S  

 

S  

 

 

 

S  

 

S  

 

T  

 

T  

 

 

T  

T  

 

U  

 

V  

v  

 

V  

 

 

Gilad, E., Shachak, M., Meron, E., 2007. Dynamics and spatial organization of plant
communities in water-limited systems. Theor. Popul. Biol. 72 (2), 214–230.

doi: 10.1016/j.tpb.20 07.05.0 02 . 
Gowda, K., Chen, Y., Iams, S., Silber, M., 2016. Assessing the robustness of spa-

tial pattern sequences in a dryland vegetation model. Proc. R. Soc. Lond. A
472:20150893. doi: 10.1098/rspa.2015.0893 . 

Higgins, S.I. , Scheiter, S. , Sankaran, M. , 2010. The stability of African savannas: in-
sights from the indirect estimation of the parameters of a dynamic model. Ecol-

ogy 91 (6), 1682–1692 . 

Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95 (882), 137–145.
doi: 10.1086/282171 . 

Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as ecosystem engineers.
Oikos 69 (3), 373. doi: 10.2307/3545850 . 

Kealy, B.J., Wollkind, D.J., 2012. A nonlinear stability analysis of vegetative Turing
pattern formation for an interaction–diffusion plant-surface water model sys-

tem in an arid flat environment. Bull. Math. Biol. 74 (4), 803–833. doi: 10.1007/

s11538-011-9688-7 . 
Kinast, S., Zelnik, Y.R., Bel, G., Meron, E., 2014. Interplay between Turing mechanisms

can increase pattern diversity. Phys. Rev. Lett. 112 (7). doi: 10.1103/physrevlett.
112.078701 . 

Klausmeier, C.A., 1999. Regular and irregular patterns in semiarid vegetation. Sci-
ence 284 (5421), 1826–1828. doi: 10.1126/science.284.5421.1826 . 

Kyriazopoulos, P., Nathan, J., Meron, E., 2014. Species coexistence by front pinning.

Ecol. Complex. 20, 271–281. doi: 10.1016/j.ecocom.2014.05.001 . 
Kéfi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V., ElAich, A., de Ruiter, P.,

2007. Spatial vegetation patterns and imminent desertification in Mediterranean
arid ecosystems. Nature 449 (7159), 213–217. doi: 10.1038/nature06111 . 

Maestre, F.T., Bautista, S., Cortina, J., 2003. Positive, negative, and net effects in
grass-shrub interactions in Mediterranean semiarid grasslands. Ecology 84 (12),

3186–3197. doi: 10.1890/02-0635 . 

Marasco, A ., Iuorio, A ., Carteni, F., Bonanomi, G., Tartakovsky, D.M., Mazzoleni, S.,
Giannino, F., 2014. Vegetation pattern formation due to interactions between

water availability and toxicity in plant–soil feedback. Bull. Math. Biol. 76 (11),
2866–2883. doi: 10.1007/s11538- 014- 0036- 6 . 

Martinez-Garcia, R., Calabrese, J.M., Lopez, C., 2013. Spatial patterns in mesic sa-
vannas: the local facilitation limit and the role of demographic stochasticity. J.

Theor. Biol. 333, 156–165. doi: 10.1016/j.jtbi.2013.05.024 . 

Martinez-Garcia, R., Lopez, C., From scale-dependent feedbacks to long-range com-
petition alone: a short review on pattern-forming mechanisms in arid ecosys-

tems. arXiv: 1801.01399 . 
Mauchamp, A., Rambal, S., Lepart, J., 1994. Simulating the dynamics of a vegetation

mosaic: a spatialized functional model. Ecol. Model. 71 (1–3), 107–130. doi: 10.
1016/0304-380 0(94)90 078-7 . 

Meron, E., 2016. Pattern formation - a missing link in the study of ecosystem re-

sponse to environmental changes. Math. Biosci. 271, 1–18. doi: 10.1016/j.mbs.
2015.10.015 . 

Meron, E., Yizhaq, H., Gilad, E., 2007. Localized structures in dryland vegetation:
forms and functions. Chaos 17 (3), 037109. doi: 10.1063/1.2767246 . 

Mordelet, P., Menaut, J.-C., Mariotti, A., 1997. Tree and grass rooting patterns in an
african humid savanna. J. Veg. Sci. 8 (1), 65–70. doi: 10.2307/3237243 . 

Moro, M.J., Pugnaire, F.I., Haase, P., Puigdefabregas, J., 1997. Effect of the canopy of
Retama sphaerocarpa on its understorey in a semiarid environment. Funct. Ecol.

11 (4), 425–431. doi: 10.1046/j.1365-2435.1997.00106.x . 

Nathan, J., von Hardenberg, J., Meron, E., 2013. Spatial instabilities untie the
exclusion-principle constraint on species coexistence. J. Theor. Biol. 335, 198–

204. doi: 10.1016/j.jtbi.2013.06.026 . 
ueyo, Y., Kéfi, S., Alados, C.L., Rietkerk, M., 2008. Dispersal strategies and spa-

tial organization of vegetation in arid ecosystems. Oikos 117 (10), 1522–1532.
doi: 10.1111/j.0 030-1299.20 08.16735.x . 

Pugnaire, F.I., Luque, M.T., 2001. Changes in plant interactions along a gradient

of environmental stress. Oikos 93 (1), 42–49. doi: 10.1034/j.160 0-0706.20 01.
930104.x . 

Rademacher, J.D., Sandstede, B., Scheel, A., 2007. Computing absolute and essential
spectra using continuation. Phys. D 229 (2), 166–183. doi: 10.1016/j.physd.2007.

03.016 . 
Rademacher, J.D.M., Scheel, A., 2007. Instabilities of wave trains and Turing pat-

terns in large domains. Int. J. Bifurc. Chaos 17 (08), 2679–2691. doi: 10.1142/

s0218127407018683 . 
Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J., 2004. Self-organized

patchiness and catastrophic shifts in ecosystems. Science 305 (5692), 1926–
1929. doi: 10.1126/science.1101867 . 

Rietkerk, M., van de Koppel, J., 2008. Regular pattern formation in real ecosystems.
Trends Ecol. Evol. 23 (3), 169–175. doi: 10.1016/j.tree.2007.10.013 . 

Saco, P.M., Moreno-de las Heras, M., Keesstra, S., Baartman, J., Yetemen, O., Ro-

driguez, J.F., 2018. Vegetation and soil degradation in drylands: non linear feed-
backs and early warning signals. Curr. Opin. Environ. Sci. Health 5, 67–72.

doi: 10.1016/j.coesh.2018.06.001 . 
Sandstede, B. , 2002. Stability of traveling waves. In: Fiedler, B. (Ed.), Handbook of

Dynamical Systems II. Elsevier, pp. 983–1055 . 
Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., Gig-

noux, J., Higgins, S.I., Roux, X.L., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A.,

Bucini, G., Caylor, K.K., Coughenour, M.B., Diouf, A., Ekaya, W., Feral, C.J., Febru-
ary, E.C., Frost, P.G.H., Hiernaux, P., Hrabar, H., Metzger, K.L., Prins, H.H.T.,

Ringrose, S., Sea, W., Tews, J., Worden, J., Zambatis, N., 2005. Determinants of
woody cover in African savannas. Nature 438 (7069), 846–849. doi: 10.1038/

nature04070 . 
cheiter, S., Higgins, S., Weissing, A.E.F.J., Geber, E.M.A., 2007. Partitioning of root
and shoot competition and the stability of savannas. Am. Nat. 170 (4), 587–601.

doi: 10.1086/521317 . 
choles, R., 2003. Convex relationships in ecosystems containing mixtures of

trees and grass. Environ. Resour. Econ. 26 (4), 559–574. doi: 10.1023/b:eare.
0 0 0 0 0 07349.67564.b3 . 

choles, R.J., Walker, B.H., 1993. An African Savanna. Cambridge University Press
doi: 10.1017/cbo9780511565472 . 

eghieri, J., 1995. The rooting patterns of woody and herbaceous plants in a sa-

vanna; are they complementary or in competition? Afr. J. Ecol. 33 (4), 358–365.
doi: 10.1111/j.1365-2028.1995.tb01045.x . 

eghieri, J., Galle, S., Rajot, J., Ehrmann, M., 1997. Relationships between soil mois-
ture and growth of herbaceous plants in a natural vegetation mosaic in Niger. J.

Arid. Environ. 36 (1), 87–102. doi: 10.1006/jare.1996.0195 . 
herratt, J.A., 2005. An analysis of vegetation stripe formation in semi-arid land-

scapes. J. Math. Biol. 51 (2), 183–197. doi: 10.10 07/s0 0285-0 05-0319-5 . 

herratt, J.A., 2010. Pattern solutions of the Klausmeier model for banded vegeta-
tion in semi-arid environments I. Nonlinearity 23 (10), 2657–2675. doi: 10.1088/

0951-7715/23/10/016 . 
herratt, J.A., 2011. Pattern solutions of the Klausmeier model for banded vegetation

in semi-arid environments II: patterns with the largest possible propagation
speeds. Proc. R. Soc. Lond. A 467 (2135), 3272–3294. doi: 10.1098/rspa.2011.0194 .

herratt, J.A., 2012. Numerical continuation methods for studying periodic travelling

wave (wavetrain) solutions of partial differential equations. Appl. Math. Comput.
218 (9), 4684–4694. doi: 10.1016/j.amc.2011.11.005 . 

herratt, J.A., 2013. History-dependent patterns of whole ecosystems. Ecol. Complex.
14, 8–20. doi: 10.1016/j.ecocom.2012.12.002 . 

herratt, J.A., 2013. Numerical continuation of boundaries in parameter space be-
tween stable and unstable periodic travelling wave (wavetrain) solutions of par-

tial differential equations. Adv. Comput. Math. 39 (1), 175–192. doi: 10.1007/

s104 4 4- 012- 9273- 0 . 
herratt, J.A., 2013. Pattern solutions of the Klausmeier model for banded vegeta-

tion in semi-arid environments III: the transition between homoclinic solutions.
Phys. D 242 (1), 30–41. doi: 10.1016/j.physd.2012.08.014 . 

herratt, J.A., 2013. Pattern solutions of the Klausmeier model for banded vegetation
in semiarid environments IV: slowly moving patterns and their stability. SIAM

J. Appl. Math. 73 (1), 330–350. doi: 10.1137/120862648 . 

herratt, J.A., 2013. Pattern solutions of the Klausmeier model for banded vegeta-
tion in semiarid environments V: the transition from patterns to desert. SIAM J.

Appl. Math. 73 (4), 1347–1367. doi: 10.1137/120899510 . 
Sherratt, J.A., 2015. Using wavelength and slope to infer the historical origin of

semiarid vegetation bands. Proc. Natl. Acad. Sci. 112 (14), 4202–4207. doi: 10.
1073/pnas.1420171112 . 

herratt, J.A., Lord, G.J., 2007. Nonlinear dynamics and pattern bifurcations in a

model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71
(1), 1–11. doi: 10.1016/j.tpb.20 06.07.0 09 . 

iero, E., 2018. Nonlocal grazing in patterned ecosystems. J. Theor. Biol. 436, 64–71.
doi: 10.1016/j.jtbi.2017.10.001 . 

iero, E., Siteur, K., Doelman, A., van de Koppel, J., Rietkerk, M., Eppinga, M.B., 2019.
Grazing away the resilience of patterned ecosystems. Am. Nat. 193 (3), 472–480.

doi: 10.1086/701669 . 
iteur, K., Siero, E., Eppinga, M.B., Rademacher, J.D., Doelman, A., Rietkerk, M., 2014.

Beyond Turing: the response of patterned ecosystems to environmental change.

Ecol. Complex. 20, 81–96. doi: 10.1016/j.ecocom.2014.09.002 . 
Staver, A.C., Archibald, S., Levin, S., 2011. Tree cover in sub-Saharan Africa: rainfall

and fire constrain forest and savanna as alternative stable states. Ecology 92 (5),
1063–1072. doi: 10.1890/10-1684.1 . 

ugarbaker, L. J., Constance, E. W., Heidemann, H. K., Jason, A. L., Lukas, V., Saghy,
D. L., Stoker, J. M., 2014. The 3D elevation program initiative: a call for action.

doi: 10.3133/cir1399 . 

ynodinos, A.D., Tietjen, B., Jeltsch, F., 2015. Facilitation in drylands: modeling a
neglected driver of savanna dynamics. Ecol. Model. 304, 11–21. doi: 10.1016/j.

ecolmodel.2015.02.015 . 
chuinté Tamen, A., Dumont, Y., Tewa, J., Bowong, S., Couteron, P., 2016. Tree–grass

interaction dynamics and pulsed fires: mathematical and numerical studies.
Appl. Math. Model. 40 (11–12), 6165–6197. doi: 10.1016/j.apm.2016.01.019 . 

chuinté Tamen, A., Dumont, Y., Tewa, J., Bowong, S., Couteron, P., 2017. A minimal-

istic model of tree–grass interactions using impulsive differential equations and
non-linear feedback functions of grass biomass onto fire-induced tree mortality.

Math. Comput. Simul 133, 265–297. doi: 10.1016/j.matcom.2016.03.008 . 
ilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecol-

ogy 75 (1), 2–16. doi: 10.2307/1939377 . 
ouboul, J.D., Staver, A.C., Levin, S.A., 2018. On the complex dynamics of sa-

vanna landscapes. Proc. Natl. Acad. Sci. 115 (7), E1336–E1345. doi: 10.1073/pnas.

1712356115 . 
rsino, N., Contarini, S., 2006. Stability of banded vegetation patterns under sea-

sonal rainfall and limited soil moisture storage capacity. Adv. Water Resour. 29
(10), 1556–1564. doi: 10.1016/j.advwatres.20 05.11.0 06 . 

alentin, C., d’Herbés, J., Poesen, J., 1999. Soil and water components of banded veg-
etation patterns. CATENA 37 (1–2), 1–24. doi: 10.1016/S0341-8162(99)0 0 053-3 . 

an der Stelt, S., Doelman, A., Hek, G., Rademacher, J.D.M., 2013. Rise and fall of

periodic patterns for a generalized Klausmeier–Gray–Scott model. J. Nonlinear
Sci. 23 (1), 39–95. doi: 10.10 07/s0 0332- 012- 9139- 0 . 

an Langevelde, F., Van De Vijver, C.A.D.M., Kumar, L., Van De Koppel, J., De Rid-
der, N., Van Andel, J., Skidmore, A.K., Hearne, J.W., Stroosnijder, L., Bond, W.J.,

Prins, H.H.T., Rietkerk, M., 2003. Effects of fire and herbivory on the stability

https://doi.org/10.1016/j.tpb.2007.05.002
https://doi.org/10.1098/rspa.2015.0893
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0036
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0036
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0036
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0036
https://doi.org/10.1086/282171
https://doi.org/10.2307/3545850
https://doi.org/10.1007/s11538-011-9688-7
https://doi.org/10.1103/physrevlett.112.078701
https://doi.org/10.1126/science.284.5421.1826
https://doi.org/10.1016/j.ecocom.2014.05.001
https://doi.org/10.1038/nature06111
https://doi.org/10.1890/02-0635
https://doi.org/10.1007/s11538-014-0036-6
https://doi.org/10.1016/j.jtbi.2013.05.024
http://arxiv.org/abs/1801.01399v1
https://doi.org/10.1016/0304-3800(94)90078-7
https://doi.org/10.1016/j.mbs.2015.10.015
https://doi.org/10.1063/1.2767246
https://doi.org/10.2307/3237243
https://doi.org/10.1046/j.1365-2435.1997.00106.x
https://doi.org/10.1016/j.jtbi.2013.06.026
https://doi.org/10.1111/j.0030-1299.2008.16735.x
https://doi.org/10.1034/j.1600-0706.2001.930104.x
https://doi.org/10.1016/j.physd.2007.03.016
https://doi.org/10.1142/s0218127407018683
https://doi.org/10.1126/science.1101867
https://doi.org/10.1016/j.tree.2007.10.013
https://doi.org/10.1016/j.coesh.2018.06.001
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0060
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0060
https://doi.org/10.1038/nature04070
https://doi.org/10.1086/521317
https://doi.org/10.1023/b:eare.0000007349.67564.b3
https://doi.org/10.1017/cbo9780511565472
https://doi.org/10.1111/j.1365-2028.1995.tb01045.x
https://doi.org/10.1006/jare.1996.0195
https://doi.org/10.1007/s00285-005-0319-5
https://doi.org/10.1088/0951-7715/23/10/016
https://doi.org/10.1098/rspa.2011.0194
https://doi.org/10.1016/j.amc.2011.11.005
https://doi.org/10.1016/j.ecocom.2012.12.002
https://doi.org/10.1007/s10444-012-9273-0
https://doi.org/10.1016/j.physd.2012.08.014
https://doi.org/10.1137/120862648
https://doi.org/10.1137/120899510
https://doi.org/10.1073/pnas.1420171112
https://doi.org/10.1016/j.tpb.2006.07.009
https://doi.org/10.1016/j.jtbi.2017.10.001
https://doi.org/10.1086/701669
https://doi.org/10.1016/j.ecocom.2014.09.002
https://doi.org/10.1890/10-1684.1
https://doi.org/10.3133/cir1399
https://doi.org/10.1016/j.ecolmodel.2015.02.015
https://doi.org/10.1016/j.apm.2016.01.019
https://doi.org/10.1016/j.matcom.2016.03.008
https://doi.org/10.2307/1939377
https://doi.org/10.1073/pnas.1712356115
https://doi.org/10.1016/j.advwatres.2005.11.006
https://doi.org/10.1016/S0341-8162(99)00053-3
https://doi.org/10.1007/s00332-012-9139-0


L. Eigentler and J.A. Sherratt / Journal of Theoretical Biology 487 (2020) 110122 17 

 

W  

W  

 

W

W  

 

W  

 

Y  

 

Y  

 

 

Y  

 

 

Y  

 

Z  

 

of savanna ecosystems. Ecology 84 (2), 337–350. doi: 10.1890/0 012-9658(20 03)
084[0337:eofaho]2.0.co;2 . 

alker, B.H., Ludwig, D., Holling, C.S., Peterman, R.M., 1981. Stability of semi-arid
savanna grazing systems. J. Ecol. 69 (2), 473. doi: 10.2307/2259679 . 

alker, B.H. , Noy-Meir, I. , 1982. Aspects of the stability and resilience of savanna
ecosystems. In: Huntley, B.J., Walker, B.H. (Eds.), Ecology of Tropical Savannas.

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 556–590 . 
alter, H. , 1971. Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd . 

ang, X., Zhang, G., 2018. Vegetation pattern formation in seminal systems due to

internal competition reaction between plants. J. Theor. Biol. 458, 10–14. doi: 10.
1016/j.jtbi.2018.08.043 . 

ang, X., Zhang, G., 2019. The influence of infiltration feedback on the characteristic
of banded vegetation pattern on hillsides of semiarid area. PLOS One 14 (1),

e0205715. doi: 10.1371/journal.pone.0205715 . 
atat, V., Couteron, P., Dumont, Y., 2018. Spatially explicit modelling of tree–grass

interactions in fire-prone savannas: a partial differential equations framework.

Ecol. Complex. 36, 290–313. doi: 10.1016/j.ecocom.2017.06.004 . 
atat, V., Couteron, P., Tewa, J.J., Bowong, S., Dumont, Y., 2017. An impulsive mod-
elling framework of fire occurrence in a size-structured model of tree–grass in-

teractions for savanna ecosystems. J. Math. Biol. 74 (6), 1425–1482. doi: 10.1007/
s00285- 016- 1060- y . 

atat, V.D., Tchuinté, A., Dumont, Y., Couteron, P., 2018. A tribute to the use of
minimalistic spatially-implicit models of savanna vegetation dynamics to ad-

dress broad spatial scales in spite of scarce data. Biomath 7 (2), 1812167.
doi: 10.11145/j.biomath.2018.12.167 . 

u, K., D’Odorico, P., 2014. An ecohydrological framework for grass displacement

by woody plants in savannas. J. Geophys. Res. 119 (3), 192–206. doi: 10.1002/
2013jg002577 . 

elnik, Y.R., Kinast, S., Yizhaq, H., Bel, G., Meron, E., 2013. Regime shifts in models
of dryland vegetation. Philos. Trans. R. Soc. Lond. Ser. A 371 (2004), 20120358.

doi: 10.1098/rsta.2012.0358 . 

https://doi.org/10.1890/0012-9658(2003)084[0337:eofaho]2.0.co;2
https://doi.org/10.2307/2259679
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0092
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0092
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0092
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0093
http://refhub.elsevier.com/S0022-5193(19)30491-6/sbref0093
https://doi.org/10.1016/j.jtbi.2018.08.043
https://doi.org/10.1371/journal.pone.0205715
https://doi.org/10.1016/j.ecocom.2017.06.004
https://doi.org/10.1007/s00285-016-1060-y
https://doi.org/10.11145/j.biomath.2018.12.167
https://doi.org/10.1002/2013jg002577
https://doi.org/10.1098/rsta.2012.0358

	Spatial self-organisation enables species coexistence in a model for savanna ecosystems
	1 Introduction
	2 The model
	3 Existence and onset of patterns in which species coexistence occurs
	3.1 Stability of spatially uniform equilibria
	3.2 Single-species patterns
	3.3 Multispecies patterns
	3.3.1 Onset of multispecies patterns
	3.3.2 Existence of multispecies patterns


	4 Stability of coexistence pattern
	5 Phase difference
	6 Discussion
	7 Methods of calculating pattern existence and stability
	7.1 Single-species pattern existence
	7.2 Calculation of the essential spectrum
	7.3 Numerical continuation of stability boundaries

	CRediT authorship contribution statement
	Acknowledgements
	References


