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Abstract
Vegetation patterns are a ubiquitous feature of water-deprived ecosystems. Despite
the competition for the same limiting resource, coexistence of several plant species is
commonly observed.We propose a two-species reaction–diffusionmodel based on the
single-species Klausmeier model, to analytically investigate the existence of states in
which both species coexist. Ecologically, the study finds that coexistence is supported
if there is a small difference in the plant species’ average fitness, measured by the
ratio of a species’ capabilities to convert water into new biomass to its mortality rate.
Mathematically, coexistence is not a stable solution of the system, but both spatially
uniform and patterned coexistence states occur as metastable states. In this context,
a metastable solution in which both species coexist corresponds to a long transient
(exceeding 103 years in dimensional parameters) to a stable one-species state. This
behaviour is characterised by the small size of a positive eigenvalue which has the
sameorder ofmagnitude as the average fitness difference between the two species. Two
mechanisms causing the occurrence ofmetastable solutions are established: a spatially
uniform unstable equilibrium and a stable one-species pattern which is unstable to the
introduction of a competitor. We further discuss effects of asymmetric interspecific
competition (e.g. shading) on the metastability property.
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1 Introduction

Vegetation patterns in semi-arid climate zones are a prime example of a self-organising
principle in ecology (Deblauwe et al. 2008; Valentin et al. 1999). One of the main
mechanisms that creates such a mosaic of biomass and bare soil is a modification of
soil properties by plants that induces awater redistribution feedback loop (Meron 2012,
2016, 2018; Rietkerk and van de Koppel 2008). On bare ground only small amounts
of water are able to infiltrate into the soil and water run-off occurs, while in regions
covered by biomass the soil’s water infiltration capacity is increased. Dense plant
patches therefore act as sinks and deplete soil water in regions of bare ground (Eldridge
et al. 2000; Thompson et al. 2010). This redistribution of the limiting resource drives
further growth in vegetation patches and thus closes the feedback loop.

Drylands account for approximately 41% of the Earth’s land mass and are home
to a similar proportion (38%) of the world’s human population. The sizes of arid and
semi-arid regions that suffer from land degradation are expected to increase over the
coming decades due to climate change (Reynolds et al. 2007). Vegetation patterns
are a characteristic feature of such fragile ecosystems. Patterns have been detected in
semi-desert regions in the African Sahel (Deblauwe et al. 2012; Müller 2013; Thiery
et al. 1995;White 1971;Worrall 1959), Somalia (Gowda et al. 2018; Hemming 1965),
Australia (Dunkerley and Brown 2002; Heras et al. 2012; Tongway and Ludwig 1990),
Israel (Buis et al. 2009; Sheffer et al. 2013) andMexico and the US (Cornet et al. 1988;
Deblauwe et al. 2012; Montana et al. 1990; Montana 1992; Pelletier et al. 2012; Penny
et al. 2013). Changes to characteristic features of vegetation patterns in these regions
such as the pattern wavelength, the area fraction covered by biomass or the recovery
time from perturbations can act as early indicators of desertification as they provide
a useful tool in predicting further changes to ecosystems (Corrado et al. 2014; Dakos
et al. 2011; Gowda et al. 2016; Kéfi et al. 2007; Rietkerk et al. 2004; Saco et al.
2018; Zelnik et al. 2018). This is an issue of considerable socio-economic importance
since agriculture is a major contributor to the economy in many drylands (United
Nations Convention to Combat Desertification 2017). For example, in sub-Saharan
Africa livestock frequently graze on spatially patterned vegetation. Thus, changes
in vegetation levels have a major effect on the livestock sector, which makes a very
significant contribution toGDP, e.g. 20% inChad, 15% inMali, 12% inNiger and 7.5%
in Burkina Faso (Dickovick 2014; United Nations Food and Agriculture Organization
2005), with involvement of high proportions of the population [e.g. 40% in Chad
(Dickovick 2014)].

Due to the temporal and spatial scales involved in the evolution of vegetation pat-
terns, these ecosystems cannot be recreated in a laboratory setting. To gain a better
understanding of the pattern dynamics, a number of mathematical models have been
proposed (see Borgogno et al. 2009; Zelnik et al. 2013 for reviews). In particular,
modelling efforts based on partial differential equations, most notably by Gilad et al.
(2004, 2007a) and HilleRisLambers et al. (2001), Rietkerk et al. (2002), provide a
rich framework for mathematical analysis. One model that stands out due to its sim-
plicity is the Klausmeier model (Klausmeier 1999), which provides a deliberately
basic description of the plant-water dynamics in semi-arid environments. The highly
accessible nature of the model enables a detailed model analysis (e.g. by Bennett and
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Sherratt 2018; Consolo et al. 2019; Eigentler and Sherratt 2018; Sherratt 2005, 2010,
2011, 2013b, c, d; Sherratt and Lord 2007; Siteur et al. 2014a; Ursino and Contarini
2006). Recent advances in remote sensing technology using satellite data provide a
promising tool to test model predictions on pattern resilience (Bastiaansen et al. 2018;
Gandhi et al. 2018).

Most models in this context only consider a single plant species or combine several
species into one single variable. However, vegetation patches often consist of a mix
of herbaceous and woody species, where the latter can usually be found in the centre
of a patch, surrounded by the former (d’Herbès et al. 2001; Seghieri et al. 1997).
Previous simulation-based studies of dryland ecosystemmodels have indeed been able
to reproduce patterns in which two species coexist by considering a variety of different
mechanisms and feedbacks that enable diversity in ecosystems (Baudena and Rietkerk
2013; Callegaro and Ursino 2018; Gilad et al. 2007b; Nathan et al. 2013; Ursino and
Callegaro 2016). One such facilitative mechanism occurs in a system of two species in
which only one plant type induces a pattern forming feedback. If, additionally, the non-
pattern-forming species is superior in its water uptake and dispersal capabilities, then
the pattern-forming species can act as an ecosystem engineer to facilitate coexistence
of both species in patterned form (Baudena and Rietkerk 2013; Nathan et al. 2013).
Even if patterns inwhich two species coexist are not observed as long-term solutions of
a system, they can feature in a transition between two stable states. Gilad et al. (2007b)
briefly report on the observation of coexistence patterns as a slow (several hundred
years) transient during which patterns form due to facilitation between two species
before eventually one of the species becomes extinct as competitive feedbacks take
over. A different mechanism that enables coexistence of two species in both uniform
and spatially patterned settings is adaptation to different ecological niches, such as
soil moisture (Callegaro and Ursino 2018; Ursino and Contarini 2006).

In-phase spatial patterns are not the only phenomenon that is studied in the context
of species coexistence. The existence of amultitude of localised patterns of one species
in an otherwise uniform cover of a second species (homoclinic snaking) has also been
observed as a possible form of coexistence in a mathematical model (Kyriazopoulos
et al. 2014). The solution arises from a model that assumes a trade-off between root
and shoot growth causing a balance between the competition for water and for light
that supports coexistence. Other models are not able to make any statement on the
coexistence of species, but yield valuable information on facilitation and competition
between the plant types based on differences in traits such as their dispersal behaviour
(Pueyo et al. 2010).

The savannabiomehas alsobeen studiedbyvarious non-spatialmodels that describe
the dynamics of the relative abundances of grass, trees and water. While such models
are unable tomake any statements on the formation of spatial patterns, they still provide
valuable insights into coexistence-preserving effects of processes such as precipitation
intermittency (D’Onofrio et al. 2015), facilitation by grasses towards trees (Synodinos
et al. 2015) or fire disturbances (Baudena et al. 2010; Scheiter et al. 2007).

Previous model analysis on species coexistence in semi-arid landscapes has mainly
focussed on feedback loops induced through differences in the plant species’ traits
and their effects on multispecies plant communities. We are not aware of any studies
that investigate effects of the differences in basic properties such as plant mortality or
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plant growth rate on semi-arid vegetation patterns. In this paper, we aim to analytically
address the question how the difference between twoplant types cangive rise to amulti-
species metastable vegetation pattern [a unstable pattern whose instability is caused
by a very small unstable eigenvalue (Potapov and Hillen 2005)] and how the pattern’s
properties are affected by changes to the difference between the species.

To do this, we introduce a multispecies model based on the Klausmeier model in
Sect. 2. Numerical simulations of the model presented in Sect. 3 suggest two different
origins of metastable coexistence patterns. These two pathways into the problem are
closely examined through a linear stability analysis in Sects. 4 and 5. Finally, we
discuss our results in Sect. 6.

2 Model

In this section, we lay out the framework used in this paper to analyse the coexistence
of grass and trees in dryland ecosystems. We propose a model based on the extended
Klausmeier model (Klausmeier 1999), which in dimensional form is

∂u

∂t
=

plant growth
︷ ︸︸ ︷

c1c2u
2w −

plant
mortality
︷︸︸︷

c3u +

plant dispersal
︷ ︸︸ ︷

c4
∂2u

∂x2
, (1a)

∂w

∂t
= c5
︸︷︷︸

rainfall

− c6w
︸︷︷︸

evaporation

− c2u
2w

︸ ︷︷ ︸

water uptake
by plants

+ c7
∂w

∂x
︸ ︷︷ ︸

water
advection

+ c8
∂2w

∂x2
︸ ︷︷ ︸

water
diffusion

, (1b)

where u(x, t) is the weight of plants per unit area and w(x, t) is the mass of water per
unit area in the one-dimensional space domain x ∈ R at time t > 0. The water supply
(precipitation) of the system is assumed to be constant at rate c5, while evaporation
and plant loss effects are assumed to be proportional to the respective densities at rates
c6 and c3, respectively. The nonlinearity in the terms describing water uptake and
biomass growth arises due to a soil modification by plants. The term is the product of
the density of the consumer u and of the available resource c2uw, which corresponds
to water being able to infiltrate into the soil. The dependence on the plant density u
in the latter term occurs due to a positive correlation between the plant density and
the soil surface’s permeability (Cornet et al. 1988; Rietkerk et al. 2000; Valentin et al.
1999). Plant growth is assumed to be proportional to water uptake (Rodriguez-Iturbe
et al. 1999; Salvucci 2001), and water to biomass conversion takes place at rate c1. In
its original setting, the Klausmeier model is formulated to describe the dynamics on
sloped terrain on which water flow downhill is modelled by advection at rate c7. An
extension includes diffusion of water at rate c8 to account for water redistribution on
flat ground and is well established now (e.g. Kealy and Wollkind 2012; Siteur et al.
2014a; van der Stelt et al. 2013; Zelnik et al. 2013). Plant dispersal is also modelled
by a diffusion term (with diffusion rate c4).

Both on flat ground and on sloped terrain, (1) captures the formation of patterns
for sufficiently low levels of precipitation and their properties have been studied
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extensively (Klausmeier 1999; Sherratt 2005; Sherratt and Lord 2007; Sherratt 2010,
2011, 2013b, c, d; Siteur et al. 2014a). In (1) the plant density u either describes one
single species or accounts for the totality of all plant types in the ecosystem. While an
ecosystem rarely consists of only one single species, estimation of species-dependent
parameters such as the plant mortality rate c3 may be impractical if u is comprised
of many different species for which parameter estimates differ significantly [see, for
example, estimates for tree and grass species by Klausmeier (1999)].

An extension of (1) that accounts for the differences between plant species in the
same ecosystem can be obtained by separating the plant density u into n ∈ N different
species ui , i = 1, . . . , n that satisfy (1) with an appropriate set of parameters in the
absence of all other species. The model arising from this assumption is

∂ui
∂t

=

plant growth
︷ ︸︸ ︷

k(i)
1 wui

⎛

⎝

n
∑

j=1

k( j)
2 u j

⎞

⎠−

plant
mortality
︷ ︸︸ ︷

k(i)
3 ui +

plant dispersal
︷ ︸︸ ︷

k(i)
5

∂2ui
∂x2

, (2a)

∂w

∂t
= k6
︸︷︷︸

rainfall

− k7w
︸︷︷︸

evaporation

−w

⎛

⎝

n
∑

j=1

u j

⎞

⎠

⎛

⎝

n
∑

j=1

k( j)
2 u j

⎞

⎠

︸ ︷︷ ︸

water uptake by plants

+ k8
∂w

∂x
︸ ︷︷ ︸

water
advection

+ k9
∂2w

∂x2
︸ ︷︷ ︸

water
diffusion

. (2b)

for i = 1, . . . , n. In this multispecies model, the term describing water uptake by
plants is, as in (1), the product of the water density w, the total plant density

∑n
j=1 u j

and the soil’s infiltration capacity
∑n

j=1 k
( j)
2 u j . The species-dependent constants k

(i)
2

account for the plant types’ different contributions to the soil properties. The summands
in
∑n

j=1 u j correspond to the consumption of water by each single species and are
therefore not replicated in the term describing plant growth. Thus, the addition of new
biomass of species ui with water to biomass conversion rate k(i)

1 only depends on the
water density, the soil’s infiltration capacity and the density of species ui itself. The
remaining assumptions are identical to those taken in the formulation of (1), i.e. k(i)

3

and k(i)
5 denote the mortality and diffusion rates of species ui , respectively; k6 is the

constant amount of rainfall which adds water to the system; and k7, k8, and k9 are the
evaporation, advection and diffusion rates of water, respectively.

In (2) no direct interspecific interaction takes place. Instead plant species only
compete indirectly through depletion of the limiting resource—water. Models of this
type, in which species compete for the same limiting resource without any direct
competition between the different types, do not provide a framework able to describe
coexistence as the species that can tolerate the lowest level of the limiting resource
outcompetes all competitors (Tilman 1982). Thus, a description of an ecosystem in
which plant species coexist needs to take interspecific dynamics, such as shading, into
account.
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For simplicity we restrict the model to a system on flat ground of two plant species
u1 and u2 only, in which one species inhibits the other by increasing its competi-
tor’s mortality rate but its own mortality rate remains unaffected by the presence of
the other species. An alternative approach to model direct interspecific competition
would be a reduction of a species’ biomass growth rate (Kyriazopoulos et al. 2014).
A classic example of such an one-sided inhibitory direct interaction is two species,
such as a herbaceous and a woody species, where the latter grows much taller than the
former and thus imposes a shading effect on its competitor. Shading may also have
a facilitative effect on plants and induce a positive feedback loop due to a reduction
in evaporation (Baudena and Rietkerk 2013; Gilad et al. 2007b). In contrast to a one-
sided inhibitory shading effect, shading-induced evaporation reduction affects both
species as beneficial effects occur indirectly through a variation in resource availabil-
ity. Thus, the nonlinearity in the plant densities of the water consumption and plant
growth terms can account for such a beneficial effect as it collectively describes all
positive feedback loops increasing the growth of biomass.

Adding an inhibitory shading term to (2) with n = 2, we propose the model studied
in this paper, which is

∂u1
∂t

=
plant growth

︷ ︸︸ ︷

k(1)
1 wu1

(

k(1)
2 u1 + k(2)

2 u2
)

−

plant
mortality
︷ ︸︸ ︷

k(1)
3 u1 −

interspecific
competition
︷ ︸︸ ︷

k4u1u2 +

plant dispersal
︷ ︸︸ ︷

k(1)
5

∂2u1
∂x2

, (3a)

∂u2
∂t

=
plant growth

︷ ︸︸ ︷

k(2)
1 wu2

(

k(1)
2 u1 + k(2)

2 u2
)

−

plant
mortality
︷ ︸︸ ︷

k(2)
3 u2 +

plant dispersal
︷ ︸︸ ︷

k(2)
5

∂2u2
∂x2

, (3b)

∂w

∂t
= k6
︸︷︷︸

rainfall

− k7w
︸︷︷︸

evaporation

−w (u1 + u2)
(

k(1)
2 u1 + k(2)

2 u2
)

︸ ︷︷ ︸

water uptake by plants

+ k9
∂2w

∂x2
︸ ︷︷ ︸

water
diffusion

. (3c)

The shading effect causes species u2 to impose an additional mortality effect on u1
that is dependent on the density u2, while u1 does not have such an effect on u2. The
results presented in this paper are robust to changes in the functional response of this
shading effect. Results for shading effects with a Holling type II and Holling type III
functional response show no qualitative difference to the algebraically simpler term
in (3). Table 1 provides an overview of parameter estimates used in the model. As
indicated in the table, we were able to obtain estimates for parameters from previous
models on dryland vegetation, except for the rate of the direct interspecific interaction
k4. However, our model analysis in Sects. 4 and 5 suggests a suitable range for the
shadingparameter that yields biologically relevant results andwebrieflydiscuss effects
caused by deviations from this range.
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A suitable nondimensionalisation for the model is

u1 =
(

k7

k(1)
2

) 1
2

ũ1, u2 =
(

k7

k(1)
2

) 1
2

ũ2, w = k
1
2
7

k(1)
1

(

k(1)
2

) 1
2

w̃,

x =
(

k(1)
5

k7

) 1
2

x̃, t = 1

k7
t̃ .

The model thus becomes

∂u1
∂t

= wu1 (u1 + Hu2) − B1u1 − Su1u2 + ∂2u1
∂x2

, (4a)

∂u2
∂t

= Fwu2 (u1 + Hu2) − B2u2 + D
∂2u2
∂x2

, (4b)

∂w

∂t
= A − w − w (u1 + u2) (u1 + Hu2) + d

∂2w

∂x2
, (4c)

after dropping the ·̃’s for brevity, where

A =
k(1)
1

(

k(1)
2

) 1
2
k6

k
3
2
7

, B1 = k(1)
3

k7
, B2 = k(2)

3

k7
, S = k4

(

k(1)
2 k7

) 1
2

,

F = k(2)
1

k(1)
1

, H = k(2)
2

k(1)
2

, D = k(2)
5

k(1)
5

, d = k9

k(1)
5

.

The constants A and Bi are combinations of several of the originalmodel’s parameters,
but represent rainfall and plant mortality, respectively. The ratios F , H and D describe
the differences in the plant species’ water to biomass conversion rates, the effects on
the soil’s infiltration capacity and the diffusion coefficients, respectively. Finally, d
quantifies the ratio of the rate of water diffusion to that of the diffusion of plant
species u1. Table 1 includes estimates for the nondimensional parameters.

In the analysis of the model, we assume that u1 is a herbaceous species and allow u2
to vary between another grass species and a woody vegetation type. The parameters of
u1 are fixed throughout the analysis and act as a reference point. To investigate how the
difference between two plant species affects the plant-water dynamics of the system,
the parameters of u2 are varied and comparisons to the fixed species u1 are made. For
brevity we refer to the two plant densities as grass and trees, even if u2 differs only
slightly from u1. Parameter estimates (see Table 1) suggest that trees’ rate of mortality
is less than that of grasses (B2 < B1), trees convert water into biomass less efficiently
(F < 1), trees affect the soil’s water infiltration rate less severely per unit biomass
(H < 1) and trees disperse at a slower rate than grass (D < 1). We further assume
that the inhibitory effect of shading intensifies as the species difference increases.
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Thus, only this parameter region is analysed. In particular, to define a measure of
species difference, we introduce a parameter χ ∈ [0, 1] that describes the extent to
which the species differ. Thus, we set

B2 = B1 − χ(B1 − b2), F = 1 − χ(1 − f ), H = 1 − χ(1 − h),

S = sχ, D = 1 − χ(1 − D0),
(5)

where B1 is set to a typical mortality rate of a herbaceous species, b2 to that of a
woody species and f , h and D0 to the smallest respective ratios between two differing
species. If the species are the same (i.e. χ = 0), then B2 = B1, F = H = D = 1 and
S = 0. In this case, (4) simplifies to

∂ (u1 + u2)

∂t
= w (u1 + u2)

2 − B1 (u1 + u2) + ∂2 (u1 + u2)

∂x2
, (6a)

∂w

∂t
= A − w − w (u1 + u2)

2 + d
∂2w

∂x2
, (6b)

by adding (4a) and (4b). This simplified model is the extended Klausmeier model (1)
in nondimensional form on flat ground for plant density u1 + u2 and water density w.

3 Numerical Solutions of theModel

To motivate the analysis presented in Sects. 4 and 5, we present some typical solu-
tions of (4) that are obtained by numerical integration. Despite the inclusion of direct
interspecific competition in (4) and the associated existence of a pair of equilibria
in which both species coexist (see Sect. 5), the system converges to a single-species
state for any choice of parameters. The nature of this long-term behaviour depends
on the parameter values used in the integration and may be a uniform or patterned
state of either species. The transient to such an equilibrium state in which only one of
the plant types is present may, however, occur as a very slow process (exceeding 103

years in dimensional parameters) in which both species coexist in either a patterned
configuration or uniformly in space. Such a unstable state which nevertheless persists
as a solution for a very long time (compared to the time taken to emerge from some
initial configuration) is referred to as a metastable state in this context.

In the parameter setting (5) two distinct initial configurations from which such
metastable states arise are established. If the initial condition is set to a state in which
both plant species and the water density are uniform in space with a random pertur-
bation added, then the solution remains in a metastable configuration in which both
species coexist for a long time. If the rainfall is sufficiently low, the solution develops
a patterned appearance in all three variables during the long transient. Eventually the
metastable state reduces to a stable single-species equilibrium. The type of this equi-
librium depends on the choice of parameters and, in particular, on the level of rainfall
(see Fig. 1a). A sufficiently high level of rainfall leads to a spatially uniform solution,
while lower amounts of precipitation cause convergence to a single-species pattern.
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Fig. 1 Numerical solution of themultispeciesmodel (4) showingmetastable patterns of species coexistence.
The simulations are performed by discretising the space domain into M ∈ N equidistant points, which
yields a system of 3M ordinary differential equations. Periodic boundary conditions are imposed on the
endpoints of the domain. The resulting system is integrated using the MATLABODE solver ode15s. In (a),
A = 1.5 and χ = 0.2 and the system is initially perturbed randomly from a state in which all densities are
uniform in space. In (b) A = 2.4 and χ = 0.8 and the simulation is started from a tree pattern to which a
random perturbation is added. Both initial conditions are obtained from results of the one-species extended
Klausmeier model (1). The other parameter values in all of the figures are B1 = 0.45, b2 = 0.0055,
f = 0.01, h = 0.01, s = 10−3, d = 500 and M = 29 (Color figure online)

The initial densities for the uniform state are chosen based on the steady states of the
one-species Klausmeier model (1) (Klausmeier 1999).

A similar behaviour is exhibited by the model’s solution if the initial condition of
the system is set to a tree-only pattern that is obtained from the one-species Klausmeier
model (1). To this configuration, a low density of the grass variable u1 is added, as well
as a random perturbation in all three variables. In this scenario, the grass density u1
quickly adopts a pattern that is in phase with the tree density u2. The solution remains
in this configuration for a long time, but a sharp reduction in tree density and changes
to the wavelength of the pattern may occur. Eventually a transition to a grass-only
equilibrium occurs. As described above, the choice of this grass-only equilibrium to
which the system eventually converges depends on the precipitation parameter A (see
Fig. 1b).

Such metastable patterns are not only observed for the parameter values chosen in
Fig. 1, but occur for a wide range of parameters. This motivates a closer investigation
of the coexistence patterns and, in particular, their metastability. One possibility to
gain a comprehensive understanding of the patterns’ properties would be a systematic
numerical investigation of the whole parameter space. Such an approach could involve
the tracking of the time the system spends in the coexistence state under variations of
both single parameters and combinations of multiple parameters, as well as a closer
investigation of the pattern’s properties such as its wavelength . However, the number
of different parameters in the model poses a significant challenge for this approach.
Instead, linear stability analysis can be used to study the existence and stability of such
patterns, which is presented in Sects. 4 and 5.
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4 Metastable Coexistence Patterns Arising from Stable One-Species
Patterns

A common tool to study pattern formation in reaction–diffusion systems is linear
stability analysis. Motivated by the simulation visualised in Fig. 1b, we use linear
stability analysis to discuss the emergence ofmetastable patterns inwhich both species
coexist from a stable one-species Turing-type pattern into which a new species is
introduced.

Linear stability analysis is based on the growth/decay of perturbations to equilibria
of the system. Depending on the choice of parameters (6) has up to seven spatially
homogeneous steady states; a trivial state describing desert which is stable in thewhole
parameter space, and pairs of semi-trivial single-species steady states as well as a pair
of equilibria that correspond to coexistence of both species. To differentiate between
the two types of patterns addressed in this section, we strictly refer to a pattern to
be of Turing type if it emerges from a steady state that is linearly stable to spatially
uniform perturbations and becomes unstable upon introduction of spatial variation in
the perturbation. An equilibrium of (6) is linearly stable to spatially homogeneous
perturbations if all eigenvalues λu ∈ C of the system’s Jacobian at the steady states
satisfy Re(λu) < 0. For (4), the Jacobian is given by J (u1, u2, w) = ( j(u1, u2, w)k�),
k, � = 1, 2, 3, where

j (u1, u2, w)11 = (Hw − S) u2 + 2u1w − B1,

j (u1, u2, w)12 = u1 (Hw − S) ,

j (u1, u2, w)13 = u1 (u1 + Hu2) ,

j (u1, u2, w)21 = Fu2w,

j (u1, u2, w)22 = 2Fw
(u1
2

+ Hu2
)

− B2,

j (u1, u2, w)23 = Fu2 (u1 + Hu2) ,

j (u1, u2, w)31 = −w (2u1 + (1 + H) u2) ,

j (u1, u2, w)32 = −w ((1 + H) u1 + 2Hu2) ,

j (u1, u2, w)33 = −u21 − (1 + H) u1u2 − Hu22 − 1.

(7)

For an equilibrium that is linearly stable to spatially uniformperturbations, Turing-type
patterns emerge if there exists a wavenumber k > 0 such that at least one eigenvalue
λs ∈ C of J − diag(k2, Dk2, dk2) has positive real part, i.e. maxk≥0,λs {Re(λs)} > 0.

Although maxk≥0,λs {Re(λs)} > 0 is a necessary condition for the development of
a pattern from a spatial perturbation, maxλu {Re(λu)} < 0 is not necessarily required.
Spatial patterns also form if 0 < maxλu {Re(λu)} � maxk≥0,λs {Re(λs)}. In this case
a pattern (and the corresponding equilibrium) is unstable, but the difference in the
growth rates gives rise to a transient pattern and the solution eventually tends to a
stable state. In particular, if maxλu {Re(λu)} � 1, this transient occurs at a slow rate
as visualised in Fig. 1 and the pattern is metastable.
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4.1 Turing-Type Patterns

Investigation of the existence of such metastable patterns requires a understanding of
the model’s single-species Turing-type patterns. Due to the nature of the model, the
linear stability analysis of the single-species equilibria is almost identical to that of the
extended Klausmeier model on flat ground, in which patterns emerge from a Turing
bifurcation. The considerations for (4) only differ from those of the Klausmeier model
through the existence of an additional condition that determines the stability to the
introduction of the second species. Moreover, in case of the tree-only equilibria, the
parameters F , H and D alter the stability conditions quantitatively.

For each plant species, there exists a pair of semi-trivial steady states in which only
one plant species prevails. Provided A > AG

min := 2B1, the grass equilibrium is

(

uG,±
1 , 0, wG,±) =

⎛

⎝

A ±
√

A2 − 4B2
1

2B1
, 0,

2B2
1

A ±
√

A2 − 4B2
1

⎞

⎠ ,

where the superscript G identifies it as a single-species grass state and ± indicates the
choice of sign. Similarly, the pair of steady states describing a tree-only state is given
by

(

0, uT ,±
2 , wT ,±) =

(

0,
ξ±

2B2H
,
2B2

2

Fξ±

)

,

provided the precipitation parameter exceeds AT
min,ex := 2B2F−1H−(1/2), where

ξ± = AFH ±
√

A2F2H2 − 4B2
2H .

4.1.1 Stability to Spatially Uniform Perturbations

The initial step in determining conditions for the existence of Turing-type patterns is
linear stability analysis in a spatially uniform setting. Assuming no space depen-
dence in (4), an equilibrium’s stability is determined by the eigenvalues of the
Jacobian with entries (7) evaluated at the equilibrium. For the grass-only steady state
(uG,±

1 , 0, wG,±), the Jacobian is

JG,± =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B1

2B2
1H − SA − S

√

A2 − 4B2
1

2B1

(

A ±
√

A2 − 4B2
1

)2

4B2
1

0 B1F − B2 0

−2B1 −B1 (1 + H) −
A

(

A ±
√

A2 − 4B2
1

)

2B2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Thus, the eigenvalues λ
G,±
u ∈ C satisfy

(

B1F − B2 − λG,±
u

)

det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B1 − λ
G,±
u

(

A ±
√

A2 − 4B2
1

)2

4B2
1

−2B1 −
A

(

A ±
√

A2 − 4B2
1

)

2B2
1

− λ
G,±
u

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0.

(8)

The eigenvalue λ
G,±
u,1 := B1F − B2 accounts for the introduction of the tree species

u2, while the remaining two eigenvalues are independent of any parameters associ-
ated with u2. Indeed, the matrix in (8) is identical to that of the corresponding matrix
obtained in the linear stability analysis of the Klausmeier model in which only a single
species is considered. Thus, (uG,+

1 , 0, wG,+) is linearly stable to spatially homoge-

neous perturbations if A > AG
min, B2 > B1F and B1 < 2, while (uG,−

1 , 0, wG,−) is
linearly unstable for any choice of parameters (Klausmeier 1999; Sherratt 2005).

Similar to the analysis of the grass steady state, the tree equilibrium (0, uT ,−
2 , wT ,−)

is linearly unstable in the whole parameter space and (0, uT ,+
2 , wT ,+) is linearly stable

to spatially homogeneous perturbations if A > AT
min,ex, B2 < 2 and

S >
2B2H (B2 − B1F)

Fξ+
. (9)

Similar to the stability conditions of the single-species grass equilibrium, only criterion
(9) accounts for the stability of (0, uT ,+

2 , wT ,+) to the introduction of u1. Thus, the
stable (provided A > AT

min,ex and B2 < 2) single-species tree equilibrium becomes
unstable to perturbations in the grass variable u1 if the shading parameter is sufficiently
small (see the difference between Fig. 2a, c). Rearranging (9) and combining it with
the threshold AT

min,ex for existence of the steady state yields that (0, u
T ,+
2 , wT ,+) exists

and is linearly stable if B2 < 2 and

A > AT
min :=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

2B2

F
√
H

if S > Sc

B2
((

B2
1H + S2

)

F2 − 2B1B2FH + B2
2H
)

(B2 − B1F) F2HS
if S < Sc

, (10)

where Sc := √
H(B2 − B1F)F−1. This lower bound is derived through calculation

of the eigenvalues λ
T ,±
u ∈ C of the Jacobian at (0, uT ,±

2 , wT ,±) which satisfy

(

2B2H (B2 − B1F) − SFξ±
2FHB2

− λT ,±
u

)

det
(

J T ,± − λT ,±
u I2

)

= 0,
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Fig. 2 Stability diagram for the semi-trivial steady states. The coloured areas combine the results of the
linear stability analysis of the full model to spatially homogeneous perturbations and the respective one-
species models in which spatially heterogeneous perturbations of the semi-trivial steady states lead to
patterns in the parameter region (5). The solid line indicates the parameter region in which tree patterns
form in the one-species model (12). The difference between (a) and (c) shows that this does not coincide
with the corresponding parameter region in the multispecies model if S is small. The desert steady state is
stable in the whole parameter plane. The area indicated in the figure only shows the region in which it is
the only stable state. In (a) s = 1 and D = 1− χ(1− 0.01), which gives S < Sc for all 0 < χ < 1; in (b)
s = 1 and D = 1; and in (c) s = 10−3 and D = 1 − χ(1 − 0.01). The inset in (c) shows the behaviour
around χ = χ2. The other parameter values in all of the figures are B1 = 0.45, b2 = 0.0055, f = 0.01,
h = 0.01 and d = 500. The markers (α) and (β) refer to the parameter values used in the simulations
presented in Fig. 1 (Color figure online)
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where

J T ,± =

⎛

⎜

⎜

⎝

B2
Fξ2±
4B2

2H

−2B2

F
− AFξ±

2B2
2

⎞

⎟

⎟

⎠

,

and I is the identity matrix. Imposing a negativity condition on the root λ
C,+
u given

by the first factor of this product yields (9), while the remaining two eigenvalues are
both negative if and only if tr(J T ,±) < 0 and det(J T ,±) > 0. For (0, uT ,−

2 , wT ,−),
det(J T ,−) < 0 for any choice of parameters yielding its instability, while for
(0, uT ,+

2 , wT ,+), det(J T ,+) > 0. Finally, stability requires tr(J T ,+) > 0 which holds
for all B2 < 2.

Bistability of the tree-only steady state and the grass-only steady state requires
stability of both semi-trivial equilibria to the introduction of the other species. Stability
of the single-species grass equilibrium (uG,+

1 , 0, wG,+) to the introduction of the tree
species u2, i.e. B2 > B1F , occurs if the grass species has a superior water to biomass
conversion to mortality rate, which we define to be a measure of a species’ average
fitness. To balance this disadvantage, stability of the tree-only state (0, uT ,+

2 , wT ,+) to
the introduction of the grass species u1 necessitates the shading effect to be sufficiently
large. Indeed, if B2 > B1F and S < Sc, then

AT
min = B2

((

B2
1H + S2

)

F2 − 2B1B2FH + B2
2H
)

(B2 − B1F) F2HS
,

which is decreasing in S below the threshold Sc. Thus, in the parameter region in
which the grass-only steady state is stable, a decrease in the inhibitory shading effect
of trees on grass increases the precipitation requirement for bistability of the tree-only
and grass-only steady state. This is visualised in Fig. 2a, c. The threshold Sc defined
in (10), which is of the same order of magnitude as the average fitness difference
B2 − B1F between the species, describes the intensity of shading above which the
tree equilibrium (0, uT ,+

2 , wT ,+) is stable to the introduction of the grass species u1
for any precipitation levels that guarantee the existence of the steady state. In other
words, if the shading effect of u2 on u1 is sufficiently large, then (0, uT ,+

2 , wT ,+) is
always linearly stable to the introduction of the grass species u1.

The bounds on the plant mortality parameters in the derivations above are sufficient
but not necessary. However, parameter estimates consistently indicate that B1 < 2 and
B2 < 2 (Klausmeier 1999; Synodinos et al. 2015) and thus we restrict the analysis to
this region.

4.1.2 Conditions for the Formation of Turing-Type Patterns

Having established stability conditions for the single-species equilibria in a spatially
uniform setting, we turn to spatially non-uniform perturbations of the steady states to
determine the loci of Turing bifurcations. Typically, linear stability analysis is used
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to study pattern formation by introducing perturbations of the steady state that are
proportional to exp(λs t + ikx) for a growth rate λs ∈ C and wavenumber k > 0.
Imposing such perturbations on the semi-trivial steady states, i.e. (uG,+

1 , 0, wG,+)

and (0, uT ,+
2 , wT ,+), however, would yield negative plant densities, a biologically

unrealistic scenario. To avoid this, the density of the species that vanishes at the steady
state is kept at zero. This reduces the model to the one-species Klausmeier model with
water diffusion (up to the constants F , H and D in case of (0, uT ,+

2 , wT ,+)), for which
patterns form due to a diffusion-driven instability.

More precisely, for (uG,+
1 , 0, wG,+) (4) reduces to

∂u1
∂t

= wu21 − B1u1 + ∂2u1
∂x2

,

∂w

∂t
= A − w − wu21 + d

∂2w

∂x2
,

which is the extended Klausmeier model on flat ground. The typical linear stability
analysis approach outlined above yields that a pattern-forming instability occurs for

AG
min < A < AG,+

max

:=
B

3
2
1 d

1
2

(

3B2
1d

2 + 7B1d − 8 − 2
√

2B4
1d

4 + 6B3
1d

3 − 8B1d

) 1
2

dB1 + 1
, (11)

provided d > B−1
1 . If d < B−1

1 , then AG,+
max ∈ C and no Turing bifurcation occurs.

Similarly, setting u1 = 0 in (4), i.e. considering the tree-only steady state
(0, uT ,+

2 , wT ,+), yields

∂u2
∂t

= FHwu22 − B2u2 + D
∂2u2
∂x2

, (12a)

∂w

∂t
= A − w − Hwu22 + d

∂2w

∂x2
. (12b)

Considerations identical to those in the analysis of the extended Klausmeier model
show that an instability leading to the formation of a tree pattern occurs if

AT
min,ex < A < AT ,+

max

:=
B

3
2
2 d

1
2

(

3B2
2d

2 + 7DB2d − 8D2 − 2
√

2B4
2d

4 + 6DB3
2d

3 − 8D3B2d

) 1
2

D
1
2 FH

1
2 (dB2 + D)

,

(13)

provided d > DB−1
2 . If d < DB−1

2 , then AT ,+
max ∈ C and no Turing bifurcation occurs.
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Condition (13) is equivalent to the ratiod/D of the diffusion coefficients exceeding a
critical threshold. Thus, a lower rate of diffusion of thewoody species increases the size
of the parameter region supporting pattern formation. This phenomenon is visualised
in the stability diagrams 2a, b. It is important to emphasise that the bifurcation point
AT ,+
max is obtained by considering perturbations in u2 and w only. The calculation of

AT ,+
max does not take into account a possible introduction of the grass species u1. Indeed,

as the difference between Fig. 2a, c visualises, if the shading parameter S is sufficiently
small, then there exists a parameter region in which a single-species tree pattern is
stable only in the context of a single-speciesmodel. The instability to an introduction of
the grass species u1 occurs due to an increase in AT

min, given by (10), for decreasing S.
For sufficiently small S, this causes AT

min > AT
min,ex and thus a tree-only pattern cannot

form for AT
min,ex < A < AT

min if the assumption of u1 = 0 is relaxed. Similarly, the

pattern-forming condition (11) obtained for (uG,+
1 , 0, wG,+) only applies if the steady

state is stable to perturbations in u2, i.e. if B2 > B1F . In the stability diagrams in Fig. 2
a state is only assumed to occur if the introduction of the second species does not cause
destabilisation. Even though this restricts the bistability region of both single-species
equilibria, the numerical simulations presented in Sect. 3 suggest that this restriction
does not apply to metastable patterns in which both species coexist. In particular, the
simulation visualised in Fig. 1b, which corresponds to the (β) marker in Fig. 2c, lies
outside the bistability region. Indeed, the parameter region AT

min,ex < A < AT
min, i.e.

the region in which the tree pattern is stable in the one-species model but unstable to
the introduction to the grass species, gives rise to a metastable pattern such as that
shown in Fig. 1b and is closely examined in Sect. 4.2.

To address the effects caused by the difference between two plant species, we put
particular emphasis on the parameter region given by (5), where the difference is
described by a single parameter 0 < χ < 1 for simplicity. To focus on the possible
coexistence of both plant types, we further restrict the parameter region to that of the
grass-only steady state’s stability, i.e. A > 2B1 and B2 > FB1. The latter condition
holds for all 0 < χ < 1 if b2 > f B1. The lowest levels of precipitation beyond
the threshold A = 2B1 that separates the parameter region in which only the trivial
desert equilibrium is stable from bistability or tristability regions of plant states and the
bare soil state, only support grass patterns. For a sufficiently small difference χ < χ1
between the grass and tree species, an increase in rainfall along the precipitation
gradient leads to a region in which the two patterned states are stable, before the
uniform grass-only steady state gains stability and eventually also the uniform tree
equilibrium becomes stable to form a parameter region in which there is bistability
of both uniform steady states. If the difference between the species is larger than
the threshold χ1, then no bistability of both patterned states is possible. Instead, the
uniform grass steady state becomes stable at rainfall levels that are lower than those
required for a tree pattern to form (Fig. 2a–c). Finally, if χ > χ2 > χ1, where the
threshold χ2 may be larger than unity, the system does not support the formation of
tree patterns and there is a direct transition from the parameter region that supports
only the uniform grass equilibrium to the region in which bistability of both uniform
steady states occurs (Fig. 2c).
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4.2 Metastable Patterns

The results of the preceding linear stability analysis not only show the existence of
single-species Turing patterns, but in the parameter region AT

min,ex < A < AT
min also

that of metastable patterns, such as the pattern visualised in Fig. 1b, in which both
species coexist.

Provided it exists (A > AT
min,ex), the tree-only equilibrium (0, uT ,+

2 , wT ,+) is
stable to spatially uniform perturbations in the tree density u2 and the water density
w for all biologically relevant parameter values and tree patterns emerge from the
steady state due to a Turing-type instability for sufficiently low precipitation levels.
An additional stability condition (9) arises from the introduction of the grass species
u1. If (0, u

T ,+
2 , wT ,+) is unstable to the introduction of u1 (A < AT

min), the eigenvalue

λ
T ,+
u,1 corresponding to spatially uniform perturbations is of small size and thus gives

rise to a metastable solution as shown in Fig. 1b. If in addition Re(λG,+
s,1 (k)) � λ

T ,+
u,1 ,

where λ
T ,+
s,1 (k) ∈ C is the growth rate corresponding to a spatial perturbation with

mode k > 0, the grass species quickly (compared to the time it takes to reach the
stable grass-only state) adopts a patterned appearance in phase with the tree pattern
during this transition. Indeed,

λ
T ,+
u,1 = 2B2H (B2 − B1F)

F

(

AFH +
√

A2F2H2 − 4B2
2 F

2H

) − S ≤ 2B2

AF2 (B2 − B1F) � 1,

(14)

because tree mortality B2 is of small size (see Table 1). Further, the condition
Re(λG,+

s,1 (k)) � λ
T ,+
u,1 is satisfied unless parameter values are close to the grass-

only steady state’s Turing bifurcation locus. Thus, if a grass population is introduced
into a stable tree pattern and causes destabilisation of this pattern as shown in Fig. 1b,
the small size of the eigenvalue (if positive) yields a slow transition to the stable grass-
only state. The difference B2 − B1F plays a crucial role in the metastability property
as it is the cause of the pattern’s slow rate of destabilisation. Ecologically the small
size of this difference corresponds to similar average fitness of both species. It is this
balance that enables the coexistence of both species. The significance of B2 − B1F is
not a special feature of this particular case but also causes the metastability of patterns
originating from spatially uniform initial conditions such as that used in the simulation
visualised in Fig. 1a. This is discussed in more detail in Sect. 5.

Similar considerations suggest the possibility of metastable coexistence patterns
that arise from the introduction of the tree species into a stable grass pattern that
consequently becomes unstable. In this situation, however, the eigenvalue λ

G,+
u,1 =

B1F − B2 that corresponds to the introduction of the tree species is not necessarily
small. Unless λ

G,+
u,1 � 1, a perturbation of a grass pattern through the introduction

of trees yields a quick transition to a tree pattern as a positive but not small value of
B1F − B2 corresponds to a larger average fitness of the tree species.
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4.2.1 Wavelength

A key feature of any regular pattern is its wavelength. While an extensive study of
pattern wavelength requires tools from nonlinear analysis, linear stability analysis
provides an insight into the wavelength of the patterns close to the bifurcation locus.
Then, the pattern wavelength is typically determined by the wavenumber that corre-
sponds to the largest growth rate. Given such a wavenumber kmax calculated in the
derivation of the Turing bifurcation points, the corresponding pattern has wavelength
L = 2π/kmax.

From the preceding linear stability analysis, we find that the wavelength of the tree
species is increasing with the parameter χ . Thus, for a constant level of precipitation,
the more tree-like a species is, the longer is its pattern wavelength (Fig. 3c). Such
a comparison requires bistability of both patterned states, which is not necessarily
the case for all 0 ≤ χ ≤ 1, as indicated in Fig. 3. The wavelength of both species
further increases with decreasing rainfall, which is in agreement with results for the
Klausmeier model on sloped terrain (Sherratt 2005, 2013c).

The most unstable wavenumber is not necessarily the mode that is selected in a
pattern. Hysteresis is known to occur in the single-species Klausmeier model (Sherratt
2013a; Siteur et al. 2014a) and may cause the selected mode to differ from the most
unstable mode. It is thus informative to obtain bounds on the wavelength from linear
stability analysis. These bounds show that both an increase in species difference and
lower precipitation increase the range of possible wavelengths (Fig. 3a, b).

5 Metastable Coexistence Patterns Originate from a Coexistence
Equilibrium

The analysis in Sect. 4 only explains patterns in which both species coexist in the
parameter region AT

min,ex < A < AT
min. The simulations presented in Sect. 3, however,

suggest that metastable coexistence patterns occur in a wider range of the precipitation
parameter A. In this sectionwe show that Turing-type patterns of the tree species u2 are
not the only origin of metastable patterns. Additionally, metastable patterns of species
coexistence can arise from an equilibrium in which both species coexist, which is the
subject of this section.

Besides the trivial and semi-trivial equilibria discussed in Sect. 4, (4) also admits
a pair of coexistence steady states (uC,±

1 , uC2 , wC,±), where similar to the notation
used for the single-species states the superscript C identifies the equilibrium as a
coexistence state. The equilibria satisfy

uC,±
1 = 1

2B2

(

AF − B2 (1 + F) uC2

±
√

(

AF + B2 (1 + F) uC2
)2 − 4B2

(

−AFHuC2 + B2

(

1 + H
(

uC2
)2
))

)

,

uC2 = B2 − FB1

SF
, wC,± = A − B2

F

(

uC,±
1 + uC2

)

,

123



Metastability as a Coexistence Mechanism in a Model for… 2309

Fig. 3 Single species pattern wavelength. This figure visualises the pattern wavelengths of both single-
species patterns calculated through linear stability analysis. The contours show thewavelength of the pattern
of species u2 as its difference from the grass species u1 increases, while the values on the A-axis correspond
to the wavelength of the grass pattern. Minimum (a), maximum (b) and wavelengths corresponding to the
most unstable mode (c) are shown. The parameter values are B1 = 0.45, b2 = 0.0055, f = 0.01, h = 0.01,
D0 = 0.01 and d = 500. The markers (α) and (β) refer to the parameter values used in the simulations
presented in Fig. 1. For a comparison to the wavelengths of the coexistence pattern, see Fig. 7 (Color figure
online)

under suitable conditions that ensure their existence and biological relevance. For
(uC,−

1 , uC2 , wC,−) these are B2 > B1F and

max

{

B2
(

uC2 (1 − H) + 2
)

F
,
B2uC2 (1 + F)

F

}

< A <
B2

(

1 + H
(

uC2
)2
)

FHuC2
,
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while the corresponding conditions for (uC,+
1 , uC2 , wC,+) are B2 > B1F and

A > AC,+
min

:= max

⎧

⎨

⎩

B2
(

uC2 (1 − H) + 2
)

F
,min

⎧

⎨

⎩

B2uC2 (1 + F)

F
,
B2

(

1 + H
(

uC2
)2
)

FHuC2

⎫

⎬

⎭

⎫

⎬

⎭

.

(15)

Visualisations in this paper are shown for the special parameter setting (5) and F = H .
In this situation changes to χ do not affect the nature of how the equilibrium loses its
relevance. If s > b2−B1 f , then (uC,+

1 , uC2 , wC,+) ceases to exist at A = AC,+
min , while

otherwise A = AC,+
min represents the threshold at which uC,+

1 becomes negative (see

Fig. 4). Similar considerations hold for (uC,−
1 , uC2 , wC,−). This equilibrium, however,

does not exhibit the metastability property which is the main focus of this paper and
is therefore not considered further. It is noteworthy that there is nothing special about
the choice of F = H and results are robust to changes in F and H , provided the
rainfall minimum AC,+

min remains in the biologically relevant parameter region. Results
presented in this paper are also robust to changes in s. Finally, we remark that the size
of the shading parameter S needs to be similar to that of the average fitness difference
between both species B2−B1F for the equilibrium to remain in a biologically relevant
region, as large (small) shading effects only support coexistence at equilibrium if the
density of u2 is low (high).

An initial conclusion that is drawn from calculation of the existence region of the
coexistence equilibria is that their existence is not required for metastable patterns
in which both species coexist to form and patterns outside the existence region of
(uC,±

1 , uC2 , wC,±) truly originate from a stable tree-only pattern as discussed in Sect. 4.
In particular, the simulation shown in Fig. 1b is obtained by using parameter values for
which the coexistence steady states do not exist (see the (β) marker in Fig. 4a). The
parameter region considered in this sectionmay, however, overlapwith that considered
in Sect. 4, and no general statement on the sizes of AT

min and AC,+
min can be made.

To gain a better understanding of the effects caused by the difference in both plant
types, it is essential to understand the steady states’ behaviour if the species are iden-
tical. At χ = 0, the coexistence steady state is

(

uC,±
1 , uC2 , wC,±)

=

⎛

⎜

⎜

⎝

(

A ±
√

A2 − 4B2
1

)

2B1
− b2 − B1 f

s
,
b2 − B1 f

s
,

2B2
1

A ±
√

A2 − 4B2
1

⎞

⎟

⎟

⎠

.

(16)
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Fig. 4 Existence and positivity of the coexistence steady state. Visualisation of the parameter regions in

which the coexistence steady state (uC,+
1 , uC2 , wC,+) exists and is biologically relevant (positive) in the

χ -A parameter plane for different levels of shading. In (a) s = 10−3, while in (b) s = 3 · 10−4. The other
parameter values used in this visualisation are B1 = 0.45, b2 = 0.0055, f = 0.01 and h = 0.01. The
legend of (a) also applies to (b). The markers (α) and (β) in (a) refer to the parameter values used in the
simulations presented in Fig. 1 (Color figure online)

As remarked in Sect. 2, for χ = 0, the densities u1 + u2 and w satisfy the extended
Klausmeier model. Thus, the sum u1 + u2 gives rise to a continuum of steady states
that satisfy

u1 + u2 =
A ±

√

A2 − 4B2
1

2B2
1

, and w = 2B2
1

A ±
√

A2 − 4B2
1

.

The coexistence steady state (uC,±
1 , uC2 , wC,±)maps to onemember of this continuum

whose choice depends on the model parameters as given by (16).

5.1 Stability to Spatially Uniform Perturbations

Similar to the analysis in Sect. 4, linear stability analysis can be used to investigate
the existence of patterns arising from the coexistence steady state (uC,±

1 , uC2 , wC,±).
The algebraic complexity of the Jacobian with entries (7) evaluated at both coexis-
tence equilibria does not allow an analytic derivation of stability conditions similar
to those for the single-species states in Sect. 4. Instead, we performed a system-
atic numerical investigation of the Jacobian’s eigenvalues λ

C,±
u ∈ C that determine

the steady states’ stability to spatially uniform perturbations in the respective pos-
itivity regions. This suggests that both steady states are unstable. The instability of
(uC,+

1 , uC2 , wC,+), however, is caused by an eigenvalue of small size, denoted by λ
C,+
u,1 ,
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i.e. 0 < maxλu {Re(λC,+
u )} = Re(λC,+

u,1 ) � 1, where the maximum is taken over all

eigenvaluesλ
C,+
u of the Jacobian JC,+ = ( j)C,+

k� , k, � = 1, 2, 3 evaluated at the steady

state (see Fig. 5a). The metastability associated with the small size of Re(λC,+
u,1 ) is, as

in the case discussed in Sect. 4, due to the species’ similar average fitness, i.e. the small
difference of B2 − B1F . Indeed, an application of determinant-preserving elementary
row operations shows

det
(

JC,+) = det

⎛

⎝

jC,+
11 jC,+

12 jC,+
13

0 B2 − B1F 0
jC,+
31 jC,+

32 jC,+
33

⎞

⎠

= (B2 − B1F)
(

jC,+
11 jC,+

33 − jC,+
13 jC,+

31

)

= O (B2 − B1F) .

The equilibrium is only of biological relevance if B2 > B1F . Thus, as discussed
in Sect. 4.2, |B2 − B1F | � 1, and hence | det J | � 1. Since the determinant of
a matrix is the product of its eigenvalues, this shows the small size of one of the
Jacobian’s eigenvalues. If B2 − B1F = 0 but S �= 0, then the coexistence steady state
(uC,±

1 , uC2 , wC,±) reduces to the grass-only equilibrium (uG,±
1 , 0, wG,±) and the small

eigenvalue λ
C,+
u,1 of the coexistence state corresponds to λ

G,±
u,1 which vanishes because

B2 − B1F = 0.

5.1.1 Metastable States

For a system initially close to the coexistence steady state (uC,+
1 , uC2 , wC,+), the

small size of the only positive real part of the Jacobian’s eigenvalues leads to a
slow transition away from the equilibrium in the spatially uniform setting. If spa-
tially non-uniform perturbations of the steady state are considered, this transition
occurs via metastable coexistence patterns of both species, subject to sufficiently low
rainfall levels. This is quantified by linear stability analysis which shows that the
maximum real part of the corresponding Jacobian’s eigenvalues exceeds Re(λC,+

u,1 )

by several orders of magnitude (see Fig. 5b, c for a visualisation). In other words,
maxk≥0{Re(λC,+

s,1 (k2))} � Re(λC,+
u,1 ), where λ

C,+
s,1 (k2) denotes the eigenvalue of

JC,+ − diag(k2, Dk2, dk2) with the largest real part. This leads to a quick estab-
lishment of a coexistence pattern about the steady state from a spatially non-uniform
perturbationwhich then persists for a long time before transiting to a stable one-species
state. The growth rate that causes the formation of spatial patterns is given by

Re
(

λ
C,+
s,1

(

k2
))

= α
(

k2
)

+ Re

⎛

⎜

⎜

⎝

(

β
(

k2
)+

√

γ
(

k2
)
)

2
3 + δ

(

k2
)

(

β
(

k2
)+

√

γ
(

k2
)
)

1
3

⎞

⎟

⎟

⎠

, (17)

where α, β, γ and δ are polynomials in k2. Due to the algebraic complexity of the
eigenvalue, an analytic determination of the pattern-defining features is impractical.
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Fig. 5 Largest real part of eigenvalues determining stability of the coexistence steady state. Visualisation

of maxk>0{Re(λC,+
·,1 )} in the χ -A parameter plane for the coexistence equilibrium (uC,+

1 , uC2 , wC,+),

where λ
C,+
·,1 denotes the eigenvalue with largest real part of the Jacobian with entries (7) evaluated at the

steady state that determine its stability to spatially uniform (a) and spatially heterogeneous (b) perturbations.
The order of magnitude difference between the results for spatially uniform and spatially heterogeneous
perturbations is shown in (c). White areas indicate regions in which the steady state is negative or does

not exist. The plots are obtained by evaluating maxk>0{Re(λC,+
·,1 )} for 0 < A < 8 and 0 < χ < 1 with

increments �A = 0.01 and �χ = 0.001. The parameters are s = 10−3, B1 = 0.45, b2 = 0.0055,
f = 0.01, h = 0.01, D0 = 0.01, d = 500. The marker (α) refers to the parameter values used in the
simulations presented in Fig. 1a (Color figure online)

Instead, we studied it numerically to determine the existence and possible wavelengths
of a metastable pattern.

As rainfall A increases from theminimum AC,+
min , maxk≥0{Re(λC,+

s,1 (k2))} decreases
and there exists a critical value of precipitation AC,+

max beyond which maxk≥0

{Re(λC,+
s,1 (A; k2))} = Re(λC,+

u,1 (A)) (Fig. 6a). In particular, there is a discontinu-

ity in kC,+
max := argmaxk≥0{Re(λC,+

s,1 (k2))} at A = AC,+
max , because the maximum real

part of the eigenvalues attains its maximum at k = 0 for A > AC,+
max , but k

C,+
max � 0
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Fig. 6 Dispersion relation for patterns with species coexistence. The dispersion relation is visualised for
different rainfall levels A and fixed χ = 0.2 (a) and χ = 0.86 (b). The inset in (a) shows the behaviour
close to the origin. The dotted line in (b) indicates the equality of the local maxima for A = Ak1 . The other

parameters are s = 10−3, B1 = 0.45, b2 = 0.0055, f = 0.01, h = 0.01, D0 = 0.01, d = 500 (Color
figure online)

as A ↑ AC,+
max . This threshold is an upper bound for the existence of metastable coex-

istence patterns and is visualised in Fig. 5c. For rainfall levels above this threshold,
metastable coexistence of both plant species still occurs, albeit not as a pattern. Spatial
heterogeneity does not cause the formation of patterns in this case as Re(λC,+

s,1 (A))

attains its maximum at k = 0. The small size of Re(λC,+
u,1 ) still causes a solution

slightly perturbed from the coexistence steady state to remain close to the equilibrium
for a long time. This gives rise to a metastable state in which both vegetation types
are present uniformly in space.

5.1.2 Wavelength

Linear stability analysis further provides an insight into the wavelength of patterns.
Typically the wavelength of a pattern is dominated by the wavenumber yielding the
largest growth. However, since the wavelength of a pattern is an inherently nonlinear
property different modes may be selected due to effects such as hysteresis. In this
case the roots of Re(λC,+

s,1 (k2)) provide an upper and lower bound for the wavelength.
The numerical investigation of the dispersion relation shows that pattern wavelength
increases with decreasing rainfall, in line with results shown in Sect. 4 and previ-
ous results on the single-species Klausmeier model on sloped ground (Sherratt 2005,
2013c). In other words, the distance between vegetation patches is larger in regions
in which a smaller amount of the limiting water resource is available. An increase in
the difference between the two plant species also causes an increase in the wavelength
difference, but this increase is small compared to changes caused by precipitation fluc-
tuations. A visualisation of the wavelength is given in Fig. 7. A further complication
in the calculation of the wavelength through linear stability analysis arises through
the algebraic complexity of the dispersion relation (17) which causes a discontinuity

123



Metastability as a Coexistence Mechanism in a Model for… 2315

Fig. 7 Wavelength of metastable coexistence patterns. This figure visualises contours of the wavelength
associated with the wavenumber yielding the largest growth (c) as well as lower (a) and upper bounds (b)
that arise from linear stability analysis. For details on the creation of the plots and the parameter values, see
Fig. 5. For a comparison to the wavelengths of the single-species pattern, see Fig. 3 (Color figure online)

in the most unstable mode and hence also the largest root in a subset of the parameter
space considered in this analysis. The discontinuities arise from the existence of two
local maxima of Re(λC,+

s,1 (k2)), one of which occurs for k1 < k < k2, which is the
positivity region of γ (k2), while the other local maximum is attained for k > k2. Con-
sequently, there exists a critical value of the precipitation parameter Ak1 at which there
is a discontinuity in argmaxk≥0 Re(λ

C,+
s,1 (k2)) because both local maxima coincide

(see Fig. 6b). Similarly, the rainfall value Ak2 at which maxk≥k2 Re(λ
C,+
s,1 (k2)) = 0,

causes a discontinuity in the largest root of the dispersion relation and thus in the lower
bound for the wavelength of the coexistence pattern.
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6 Discussion

Ourwork predicts that coexistence of twoplant species competing for the same limiting
resource can occur as a long transient state, even if coexistence is inherently unstable.
Such a metastable behaviour is characterised by the small size of the only positive
eigenvalue of the equilibrium from which the coexistence arises. Coexistence of two
species in such a metastable state is enabled by a balance of both species’ average
fitness which is measured by the ratio of a species’ capability to convert water into
newbiomass to itsmortality rate. In the nondimensionalmodel parameters, this balance
corresponds to the small size of B2 − B1F , the quantity that controls the size of the
eigenvalue causing the instability.

In ecology, the understanding of transient states is of utmost importance as many
ecosystems never reach an equilibrium state. Disturbances such as changes to grazing
patterns or climate change interrupt the convergence to a steady state on a frequent
basis, and thus keep systems in perpetual transients (Sprugel 1991; Svenning and
Sandel 2013). The occurrence of such disequilibrium states is not specific to savanna
and dryland biomes but also occurs in ecosystems of other climate zones (Serra-Diaz
et al. 2018). While we have not investigated the system’s response to changes in
environmental conditions, such as variability in precipitation or a changes in water
evaporation due to temperature fluctuations, the analysis presented in this paper can
provide an insight into the dynamics of such transient states by investigating their
origin, fate and some of their properties.

We have established two possible origins of metastable states in the multispecies
model (4): a spatially uniform equilibrium in which both species coexist (Sect. 5) and
a one-species tree pattern that is unstable to the introduction of the herbaceous species
(Sect. 4). For the latter, the consideration of the interspecific shading feedback is not
necessary. The direct interspecific competition does, however, cause a further decrease
in the unstable eigenvalue (14), by further reducing the average fitness difference
between both species. Large shading effects may also tip that balance in favour of
the tree species, stabilising the tree pattern and thus preventing the formation of a
metastable coexistence pattern from an invasion-type scenario (see Fig. 2).

On the other hand, the inclusion of the shading effect is essential for the existence
of metastable states arising from a coexistence equilibrium as a direct interspecific
competition term is necessary for the existence of such a steady state. Coexistence at
equilibrium without the presence of a shading effect is only possible if the average
fitness of both species are equal, i.e. B2 = B1F , a highly unlikely scenario unless
both species are the same. Similar to a previous analysis of a multispecies model in
dryland ecosystems by Nathan et al. (2013), we did not consider this special case as
it lacks biological relevance. Nevertheless, the lack of a shading feedback does not
necessarily prevent the establishment of a coexistence pattern from perturbations to a
spatially uniform configuration of both species similar to that visualised in Fig. 1a. If
the species differ in their dispersal behaviour, the faster dispersing species can establish
a spatial pattern (provided precipitation is sufficiently low) and can act as an ecosystem
engineer by redistributing the water resource to which the slow disperser can adapt
and form a pattern itself. As discussed in slightly different settings by Nathan et al.
(2013) and Baudena and Rietkerk (2013), this supports the existence of coexistence
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patterns. In particular, this pushes the system into a state to which the theory presented
in Sect. 4 can be applied. Hence, if one of the two corresponding single-species states
is unstable to the introduction of the competitor via a very small eigenvalue, the system
remains in the coexistence pattern state for a long time. This observation emphasises
the difficulty of inferring the origin of a metastable multispecies patterned state, which
is beyond the scope of this paper.

The wavelength of the pattern may provide a useful tool in predicting the fate of
a coexistence pattern, but potential shortfalls (linearisation, neglection of hysteresis
effects) in the determination of the wavelength need to be taken into account. Our
analysis of the patterns’ wavelengths shows that the wavelength of a single-species
tree pattern (Fig. 3) is very similar to that of a pattern in which the tree species
coexists with the grass species (Fig. 7). However, if both species differ significantly
(the parameter χ being close to unity), linear stability analysis predicts single-species
grass patterns at a smaller wavelength than coexistence patterns. Thus, if a pattern in
which both species coexist occurs at an atypical mode that differs from the results
presented in Sects. 4.2.1 and 5.1.2 and better fits the wavelength prediction of a one-
species pattern (such as in the later stages of the solution visualised in Fig. 1b), it can
be concluded that the metastable pattern eventually reduces to a one-species pattern
to which the observed wavelength corresponds.

We have restricted our analysis in this paper to the two-species model (4) to focus
on the analytical investigation of pattern existence. Numerical simulations of a three-
species model similar to (2) with n = 3, but with the addition of multiple, hierarchical
interspecific interaction terms, also yield metastable patterned solutions in which all
three species coexist, provided their average fitness differences are small. Coexistence
through metastability can further occur for just a subset of all species in the model.
Indeed, our numerical experiments show that if one of the species has a lower average
fitness, then the community of superior species outcompetes the inferior species on a
short timescale and forms a metastable coexistence state in which it remains on a long
timescale. We thus hypothesise that the metastability property discussed in this paper
is not specific to the two-species model (4) but can be extended to a larger community
of plant species in desert ecosystems. Moreover, our simulations of the three-species
model indicate that the crucial condition for the existence of metastable solutions–
small average fitness differences between species—is carried over to systems of more
diverse plant communities.

The concept of a metastable solution to a system is not new. Metastability has, for
example, been studied in the Cahn–Hilliard equation (Bates and Xun 1994, 1995), in
chemotactic models (Potapov and Hillen 2005) and microwave heating models (Iron
andWard 2004). The occurrence of a slow transient between two stable states has even
been briefly commented on in the analysis of a more complex multispecies model of
desert plants (Gilad et al. 2007b), without the attempt to provide a detailed investiga-
tion of the phenomenon. It is worth emphasising that we characterise metastability by
the small size of the only positive eigenvalue of an equilibrium. In landscape ecology,
however, the term metastability usually has a broader meaning as it describes a sta-
ble system whose single components are changing over time due to disturbance and
recovery effects (Zimmerman et al. 2010).
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Themodel in this paper is based on theKlausmeiermodel (Klausmeier 1999),which
deliberately reduces the description of the dynamics responsible for the formation of
vegetation patterns in arid environments to the infiltration feedback arising from a soil
modification caused by plants. A range of more complex models exist (see Zelnik
et al. (2013) for a review of the most commonly used models) that capture a number
of additional features of dryland ecosystems, such as nonlocal plant dispersal (Alfaro
et al. 2018; Baudena and Rietkerk 2013; Eigentler and Sherratt 2018; Pueyo et al.
2008, 2010), different dynamics of soil and surface water (HilleRisLambers et al.
2001; Rietkerk et al. 2002), nonlocal water uptake due to extended root networks
(Gilad et al. 2004), more realistic grazing/browsing effects (Siero 2018; Siero et al.
2019) or autotoxicity (Marasco et al. 2014). Simulation-based approaches have to
some extent addressed the influence of these feedbacks on the coexistence of species
(Gilad et al. 2007b; Kyriazopoulos et al. 2014), but an analytical approach similar to
that presented in this paper may provide further insight into the way in which these
additional assumptions affect coexistence mechanisms.

A natural extension of the work presented in this paper would be an investigation
of the metastability property in a two-dimensional space domain. The linear stability
analysis from Sects. 4 and 5 can be carried over to a higher space dimension, but does
not provide any new information on the metastable behaviour of a patterned solu-
tion. Instead, numerical simulations could provide more insights into the coexistence
pattern’s properties away from the Turing bifurcation locus, such as a classification
of its type (gap pattern, labyrinth pattern, stripe pattern or spot pattern) along the
precipitation gradient (Meron 2012). The combination of adding an additional space
dimension with the long runtimes required to capture the metastable behaviour of the
system would, however, incur a significant computational cost.

A final area of potential future work concerns variabilities in environmental condi-
tions, which have not been addressed in this paper. Effects such as rainfall seasonality
(Baudena et al. 2007; Guttal and Jayaprakash 2007; Kletter et al. 2009), rainfall inter-
mittency (Baudena et al. 2007; Kletter et al. 2009; Siteur et al. 2014b; Ursino and
Contarini 2006), periodic variation in precipitation (Tzuk et al. 2019) or topographic
heterogeneity (Gandhi et al. 2018) are known to be significant for vegetation patterns
and have been studied using single-species models. It could therefore be of interest
to extend those approaches to multispecies ecosystems to develop an understanding
of how such heterogeneities affect the coexistence of species and, in particular, the
metastability property of the model presented in this paper. Indeed, simulations of our
multispecies model under seasonal precipitation regimes suggest that rainfall seasons
of intermediate length (150–250 days per year) prolong the time the system remains
in a coexistence state. Initial simulations, however, also suggest that inherently non-
linear properties such as pattern wavelength have a significant effect on the system’s
transient behaviour under temporal variations of environmental conditions. A detailed
investigation of this phenomenon is therefore beyond the scope of this paper, but would
present new valuable insights into coexistence of plant species in dryland ecosystems.
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