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Abstract. This paper is concerned with the possibility of Turing bifurcations
in a reaction-diffusion system in which the diffusion coefficient of one species
varies periodically in time. This problem was introduced and investigated
numerically by Timm and Okubo (J. Math. Biol. 30, 307, 1992) in the context
of predator-prey interactions in plankton populations. Here, I consider the
simple case in which the temporal variation in diffusivity has a square-tooth
form, alternating between two constant values, with a period that is long
compared with the time scale of the kinetics. The analysis is valid for any
set of reaction kinetics. I derive explicit expressions for the Floquet multipliers
that determine the stability of the steady state, and thereby obtain the
conditions for diffusion driven instability to occur. These conditions imply
that, depending on the kinetics, the homogeneous equilibrium may be either
more or less stable than when the diffusion coefficient is a constant equal to
the mean of the variable diffusivity. I go on to consider the form of the solution
when diffusion driven instability does occur, and I use perturbation theory to
determine the effect of a small temporal variation in the diffusion coefficient
on the spatial wavelength of the pattern that results from diffusion driven
instability.

Key words: Diffusion driven instability — Reaction diffusion equations —
Pattern formation

Introduction

The evolution of spatial structure from an initially homogeneous state is one
of the most widely studied problems in mathematical biology. Many of the
proposed models consist of systems of reaction-diffusion equations, in
which spatial pattern arises via a Turing bifurcation (Turing 1952). In this
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mechanism, a homogeneous steady state that is stable to spatially uniform
perturbations becomes unstable, in the presence of diffusion, to perturbations
with appropriate spatial frequencies. This mechanism has been applied to
spatial pattern formation in both embryology (Murray 1981; Meinhardt and
Gierer 1974) and ecology (Segel and Jackson 1972; Levin and Segel 1976), and
a detailed review is given in the book by Murray (1989). The Turing bifurca-
tion was initially studied for reaction-diffusion systems in which the kinetic
terms are functions of only the dependent variables, that is morphogen
concentration or population density. Auchmuty and Nicolis (1975) extended
the analysis by allowing the kinetic parameters to vary in space, and this has
been developed by a number of subsequent authors (Pacala and Roughgarden
1982; Shigeshada 1984; Cantrell and Cosner 1991). In particular, when the
kinetic parameters are piecewise constant, the stability of the homogeneous
state depends not only on the value and width of the regions of constant
parameters, but also on their spatial arrangement. More recently it has been
shown that spatially varying diffusion coefficients can produce patterns that
vary in either amplitude or wavelength across the domain (Maini et al. 1992;
Benson et al. 1993a,b).

In the context of developmental biology, such spatial variations in para-
meter values probably represent one of the main points of difference between
the original theory of Turing (1952) and those actual biological systems in
which chemical prepatterns regulate morphogenesis. However, in ecological
contexts there is another point of difference, namely the temporal oscillations
in parameter values due to seasonal variations. The effects of such oscillations
were first considered by Timm and Okubo (1992). They studied the model
of Levin and Segel (1976) for the predator-prey interaction between different
species of plankton, with a sinusoidal temporal variation in the dispersal
rate of the zooplankton (predators). In this case, such a variation arises
from the combination of vertical migration and vertical current shear. Timm
and Okubo (1992) presented numerical evidence that, for one particular
set of kinetic parameters, the homogeneous steady state becomes more
stable as the amplitude of the temporal variation in dispersal rate increases,
with constant mean. They also used perturbation theory to prove this stabilis-
ing effect analytically when the temporal variation in dispersal rate is very
small.

In this paper I present more general analytical results for the case of
oscillations in predator dispersal rate. In order to facilitate analysis, I
suppose that these oscillations take the form of the dispersal rate alternating
between two constant values; moreover 1 consider only the case of very
long period oscillations, such as seasonal variations. Within this context,
I derive exact analytical conditions for diffusion driven patterns to form.
In particular, my results show two separate regions of instability, only
one of which was picked up in the numerical study of Timm and Okubo
(1992). Moreover, I disprove their conjecture that diffusion driven instability
always becomes less likely when temporal oscillations in dispersal rates are
introduced.
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The problem I consider concerns a system of two reaction-diffusion
equations of the form

0u/dt = D,V?u + f(u,v) (1a)
dv/dt = D, (Vv + g(u,v) (1b)

where (u;, v;) is a homogeneous steady state of the system, and D, (t) is periodic
with minimum period T. Specifically, I assume that D,(t) alternates between
two constant values, that is D,(t)=D* on nT <t<(n+ 1/2T and
D,()=D" on (n+1/2)T <t < (n+ 1)T (neZ); the values of D,(nT) and
D,(nT + T/2)are irrelevant. Henceforth, I will describe this functional form as
a “square-tooth” form. The motivation for choosing this particular form of
D,(t) is simply that it enables the conditions for diffusion driven instability to
be determined explicitly, which is not possible more generally. This case
therefore provides a method of gaining insight into the way in which the
formation of spatial patterns can be altered by a temporal oscillation in
dispersal rates. Note that in this case the existence of a solution to (1) and its
continuous dependence on initial data follow immediately from the corres-
ponding result for constant diffusion, since one is in effect solving a sequence
of initial value problems, with constant diffusivity for each problem.
Linearising (1) about (u,, v;) gives, to leading order,

0ii/ot = D,V*ii + ail + b (2a)
06/0t = D, (t)V?5 + cii + di (2b)
where @ = u — u; and § = v — v,, with ||, | #| <€ 1, and

of i

a=— =
(us,0s) av

dg

_% _
(45, 0s) v

ou (s, 02) " du

(us,v5)

Stability to homogeneous perturbations requires that a + d < 0 and ad > bc.
In particular one of a and d must be negative, and throughout the paper
I assume d < 0. I will show that diffusion driven instability then requires
a > 0. Therefore, since only D, varies in time, the assumption d < 0 is restrict-
ive. It would be relatively straightforward to consider the case a < 0and d > 0
(or equivalently, D, varying in time) in the same way, but to be specific
I consder only the one case, which is the one of interest in the application
studied by Timm and Okubo (1992). In summary, I make the following
assumptions throughout the paper:

a+d<0 (3a)
ad —bc >0 (3b)
d<0. (3¢)

Fourier theory implies that at each point in time, the solution of (2) can be
written as a sum of a suitable set of spatial modes exp (ik - x). I assume that this
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Fourier series can be differentiated termwise with respect to both space and
time, giving a series that is also convergent. To investigate the stability of
(us,v5), one looks for solutions of (2) with the form i(x,¢t)=

U (t)exp(ik - x), §(x,t) = V(t)exp(ik - x). This results in a system of linear ordi-
nary differential equations in which one of the coefficients varies periodically
in time: :

dU/dt = [a — KD,]U + bV (4a)
dv/dt = cU + [d — KD,(8)]V (4b)

where K = | k|%. A general theory of equations such as this, that are linear
with periodically varying coefficients, was developed by Floquet, and I will
now briefly summarise this theory. A fuller account is given, for example, in
the book by Iooss and Joseph (1980).

It is straightforward to show that any nth order homogeneous system of
nonautonomous linear ordinary differential equations has n linearly inde-
pendent solutions. An n x n matrix, $(t) say, whose columns consist of such
solutions is known as a “fundamental matrix” of the equations. When the
coefficients of the equations are periodic in ¢, with minimum period T, say, the
eigenvalues of E = @(to) ™ '®(to + T ) are known as the “Floquet multipliers”
of the system. It can be shown that the Floquet multipliers are independent of
the choice of fundamental matrix, and thus of t,. Moreover, corresponding to
the n mulitpliers y; (i = 1, ..., n), there are n linearly independent solutions of
the ordinary differential equations of the form g;(t)exp[(¢/T )log u;], where
each g;(t) is periodic with period T . Therefore the homogeneous steady state
is stable if and only if | 4;| < 1 for each i.

The difficulty with implementing this theory for a particular set of equa-
tions is in finding a linearly indpendent set of solutions. However for the
simple form of D,(t) I am considering, (4) can be solved explicitly, enabling the
Floquet multipliers to be determined.

The linear stability problem

In the original system of partial differential equations, one can rescale x and
D, so that D, = 1. Then, for the particular D,(t) we are considering, (4) has the
following form:

do/dt =A4%w onnT <t<(n+1/2)T (5a)
do/fdt=4"w on(n+1/2)T <t<(m+ 1)T (5b)

(neZ). Here
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I denote the eigenvalues and corresponding eigenvectors of 4 * by 4*and z;*,
with i = 1, 2. I also write 4 * (t) = diag[exp(4i t), exp(Af £)], and denote by
Z* the matrix whose first and second columns are zif and z# . Then any
fundamental matrices of (5a) and (5b) have the form Z*A*()C* and
Z~ A~ (t)C~ respectively. Here C* are matrices whose entries are constants of
integration; without loss of generality, I take C* = (4*(T/2))"!. Continuity
at t = T/2 then requires that

C =~ (T/2)""2)z*.
Therefore

E=(®0)'®T)=(2")'27A7(T/NZ")'Z2*4%(T/2).

The homogeneous steady state (u,, v;) is stable if and only if both eigenvalues
of E have modulus less than 1.

The matrices Z * and A * can clearly be determined analytically, enabling
calculation of E. This shows that the eigenvalues u of E are given by
u = fi-exp( — I'T/4), where % — Bfi + 1 = 0. Here

'=2+D*+D7)K—-2(a+4d)

and
B = %C(P’+P‘)T/4 [(1 + e—P'T/Z)(l + e—P'T/Z)
+ ﬁ‘;’_-:__QI:TQ_-(l —_ e—P’T/Z)(l — e—P'T/z)]
with

Qt=KD* - K+a-d

Pt = /4bc + Q*2.

As expected, these expressions are all symmetric in D* and D™, and thus
without loss of generality I can assume that |Q*|>|Q~|. Note that (3a)
implies that I > 0.

In applications, one is interested in the case in which the period T of D,(t)
is much longer than the characteristic time scale of the reaction kinetics. This
implies that |P*T|>» 1. Now P* may be either real or pure imaginary,
according to whether Q * 2 + 4bc is positive or negative, respectively; however,
|Q*| >1Q7|, and thus P~ can be real only if P* is also real. Therefore,if P* is
pure imaginary, then both roots for i are O(1) as T — o0, giving roots of u that
are < 1in absolute value The steady state (u,, v;) is then stable to a perturba-
tion with wave number k. However, if P is real, then | B| » 1 for large T, so
that to leading order the roots for /i are 1/B and B. Since I' > 0, the first of
these gives a root for u thatis < 1 in absolute value, whereas the second gives
a root that is greater than one in absolute value if and only if B > exp(I"T /4).
Now B = fexp[{P" + Re(P~)}T/4], where fis O(1) as T — co. Thus for
sufficiently large T, the steady state is unstable to a perturbation of wave
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number k if and only if

P* +Re(PT)>TI«(P"¢Rand P* >T) or (P eRand P~ >T — P*)
<(P*>T) or (P"eRand P"2>(I' —P*)?
<P*>T or P72>( —P*)?
«P*>T or (IF'+P*'?—P %2 <4r2p+2?,

since P~ is either real and posmve or pure imaginary, and Q%2 > Q 2 Twil
now consider these two cases in turn. o

Case (i): P*>I
I begin by considering the case P* > I'. Both sides of this inequality are strictly
positive, and squaring gives the condition for instability as g,(K) < 0, where

q:(K)=2D* + D™ + 1)(D™ + 3)K?> —2[(3a +d)D*
+2(a+d)D” + (3a+ 5d)]K + [3(a + d)* + 4(ad — bc)] .

Recall that stability to homogeneous perturbations requires that ad > bc, so
that both the constant term and the coefficient of K? are positive. Therefore
g1(K) will be negative for some positive values of K = |k|? provided that it
has real roots and that the coefficient of K is strictly negative. The quadratic
will then have two real positive roots, and will be negative for values of
K between these roots.

The analysis is simplified by writing 6 = (D* — 1)(D~ + 3). In terms of
this quantity, the roots of q,(K) are real if and only if

42(0)=(a+d)*6* +2(3a* — 2ad —d* + 4bc)é +(a® —2ad + 4bc +d*) > 0, (6)

while the coefficient of K in ¢,(K) is negative provided that 3a + d > 0 and
6> —2a+ d)f(3a + d) = d,. If 3a + d < 0, the coefficient is negative for all
positive values of d, and otherwise d, > 0, using (3a). Now

42(00) = [3(a + d)* + 4ad — bc)](a + 3d)/3a + d) <0 - W)

when 3a + d > 0, using (3a). Therefore g,(K) will have real positive roots if
and only if 3a + d > 0 and § > J,, where J, is the larger root of (6), and is
greater than d,. It is clear from (6) that §, depends only on the ratios a/,/ — bc
and d/,/ — bc, and this dependence is illustrated in Fig. 1. Note that since
d<0,3a+d>0=a>0=>ad <0=bc <0 using (3). Now when a > 0,
straightforward substitution shows that q,(a) and q)(a) are both strictly
postiive, so that g,(K) is only ever negative when K < a. Thus Q* > 0, so that
my assumption that |Q*| > |Q~ | implies that D* > D~.
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' 08 5 variation of 4, with the kinetics ratios
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. i - unstable by diffusion when

0.2 0.4 ./(..bg)'?/' 0.8 1.0 (D+ — 1)/(0— + 3) > 5:

Case (ii): (F2+P*2—P~2)’<4I'’pP*?

This second condition for diffusion driven instability simplifies to

K*a — K)(DK — d) }
[(1 + D)K — (a + d)]?

= f(K) + 4%g(K), ®)

say, where D=(D* —D7)/2 and 4 =|D* —D"|/2. When D* =D"7, (8)
reduces to the quadratic dispersion relation for diffusion driven instability
when the diffusion coefficients are constant (see, for example, Murray 1989,
Chap. 14). More generally, this quadratic is altered by a positive multiple of
the function g(K). I begin by considering the case a < 0. Then g(K) < 0 for all
K > 0. Moreoever, I am only concerned with strictly positive D*, so that
A < D. Therefore

f(K) + 4%¢(K)
> f(K) + D*g(K)

_ug4 K= aDK —d){(2D + DK? —2a + )1 + DK +(a+ )
[I+D)K—(a+d)]’

>0VK >0 whena<?0. 9)

0> {DK? — (aD + d)K + (ad — bc)} + Az{

>

Therefore, (8) never holds when a < 0.

Turning attention to the case a > 0, g(K) then has the qualitative form
illustrated in Fig. 2. In particular, g(K) > 0 on 0 < K < a. Now when a > 0,
(3b) implies that bc <0, so that f(a) = — bc and f'(a) = aD — d are both
strictly positive. Therefore f(K) > 0 and g(K) < 0 for all K > a, implying that
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&(K)

A

K=a

Fig. 2. The qualitative form of g(K), defined
in (8), when a > 0

f(K) + 4%g(K) > f(K) + D*g(K) > 0, using (9). Therefore, (8) never holds
when K > a. As above in case (i), this implies that 0 * > 0,so that D* > D™,

When K € (0, a),g(K) > 0, so that f(K) + 4%g(K) increases with 4. There-
fore, the range of unstable wave numbers decreases as the difference between
D* and D~ increases, with constant mean, and the constant diffusivity case is
the most unstable. The condition for (8) to hold for some K therefore falls
naturally into two parts. Firstly, the system must be driven unstable by
diffusion when the diffusion coefficient is constant with value D, which
requires that aD +d >0 and (aD + d)* > 4D(ad - bc) (Murray 1989,
Chap. 14). Secondly, it is necessary that 4 < 4., where 4. is a critical value
that depends on D and the ratios a/\/ — bc and d/,/ — bc. Straightforward
differentiation shows that gf/0D and dg/dD are both strictly negative on
0 < K < g, so that for given kinetics, 4, increases monotonically with D. In
some cases (e.g. a// —bc =04,d/./ —bc = — 2, D = 100), 4. > D, so that
the steady state can be driven unstable by diffusion even when D™ = 0.

The implications of linear theory

To summarise, the steady state (u;, v,) is stable to homogeneous perturbations
ifand only if a + d < 0 and ad > bc. This implies that one of a and d must be
negative and I consider here only the case d < 0. Without loss of generality,
I also take D* > D~ ; physical realism further requires D~ > 0, thatis 4 < D,
where A =(D* —D7)/2and D=(D* + D7)/2. Then, to leading order for large
T, the steady state will be driven unstable by diffusion if and only if either

()@ 3a+d>0

() (D —DAD™ +3)> 6.« (0. + )4 + (6. — 1)D + (35, + 1)
or
(i) @ aD+d>0

(b) [aD + d]? > 4D(ad — bc)

(c) 4 < 4,
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Fig. 3. Examples of the regions of D — A parameter space in which diffusion driven instabil-
ity occurs. The kinetics ratios are: a a/,/ — bc =09,d/./ —bc = — 1.1;ba/,/ —bc =028,
d// —bc=—12; ¢ a/\/ —bc=0.5, d/,/ — bc= —1.7. Shading by horizontal lines de-
notes that condition (i) is satisfied, and shading by vertical lines denotes that condition (ii) is
satisfied. In ¢, 3a + d < 0, so that condition (i) is not satisfied for any values of D and 4

Here 8. > 0 is the larger root of (6), and 4, is the unique value of 4 for which
f(K) + 4%g(K) touches the K axis on (0, a); fand g are defined in (8). All of these
inequalities depend only on the kinetics ratios a/\/ — bc and d/,/ — bc, and on
the two diffusion coefficients D*. For given values of the kinetics ratios,
conditions (i) and (ii) define different regions of the D — 4 parameter space in
which diffusion driven instability occurs. Some examples of these regions are
illustrated in Fig. 3. Of particular interest is the fact that condition (ii) is an
extension of the conditions for diffusion driven instability when D* = D™, and
that in this case the system is always made more stable by the temporal
variation of the diffusion coefficients, in the sense that a necessary condition for
instability is that the system is unstable in the case D,(t) = (D" + D7)/2.

When D* =D~, condition (i) holds if and onmly if 6. <1 and
D> (38, + 1)/(1 — 8,) = &., say, while condition (ii) holds if and only if D > D,.
Here D. is the critical diffusion coefficient for diffusion driven instability in the
homogeneous case, and is the larger root of (aD. + d)* = 4(ad — bc)D,. I will
now show that whenever 8, < 1, D, < &, so that when D* = D™, condition (i)
implies condition (ii). Recall that J, is the larger root for ¢ of g,(6) = 0 (defined
in (6)). Now a necessary condition for §, < 1 is

0 < gx(1) = 4(4a® + 3bc) <> a/\/ —be > /32 .
q>(1) = 8(3a% + ad + bc) > 8(3a? + 2bc) > 0

and thus a/\/ — bc > \/3/2 is also sufficient for §, < 1. Straightforward sub-
stitution shows that when this is satisfied, &, is the larger root for & of

hy(¢) = (a® + 3bc/4)E? — 2(ad — 5bc/4)& + (d* + 3bc/d) ,
while D, is the larger root of
hy(§) = a*€? — 2(ad — 2bc)é + d? .
Now hy(&) — hy(&) = 3( — be)(é — 1)2/4 2 0, and thus D, < &,.

If this holds,
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a result of the temporal variation in
D,,in the sense that the steady state is
stable when D,(t) = D, with the same
kinetics
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This result implies that condition (i) defines an unstable region of the
D* — D~ parameter space that is not given by condition (ii) only when D*
and D~ are sufficiently different. Of particular interest is whether condition (i)
can imply diffusion driven instability in a case in which the steady state is
stable when D,(t)=(D* + D7)/2. Since D~ >0, and (D* — 1)(D~ + 3)
increases with 4 when D is fixed, this occurs if and only if
(D* —1)/(D~ + 3) > 6, when D = 4 = D,, that s, if and only if

2D, — 1> 36, (10)

The inequalities (10) and (3) and condition (ia) that 3a + d > 0 together define
the region of (a// — bc) — (d/\/ — bc) parameter space in which (u,, v;) can be
driven unstable by a sufficiently large temporal variation in D,, even though
(us,v5) is stable when D, is constant, with the same mean. This parameter
domain is illustrated in Fig. 4. For the model and parameter values con-
sidered by Timm and Okubo (1992), the kinetic ratios lie outside this domain,
and thus their conclusion, from numerical experiments, that a temporal
variation in diffusivity stabilises the steady state is exactly right, at least for the
square-tooth form of D,(t) I am considering. (It must be remembered that
Timm and Okubo (1992) used a sinusoidal variation in D,.) However, my
analysis shows that this result is not general, and that for other sets of kinetics,
a temporal variation in D, can destabilise the steady state.

Behaviour when DY &~ D~

When D* = D™, with given values of the kinetic parameters, diffusion driven
instability occurs if and only if the common value of D* and D~ is greater
than D,. If D* and D~ are different but sufficiently close, diffusion driven
instability will occur only if both (D* + D7)/2=D > D.and(D* — D)2 =
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4 < A.(D). 1 now use pertuirbation theory to derive the asymptotic form of 4,
when D =D, +¢ with0 <¢ < 1.

When 4 = 4., fiK) + 4*g(K) has a double root at some value of K, say
K = K. The defining conditions for 4. and K are therefore

S(R; D)+ A29(R; D) =0 , (11a)

/oK (K; D) + A%dg/0K(K; D) =0 . (11b)

For D = D, + ¢, I look for solutions of these algebraic equations of the form

R=Ro+eR,+e*K, +...and 4,=¢'"PA,,+e?4, ,+e%%4, 3 +. ... This
expansion of A, gives an expansion for 42 in integer powers of &.

Substituting these expansions into (11) and equating powers of ¢ gives, to
order 1,

flﬁio; D)=0
of /0K (Ko; D.) = 0.

These are the equations for the critical diffusion coefficient and wave number
for diffusion driven instability with constant diffusivity, and give
R, = (aD, + d)/(2D.), with D, the larger root of (aD, + d)? = 4D.(ad — bc). To
order ¢, (11) gives

&f/oD(Ro; D.) + 4219(Ro; D) =0
K,0%f/0K*(R,; D) + 9*f/0K0oD(Ro; D) + A2 109/0K (Ro; D,) =0 .
Solving these equations for 4. ; and K, and simplifying gives

A= (aD, — d)(D. — 1)*]'/2
el = D.(aD. + d)

e _(2a+d)D,+d
YT 2DA(D, - 1)

14

ad=be

1.2
1.0]
L o0
T Fig. 5. An illustration of the
v o8 parameter domain in which

 edeo (2a + d)D, + d > 0 (denoted by dark
04 shading). In this region, a small

’ temporal variation in D, decreases
the spatial wavelength of the pattern
resulting from diffusion driven
instability; elsewhere, the wavelength
increases

0.24

0.2 0.4 0. 0.8 10
-/(4bc)?"
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Expressions can be derived for higher order terms in the same way. In
particular, this analysis shows that the introduction of a small temporal
variation in D, tends to increase or decrease the wavelength of the resulting
pattern according to whether (2a + d)D, + d is negative or positive respective-

ly. This is a condition on the kinetic. ratios a/\/ — bc and d/,/ — bc, and
divides the parameter space into two, as illustrated in Fig. 5.

Discussion

There are many points of difference between real ecological systems and
corresponding reaction-diffusion models. Here I have focussed on just one of
these differences, namely the seasonal variation of ecological parameters. My
purpose is to understand the way in which such variations modify the
pattern-forming ability predicted by reaction-diffusion models. As a math-
ematical problem, the investigation of pattern formation is considerably more
complex for oscillating dispersal rates than for constant rates, requiring the
solution of a Floquet problem rather than a simple eigenvalue problem.

I was motivated to study this topic in large part by the previous work of
Timm and Okubo (1992). They investigated numerically the effects of
periodically varying dispersal rates on pattern formation in a particular
predator-prey reaction-diffusion model. It is notoriously dangerous to inter-
pret such numerical studies, because one is inevitably restricted to a very small
number of parameter sets. Therefore I have adopted an opposite approach to
the problem - I consider a simple and admittedly less realistic form of
temporal variation (namely piecewise linear rather than continuously vary-
ing), for which I can determine analytically the conditions for dispersal driven
patterns. This analysis shows that several of the conclusions drawn by Timm
and Okubo (1992) are not valid in more general contexts; in particular,
oscillations in the predator dispersal rate can promote pattern formation in
some cases. This is not to say that any of Timm and Okubo’s results are wrong
— rather that the conclusions they drew from numerical simulations cannot be
generalised to all sets of parameter values.

An issue that I have not yet discussed is the form of the solution when
diffusion driven instability does occur. The linear theory predicts a solution of
constant shape, whose amplitude undergoes growing oscillations in time.
However, we expect that nonlinearities in the system will limit the amplitude
of the solution. I have investigated this numerically’ by focussing on the
particular reaction-diffusion system proposed by Segel and Jackson (1972) as
a model for predator-prey interactions; the kinetics are

fu,v) = u + xu? — puv (12a)
g(u,v) = uv — v?, (12b)

where k( < 1) and u( > k) are positive parameters. For this model, with
a square-tooth form for D,(t), numerical solutions suggest that for parameter
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Fig. 6a—c. The numerical solution of (12) with k = 0.5, u = 0.75,D* = 10.5, D~ = 6.5 and
T =20. The initial conditions consisted of small random perturbations about the homo-
geneous steady state u = v = 4, and I applied zero flux boundary conditions at the ends
x = 0 and x = 18 of the spatial domain. The resuls are not at all sensitive to the details of the
initial conditions, except that a mirror image solution (reflected about x = 9) is sometimes
obtained. I plot u as a function of x at equally space times (time interval =4) on
a 30.5T <t < 31T, b 31T <t < 31.5T. By this time, transients have largely decayed, and
the solution is approximately periodic with period T. The arrows indicate the way in which
the solution evolves with time. As expected intuitively, the solution approaches the homo-
geneous steady state on the half of the period on which D, = D~ (a), and moves away again
on the half of the period on which D, = D™ (b). For the parameter values used in this figure,
condition (i) for diffusion driven instability is not satisfied, but condition (ii) holds. In ¢,
I plot the corresponding dispersion relation, f(K) + 42g(K) (defined in (8)). The steady state
is unstable to perturbations with all wave numbers for which f(K) + 4%g(K) < 0.1 denote
by dashed vertical lines the values of K for which a solution proportional to exp(ikx) can
satisfy flux boundary conditions at x = 0 and x = 18 (recall that K = k?). These values are
given by K = (nn/18)*(neZ*), and the mode number n is indicated above each dashed
vertical line. This shows that only mode § is unstable, and correspondingly the solutions
illustrated in a and b have the same qualitative form as cos(5nx/18)

values fairly close to a Turing bifurcation point, the solution evolves rapidly to
a solution of approximately constant shape, whose amplitude varies period-
ically with period T; an example is illustrated in Fig. 6. The spatial period of
the solution is exactly that predicted by the linear theory (see Fig. 6).

To conclude, I will briefly discuss an obvious extension of the work
presented here, namely the case of D,(t)=D" on (nT,nT + &(T) and
D,(t)=D* on(nT + ¢T,nT + T ), whereneZ and 0 < ¢ < 1. The extension
to the case £ # 1/2 is conceptually very simple, and can be analysed in exactly
the same way as £ = 1/2; however, it is algebraically much more complicated,
and I have been unable to obtain simple expressions for the conditions for
diffusion driven instability. One particularly striking feature is that the ana-
logue of (8) is a cubic in 4, with all coefficients non-zero in general, rather than
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being linear in 42. In terms of the perturbation theory analysis discussed
above, this means that when ¢ # 1/2and D = D, + ¢, A, = O(g), in contrast to
the case £ = 1/2, when 4, = O(g'/?). Put simply, this implies that the sensitiv-
ity of the stability of the steady state to a square-tooth temporal variation in
diffusivity is greater when there is unequal weighting of the two diffusivities
than in the case of equal weighting. However this does not mean that my
results are particularly sensitive to the assumption ¢ = 1/2, since the coeffic-
ient of £!/2 in the expansion of 4, is very small when ¢ is close to 1/2.
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