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Abstract. The Turing bifurcation is the basic bifurcation generating
spatial pattern, and lies at the heart of almost all mathematical models
for patterning in biology and chemistry. In this paper the authors
determine the structure of this bifurcation for two coupled reaction
diffusion equations on a two-dimensional square spatial domain when
the diffusion coefficients have a small explicit variation in space across
the domain. In the case of homogeneous diffusivities, the Turing
bifurcation is highly degenerate. Using a two variable perturbation
method, the authors show that the small explicit spatial inhomogeneity
splits the bifurcation into two separate primary and two separate
secondary bifurcations, with all solution branches distinct. This split-
ting of the bifurcation is more effective than that given by making the
domain slightly rectangular, and shows clearly the structure of the
Turing bifurcation and the way in which the various solution branches
collapse together as the spatial variation is reduced. The authors
determine the stability of the solution branches, which indicates that
several new phenomena are introduced by the spatial variation, includ-
ing stable subcritical striped patterns, and the possibility that stable
stripes lose stability supercritically to give stable spotted patterns.
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1 Introduction

The Turing bifurcation (Turing, 1952) is the basic bifurcation generat-
ing spatial pattern, and lies at the heart of almost all mathematical
models for patterning in embryology, ecology and elsewhere in biology
and chemistry (see Murray, 1989, for review). The key idea underlying
the Turing mechanism is that a homogeneous equilibrium can be
stable to homogeneous perturbations, but unstable to certain spatially
varying perturbations, leading to a spatially varying steady state, that
is, a spatial pattern. The simplest system to consider mathematically is
that originally treated by Turing (1952), namely two coupled reaction-
diffusion equations in which the interacting chemicals have different
diffusion coefficients. For suitable reaction kinetics, as the ratio of
diffusion coefficients increases from unity, for example, there is a criti-
cal value at which the uniform steady state becomes unstable to
a particular spatial mode; this is a Turing bifurcation.

Early work on the Turing mechanism focussed on using linear
analysis to predict the form of spatial patterns and their implications in
a range of applications (Murray, 1981, 1982; Gierer and Meinhardt,
1972; Segel and Jackson, 1972). More recently, in parallel with con-
tinued work on applications (Meinhardt, 1993; Nagorcka, 1995a,b;
Sherratt, 1995), there has been considerable interest in the mathemat-
ical nature of the Turing bifurcation. Following the majority of
workers, we will consider this in the context of a square domain with
zero flux (Neumann) boundary conditions. In this case, the uniform
steady state may bifurcate to either a striped or a spotted type spatial
pattern. In particular, when the primary bifurcation point is degener-
ate, there exist three distinct solution branches bifurcating from the
uniform steady state, each of which represents two solutions that are
identical except for having the opposite polarity. One represents
striped solutions parallel to the x-axis, another striped solutions
parallel to the y-axis and the final one represents spotted solutions
with pattern in both the x and the y directions. When interpreted as
patterns using a threshold level for pigmentation, for example, these
solution branches correspond to stripes parallel to one pair of edges of
the domain, stripes in the perpendicular direction, and a spotted
pattern.

An important question concerning these multiple solution
branches is their stability as reaction-diffusion solutions. Standard
non-linear bifurcation analysis (Sattinger, 1972) shows that the selec-
tion of stripes versus spots is dependent on the non-linear terms in the
reaction kinetics and therefore may not be predicted from the lin-
earised model equations (Ermentrout 1991; Lyons and Harrison, 1991,
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1992). In particular, it can be shown that stable spotted and stable
striped solutions cannot coexist (Ermentrout, 1991).

The degeneracy of the Turing bifurcation makes it difficult to study
mathematically. One obvious approach to removing this degeneracy is
to consider a rectangular rather than a square domain (see, for
example, Maini et al., 1991, where this is done for a chemotactic
pattern generator), which splits the bifurcation in a manner that we will
discuss in detail later in the paper. However, our main focus is an
alternative and rather less obvious method of splitting the bifurcation,
namely to consider the case in which the diffusion coefficients are
explicitly dependent on space, and vary slowly across the domain,
parallel to one pair of edges. The explicit dependence of diffusion rates
on space is important in some applications, including in particular the
development of cartilage pattern in the embryonic chick limb (Maini
et al., 1992; Benson et al., 1993), but in the present paper we will be
concerned with the mathematical implications for the structure of the
Turing bifurcation. We will show that the introduction of spatial
variation in diffusivities provides a highly effective way of splitting the
bifurcation, more effective than the use of a rectangular domain. We
will use this technique to derive bifurcation diagrams in which the
various solution branches are clearly separated, leading to a clear
picture of the structure of the Turing bifurcation. In addition, we will
show that a number of new phenomena are introduced by the spatial
variation, including stable subcritical Turing patterns.

2 Mathematical framework

We investigate the effects of slow spatial variations in the diffusion
coefficients of two interacting morphogens, with concentrations
u(x, y, t) and v(x, y, t). We consider, in particular, spatially heterogen-
eous steady state solutions of the non-dimensionalised reaction diffu-
sion system

+ · (D(x, g) +u)#F(u, v)"Lu/Lt (2.1a)

k+ · (D(x, g)+v)#G (u, v)"Lv/Lt , (2.1b)

defined on the unit square 0(x , y(1 with zero flux boundary
conditions. We consider the case in which D(x, g) is a function of the
perturbation parameter g and the spatial variable x, and to be specific
we consider the case

D (x, g)"D#gx2 (2.1c)
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where D is a positive constant. Crucially, LD/LxP0 as gP0; other-
wise there is no special significance in the form (2.1c), and we focus on
a particular spatial dependence to enable explicit calculation of the
various terms in the expansions near bifurcation points. In (2.1),
+"(L/Lx

L/Ly ). We take k, the ratio of diffusion coefficients, to be the
bifurcation parameter. Standard linear analysis shows that, for par-
ticular kinetics F and G and with g"0, there is a critical value k

c
of

k at which the uniform steady state loses linear stability. When the
uniform steady state is linearly unstable to a single mode, with unique
wavenumber, standard bifurcation theory (Sattinger, 1972) shows that
close to the bifurcation point there exists a family of analytic solutions
of the form

A
u (x)
v (x)B"A

u
0

v
0
B#eA

u
1
(x)

v
1
(x)B#e2A

u
2
(x)

v
2
(x)B#O(e3) (2.2a)

k"k
c
#eq

1
#e2q

2
#O(e3) , (2.2b)

where x"(x, y) , (u
0
, v

0
) is the uniform steady state, and DeD@1. Substi-

tuting (2.2) into the full nonlinear system (2.1) and equating powers of
e determines the functions u

i
, v

i
and the values of q

i
. This leads to an

approximate solution of the weakly nonlinear problem (Iooss and
Joseph, 1980).

Our work in this paper deals entirely with the particular spatial
dependence (2.1c) for the diffusion coefficients. An important related
problem is to consider the effects of small, irregular variations in
diffusivity or domain geometry, such as would occur in any real
biological system to which one might apply the Turing theory. Al-
though the results we will describe have no formal implications for this
case, they do suggest the intuitive possibility that such variations might
have a significant effect on the bifurcation structure.

For small non-zero g, we will show that the bifurcation structure of
the non-linear system may be found using a two parameter perturba-
tion technique (Bauer et al., 1975), wherein primary (and certain
secondary) solution branches are expressed as asymptotic expansions
in the two small parameters, g and e.

In this case,

A
u(x)
v(x)B"A

u
0

v
0
B#e A

u
1
(x, g)

v
1
(x, g)B#e2A

u
2
(x, g)

v
2
(x, g)B#O(e3) (2.3a)

k"k
B
(g)#eq

1
(g)#e2q

2
(g)#O(e3) (2.3b)
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where for each i"1, 2, 2

A
u
i
(x, g)

v
i
(x, g)B"A

u0
i
(x)

v0
i
(x)B#gA

u1
i
(x)

v1
i
(x)B#g2A

u2
i
(x)

v2
i
(x)B#O (g3)

q
i
(g)"q0

i
#gq1

i
#g2q2

i
#O (g3)

and k
B
(g) is the primary bifurcation point. For small non-zero g, we

assume that k
B
(g) lies close to k

c
and may be expressed as a power

series in g,

k
B
(g)"k

c
#gw

1
#g2w

2
#O (g3) . (2.4)

Following standard techniques (Iooss and Joseph, 1980) we scale
e such that

DD (u
1
, v

1
) DD"1, S(u

1
, v

1
), (u

2
, v

2
)T"0 , (2.5a)

DD (u1
1
, v1

1
) DD"1, S(u0

1
, v0

1
), (u1

1
, v1

1
)T"0 , (2.5b)

to obtain a unique expression for each solution branch; here the inner
product is taken as the integral over the unit square domain of the
scalar product of the two vectors.

We will show that substituting these expansions into (2.1) and
solving the resulting equations to leading order indicates a splitting of
the degenerate bifurcation point k

c
when g90, giving two simple

primary bifurcation points and a secondary bifurcation point, which
lies on one of the primary solution branches. When g is small the
secondary bifurcation point, k

S
(g), lies close to the primary bifurcation

point and steady state solutions of the model equations (2.1) may be
written in terms of their displacement from the primary solution
branch. In particular, following Mahar and Matkowsky (1977), we
write the solutions on the secondary branch (denoted uN , vN ) as

AuN (x, d, g)
vN (x, d, g)B"AuP(x, g)

v
P
(x, g)B#d AuN 1(x, g)

vN
1
(x, g)B#d2AuN 2 (x, g)

vN
2
(x, g)B#O(d3) (2.6a)

k"k
S
(g)#dl

1
(g)#d2l

2
(g)#O(d3) (2.6b)

where for each i"1, 2, 2

AuN i(x, g)
vN
i
(x, g)B"g1@2AuN 1i (x)

vN 1
i
(x)B#gAuN 2i (x)

vN 2
i
(x)B#O(g3@2) ,

l
i
(g)"l0

i
#g1@2l1

i
#gl2

i
#O(g3@2) .

Here u
P
(x, g) denotes the solution vector on the primary bifurcation

branch at the point k"k
S
(g) at which the secondary bifurcation

Unravelling the Turing bifurcation 385



occurs. We assume that this secondary bifurcation point corresponds
to a value e

B
(g) of the parameter e, which depends on g according to the

relation
e
B
"g1@2e

1
#g1e

2
#O(g3@2) , (2.7)

Fig. 1. A schematic representation of the bifurcation diagram for pattern formation in
the system (2.1) when there is a small spatial variation in the diffusion coefficient,
parameterised by g;1. The form of this bifurcation diagram is derived in Sects. 3 and
4; stability, which is not shown in this figure, is discussed in Sect. 5. In the spatially
homogeneous case (g"0) the Turing bifurcation is highly degenerate; this figure
illustrates how the various solution branches separate when spatial inhomogeneity is
introduced. The bifurcation point splits into two separate primary bifurcation points,
k"kx

B
and k"ky

B
, and a secondary bifurcation point k

S
. Moreover, the pairs of

solution branches, which are coincident when g"0, separate for non-zero g. As
illustrated schematically, the primary solution branches correspond to striped pat-
terns, and the secondary solution branches correspond to spotted patterns. In these
schematic illustrations of pattern type, the x-axis of the square domain runs across the
page, and the y-axis runs up the page. On the figure, the dependence of the various
branch separations on g are indicated. These are all calculated in the text, although it
should be noted that the separation of the two primary solution branches emerging
from ky

B
has not be determined beyond showing that there is no term that is <g2 . All

the other separations have been determined so that the indicated separations are strict
order of magnitude dependencies on g
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where e
1
, e

2
, 2 are real and e

1
90. Here, without loss of generality,

g is assumed positive. In this case, the solutions (2.6) become power
series expansions in the perturbation parameter g and the small para-
meter d, which is a measure of the distance from the secondary
bifurcation point. The unknowns, uN j

i
, l j

i
and e

i
may therefore be

determined by substituting the power series expansions into the model
equations and collecting terms of equal power in g and d. The method
of analysis is completely analogous to the determination of the primary
solution branches.

Figure 1 shows a schematic representation of the bifurcation struc-
ture when g90. The stability of the various solutions in this structure
can be determined in a standard way, and we will discuss the results of
this study in Sect. 5.

To be specific, in the numerical simulations illustrated in this paper
we will use the standard non-dimensionalised Schnakenberg kinetics
(Schnakenberg, 1979)

F(u, v)"! (A!u#vu2) and G (u, v)"!(B!vu2) , (2.8)

where !, A and B are positive parameters. However, the analytical
results are quite general.

3 Primary solution branches

Substituting the power series expansions (2.3) into the model equations
(2.1) we first collect terms of O(e) and equate them to zero. For g"0,
this leads to the linearised system for spatially homogeneous diffusion
coefficients. We assume that this system admits a single unstable
wavenumber, denoted by k

c
. The general solution for (u1

1
, v1

1
) (recalling

the zero flux boundary conditions) may therefore be written in the form
+

iÈ`jÈ/k#È
(Cu

i, j
, Cv

i, j
) cos(inx) cos ( jny) for some suitably defined con-

stants Cu
i, j

and Cv
i, j

. However, since the domain may be rescaled such
that k2

c
"1 (Ermentrout, 1991) we assume that the first unstable

wavenumbers are (i"1, j"0) and (i"0, j"1). Together with the
normalisation condition, D (u0

1
, v0

1
) D2"1, this implies that

Au0
1

v0
1
B"A1mBC

x
cos(nx)#C

y
cos(ny) , (3.1)

where

m"

Dn2!F
u

F
v

, (3.2)

and

C2
x
#C2

y
"C2,

2
1#m2

. (3.3)
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Here F
u
denotes LF/LuD

(uÒ,vÒ)
and we extend this notation in the obvious

way, so that for example G
uv

denotes L2G/LuLvD
(uÒ,vÒ)

.
Equating terms to O(g) and using the Fredholm Alternative yields

the solvability conditions

w
1
Dmpn2

2
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x
#(1#k

c
mp)A

n2

6
!

1
4BC

x
"0 ,
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w
1
Dmpn2

2
C

y
#(1#k

c
mp)

n2

6
C

y
"0 ,

where p"(Dn2!F
u
)/G

u
. Recall that the constant w

1
appears in the

expansion of k
B
(g), defined in equation (2.4). Thus, for a solution to

exist, the unknowns C
x
, C

y
and w

1
must satisfy either

C2
x
"C2, C

y
"0, w

1
"wx

1
,!

2(1#k
c
mp)

Dmpn2 A
n2

6
!

1
4B (3.4a)

or

C
x
"0, C2

y
"C2, w

1
"wy

1
,!

2(1#k
c
mp)

Dmpn2 A
n2

6 B . (3.4b)

This implies that the degenerate bifurcation point for g"0, at k"k
c
,

has split into two simple primary bifurcation points given by

kx
B
"k

c
#gwx

1
#O (g2) (3.5a)

ky
B
"k

c
#gwy

1
#O (g2) . (3.5b)

Note that the splitting of multiple primary bifurcation points in the
presence of small non-zero parameters has been observed for a number
of other systems (see, for example, Bauer et al. (1975) and Reiss (1983)).
Hunding and Br+ns (1990) also reported this phenomenon in their
study of the effects of spatial variation in a three-dimensional reaction
diffusion model of cell division during early embryonic development.

3.1 The branch bifurcating at kx
B

We now proceed to determine leading order power series approxima-
tions to the primary solution branches bifurcating from each of kx

B
and ky

B
. First we consider the family of solutions M(u(x, e, g), v (x, e, g)),

k(e, g)N bifurcating from the primary bifurcation point kx
B
, defined in

(3.5a). From equations (3.1) and (3.4a) it follows that

A
u0
1
(x)

v0
1
(x)B"A

1
mBC cos(nx)
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where m and C are defined by equations (3.2) and (3.3) respectively. We
can then determine (u1

1
, v1

1
) (see Appendix 1) and hence approximate the

primary solution branch by

A
u
vB"A

u
0

v
0
B#eCAA

1
mBcos(nx)#g+

i
A
au
i

av
i
B cos(inx)D#

higher
order
terms

(3.6a)

k"kx
B
(g)#egq1

1
#e2q0

2
#higher order terms , (3.6b)

where au
i

and av
i

(i"1, 2, 2) are constants. Here our notation is as
described in Sect. 2, with qj

i
denoting the coefficient of eigj in the

expansion of k. In fact the parameter q0
2

plays a key role in the
bifurcation structure, and we will denote it henceforth as qx

2
, to

distinguish it from the coefficient of e2 in another expansion, to be
introduced later.

To leading order, the above approximation depends only on the
spatial variable x. It may be shown by induction that the whole power
series expansion is independent of the spatial variable y, and thus that
the primary solution branch is quasi-one-dimensional. In particular,
this implies that (3.6) are power series expansions for steady state
solutions of the one-dimensional reaction diffusion system

L
Lx
D (x, g)

Lu
Lx

#f (u, v)"
Lu
Lt

(3.7a)

k
L
Lx
D(x, g)

Lv
Lx

#g(u, v)"
Lv
Lt

. (3.7b)

The solutions of (3.7) have spatially varying wavelengths of oscillation,
and the asymmetry in wavelength increases with the spatial variation
inD (Benson et al., 1993). Figure 2 compares the analytical approxima-
tions (3.6) for u with numerical solutions of (3.7) for Schnakenberg
kinetics (2.8).

There is good qualitative agreement between the solutions for all
D g D, D e D(1, but good quantitative agreement holds only when the
system is close to the bifurcation point and D g D;1. As expected, for
values of D g D;1, the variations in pattern wavelength and amplitude
are small and are thus hard to detect in numerical simulation, but the
spatial asymmetry becomes clearly visible as g is increased.

Figure 2c compares the approximation for u in two spatial dimen-
sions. Since the primary solutions depend only on the spatial variable
x, they predict spatial patterns which represent stripes perpendicular to
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Fig. 2. A comparison of the truncated form of the power series approximations (3.6)
with numerical solutions of (3.7) for Schnakenberg kinetics (2.8). The parameter values
used were (a) g"0.01, A"0.2, B"0.8, C"30, k"15, D"1 and (b) g"
0.75 A"0.1, B"0.9, C"464, k"464, D"1. For these values (a) kx

B
"14.9252,

k
c
"1 (as in the text) and (b) kx

B
"8.5556, k

c
"4. The analytical solutions are plotted

as functions of x at an arbitrary value of y. The numerical solutions were found by
solving (3.7) with the NAG routine D03PGF, which converts the equations to a system
of coupled odes using the method of lines, and then solves these using Gear’s method

the x axis. Moreover, since pattern wavelength is asymmetric in the
x direction, the width of the stripes may vary within the domain; of
course, this only applies when k

c
'1, so that there is more than one

stripe. The spatial variation in the width of the stripes is barely visible
for D gD;1 but becomes significant as D gD increases.

Using the truncated power series solutions, it is possible to con-
struct a bifurcation diagram of the primary solution branch bifurcating
from kx

B
for a given set of parameter values. The theoretical diagram is

constructed by calculating the possible values e from the equation
(3.6b) and substituting these values into the expression (3.6a). At each
value of k, the real parameter e may assume one of the two values
e` and e~, given by

eB"

!gq1
1
$M(gq1

1
)2#4qx

2
(k!kx

B
)N1@2

2qx
2

(3.8)
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Fig. 3. A comparison of bifurcation diagrams constructed from the truncated power
series approximations (left) from (3.6) with those produced by AUTO (right). The
parameter values used are as in Fig. 2(a) with the exception that in (a) g"0.05 and
(b) g"0.5. In this case, our analysis predicts that (a) k

B
+k

L
with value 15.0028, and

in (b) k
B
"15.878, k

L
"15.875. In turn AUTO predicts that in (a) k

B
+k

L
with value

15.006 and in (b) k
B
"16.194, k

L
"16.1649

Thus the power series expansion (3.6) represents two solutions
u(x, e`, g) and u (x, e~, g) of different magnitude, and on the bifurcation
diagram (Fig. 3), where we plot k against the maximum value of
DDu(x, e, g) DD, there will appear two distinct arms of the primary solution
branch. This separation of the branches when g90 represents an
additional splitting of the Turing bifurcation in comparison to the case
g"0, when the two branches are coincident, representing identical
patterns but with opposite polarity. In practice, the difference between
DDu(x, e~, g) DD and DDu(x, e`, g) DD is barely visible at very small values of g,
but as the magnitude of g increases, the two arms of the primary
solution branch may be distinguished in numerical simulations.
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When qx
2
'0, one arm is supercritical but the other has a small

subcritical region. On this second arm, the point k"k
L
, e"e

L
, where

k
L
"k

B
!(gq1

1
)2/(4qx

2
) and e

L
"!gq1

1
/(2qx

2
), represents a simple limit

point at which the branch changes direction. This implies that for each
k 3 [k

L
, kx

B
] there exist two subcritical solutions lying on the same arm

of the primary solution branch, whilst for each k'kx
B

there exist two
supercritical solutions lying on different arms. A similar result holds
when qx

2
(0. Thus, for g90, the uniform steady state undergoes

a transcritical bifurcation at the point kx
B
. This contrasts to the case

g"0, where the uniform steady state undergoes a pitchfork bifurca-
tion, and primary solution branches represent stripes perpendicular to
the x axis which are supercritical when qx

2
'0 and subcritical when

qx
2
(0 (see later).
Since the primary solution branch bifurcating from kx

B
is quasi-one-

dimensional we may compare our theoretical bifurcation diagram with
one produced by the numerical package AUTO (Doedel, 1986), which
locates the bifurcation and limit points of a partial differential equation
system defined in one spatial dimension and constructs the associated
solution branches by a pseudo arc length continuation method. A com-
parison of the bifurcation diagrams is illustrated in Fig. 3, where the
bifurcation parameter k is plotted against the maximum amplitude of
DDu(x, y) DD. Again, there is good qualitative agreement for all 0(DgD(1
and 06DeD(1, but only good quantitative agreement when the system
is close to the bifurcation point (i.e. e;1 and DgD;1). In particular,
these numerical results confirm that in contrast to the case g"0, there
are stable subcritical striped solutions (Fig. 4). This is discussed in
more detail in Sect. 5, when we consider the stability of the solution
branches.

3.2 The branch bifurcating at ky
B

Similar analysis can to used to calculate the power series expansions
for the primary solution branch bifurcating from ky

B
(see Appendix 1 for

details) and we find that

A
u
vB"A

u
0

v
0
B#eCAA

1
mBcos(ny)

#g +
i
Abu

i
bv
i
B cos (inx)cos(ny)D#

higher
order
terms

(3.9a)

k"ky
B
(g)#e2qx

2
#higher order terms , (3.9b)
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Fig. 4. An example of a subcritical stable steady solution of (2.1) represented in one
and two spatial dimensions. The solution on the right was obtained by numerical
solution of (3.7), on the interval [0, 1], with the NAG routine D03PGF. The solution
on the left was found by solving the full non-linear reaction diffusion system (2.1) on the
unit square using a finite difference scheme to obtain a system of algebraic equations
which were solved by an alternating direction implicit (ADI) method. The analysis
presented in Appendix 2 predicts that this pattern is stable. In this example,
Schnakenberg kinetics were used with parameter values as in Fig. 1(a) except that
g"1.2 and k"19.06. AUTO predicts k

B
"19.2443 and k

L
"18.9987. Since the

uniform steady state is also stable in this parameter range, initial conditions close to
the theoretically predicted pattern were used to generate the solution

where bu
i
, bv

i
(i"1, 2, 2) are constants. Again we replace the coeffic-

ient q0
2

of e2 by qx
2
, since detailed calculation (see Appendix 1) shows

that the coefficient of e2 here is the same as that in the expansion (3.6b)
at kx

B
, namely qx

2
, whose value is given in (A.5) in Appendix 1. For g90

it is seen that the power series expansion is dependent on both spatial
variables and, in general, has no planes of symmetry. However, the
x-dependence lies in a O(eg) term, that is of a lower order of magnitude
than the x-independent O (e) term as gP0. Therefore, the truncated
form of the power series approximation predicts stripes perpendicular
to the y axis whose spatial variation is O(g) as gP0. Typical examples
are illustrated in Fig. 5.

As before, there is good qualitative agreement between the solu-
tions for all 0(D g D(1 and 06D e D(1, but the quantitative agree-
ment is best close to the bifurcation point (e;1), when D g D;1. In this
case, the asymmetries introduced into the wavelength and amplitude
are small and barely visible in simulations. As the magnitude of
g increases, however, significant spatial asymmetry may be observed in
the spatial patterns. Again, the pattern variation is captured by the
truncated solutions in this case, since the terms egu1

1
and eu0

1
are

comparable.
Using (3.9), the bifurcation diagram for the primary solution

branch bifurcating from ky
B

may also be constructed. For each value of
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Fig. 5. Typical spatial patterns predicted by the truncated power series approxima-
tions when the threshold concentration is chosen to be u(x, y)"u

0
. The parameter

values used were (a) A"0.2, B"0.8, C"30, k"15, D"1, g"0.05 and
(b) A"0.1, B"0.9, C"464, k"9, D"1, g"0.5. For these values
(a) ky

B
"14.9286, k

c
"1 and (b) ky

B
"8.5558, k

c
"4 (see text for details)

Fig. 6. Bifurcation diagram constructed from the truncated power series approxima-
tions (3.9). The parameter values used are as in Fig. 5(a). Our analysis predicts that
ky
B
"14.9286. The infinite series in i was calculated by summing the first 20 terms, on

the basis that the next 20 terms make a negligible additional contribution

k, e takes one of the two values eB"$J(k!ky
B
)/qx

2
, and thus the

power series approximations represent two distinct solutions,
u(x, e`, g) and u(x, e~, g). However, these two solutions differ only by
a phase difference to first order, and thus on the bifurcation diagram
(Figure 6) where we plot k against the maximum of DDu (x, e, g) DD, the two
branches are represented by a single curve. Note the contrast between
this present case, where the two primary branches differ only at O(e2),
and the bifurcation at kx

B
, where the two bifurcating branches differ at

O(e). For qx
2
'0 the solution branches are supercritical and for qx

2
(0

they are subcritical (cf. the primary solution branch bifurcating
from kx

B
). Figure 6 illustrates our theoretical bifurcation diagram for

a given set of parameters.
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3.3 Primary bifurcations when g"0

To compare the primary bifurcation structure when g90 with
that when g"0, that is, the case of spatially homogeneous coefficients,
we have used the above technique to show that when g"0 there are
three distinct primary solution branches bifurcating from k

c
of the

form:

A
u
vB"A

u
0

v
0
B#eA

1
mBC cos(nx)

#e2GAaua
v
B

iC2cos(2nx)
2

#Abu
b
v
B
iC2

2 H#O (e3)

k"k
c
#e2qx

2
#O(e3) , (3.10)

which represents stripes perpendicular to the x axis,

AuvB"Au0v
0
B#eA1mBC cos(ny)

#e2GA
a
u

a
v
B
iC2cos(2ny)

2
#A

b
u

b
v
B
iC2

2 H#O (e3)

k"k
c
#e2qx

2
#O(e3) , (3.10b)

which represents stripes perpendicular to the y axis, and

A
u
vB"A

u
0

v
0
B#eA

1
mBCx

cos(nx)#C
y
cos(ny))

#e2GAaua
v
B
i(C2

x
cos(2nx)#C2

y
cos(2ny))

2

#A
b
u

b
v
B
i (C2

x
#C2

y
)

2
#A

c
u

c
v
BCx

C
y
cos(nx)cos(ny)H#O(e3)

k"k
c
#e2qxy

2
#O(e3) (3.10c)

(C2
y
#C2

x
"C2) which represents spotted solutions. Here i"

1
2
F
uu
#F

uv
, and the constants a

u
, a

v
, b

u
, b

v
, c

u
and c

v
are defined in

Appendix 1. Recall that, without loss of generality, we assume that
k
c
"1. Strictly speaking the last power series expansion represents two
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distinct solution branches, one for which C
x
"C

y
and the other for

which C
x
"!C

y
. The parameter qxy

2
, which is in general non-zero, is

defined by the equation

Dmpn2qxy
2

2
#(!1#p) i

C2

2
(F

uu
#mF

uv
)A

a
u
8
#

b
u

2
#

c
u
2B

#(!1#p)i
C2

2
F
uv A

a
v

8
#

b
v

2
#

c
v
2B#(!1#p)F

uuv

9C2

16
"0 (3.11)

The power series expansions above are in agreement with the well
known fact that, in the case of constant diffusion coefficients and
zero flux boundary conditions, the uniform steady state undergoes
a pitchfork bifurcation. In particular, striped solution branches are
supercritical when qx

2
'0 and subcritical when qx

2
(0, whilst the spot-

ted solution branches are supercritical when qxy
2
'0 and subcritical

when qxy
2
(0. Thus, in contrast to the case g90, there are no tran-

scritical bifurcations.
Comparing equations (3.6) and (3.10a), it is clear that the solution

branch bifurcating from kx
B

when g90 represents a perturbation from
the striped solution branch perpendicular to the x axis when g"0.
Similarly, the solution branch (3.9) bifurcating from ky

B
when g90

represents a perturbation from the striped solution branch (3.10b)
perpendicular to the y axis when g"0. Moreover, our analysis shows
in detail how the different bifurcation points and branches collapse as
gP0 to give the degenerate structure described above (see Fig. 1).
However, when g90, there is no primary solution branch analogous
to the spotted solution branch (3.10c) when g"0. In the following
section we show that this is due to a further splitting of the primary
bifurcation point so that spots arise as secondary bifurcations from
primary striped solution branches.

4 Secondary bifurcations

In this section we determine secondary bifurcations of the model
system (2.1) which occur close to the primary bifurcation points kx

B
and

ky
B

using the method outlined in Sect. 2. We recall from (2.6) our
notation that u

P
(x, g) represents the solution on the primary solution

branch at the point at which a secondary bifurcation occurs, namely
k"k

S
(g) or equivalently e"e

B
(g). When the secondary bifurcation

point lies on the primary solution branch bifurcating from kx
B
, the
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solution is

A
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)#O(g3@2) , (4.1b)

and when it lies on the solution branch bifurcating from ky
B
, it is
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#g (wy
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e2
1
)#O (g3@2) . (4.2b)

Here the constants e
1

and e
2

are coefficients of powers of g1@2 in the
expansion (2.7) of e

B
(g); these constants remain to be determined. The

various other constants were defined during the determination of the
primary solution branch (Sect. 3 and Appendix 1).

In the power series expansion (2.6) of the secondary solution
branch, the variable d is analogous to the parameter e along the
primary solution branches. In particular, d provides a measure of the
distance from k

S
and is scaled such that

DD (uN 1
1
, vN 1

1
) DD"1, S(uN 1

1
, vN 1

1
), (uN 1

2
, vN 1

1
)T"0 . (4.3)

With this choice of scaling, however, d is singular at g"0. Thus, in
contrast to the power series expansions for the primary solution
branches, analytical approximations of the form (2.6) only exist for
non-zero g. This reflects the fact that for g"0, secondary bifurcations
do not generally occur close to the primary bifurcation point, so that
secondary solution branches may not be written in terms of their
displacement from a small amplitude primary solution, as in the power
series expansions (2.6). There may be other choices for the para-
meterisation of the secondary solution branches which are non-singu-
lar as gP0, but for g90, the d and g expansion (2.6) is the most
natural parameterisation of the secondary solution branch, and is thus
the one we use.
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First we consider the secondary bifurcation points which lie along
one of the primary solution branches bifurcating from kx

B
. At O(dg1@2),

we have

AuN 11vN 1
1
B"A1mB (C

x
cos(nx)#C

y
cos(ny)) ,

where (C2
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y
)"C2"2/(1#m2).

To O (g), the Fredholm Alternative forces l1
1
"0. In this case
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The value of e
1

may now be determined by collecting the terms at
O(g3@2). The solvability conditions become (after much tedious algebra)
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From these equations we deduce that either

C2
x
"C2, C

y
"0, l2

1
"2e

1
qx
2
, (4.5)
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or

C
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In the former case (4.5), the value of e
1

is undetermined. This is a trivial
case, in which the corresponding power series expansion (2.6) repres-
ents the continuation of the primary solution branch beyond the
secondary bifurcation point, and may be obtained by replacing e by
e
1
#dg1@2 in our original analytical approximation of the primary

solution branch.
To determine the secondary bifurcations, we must therefore consider

(4.6). In this case there exists a secondary bifurcation point of the form
(2.7) whenever equation (4.6) admits a real, non-zero solution for e

1
.

This requires (wxÇ~wyÇ)
2(qxyÈ ~qxÈ)

'0, where qxy
2

is defined by the equation (3.11).
When this condition is satisfied
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2(qxy
2
!qx

2
)
, (4.7)

and equation (2.7) defines two distinct secondary bifurcation points.
Moreover, since the corresponding values of e have opposite signs,
these points lie on separate arms of the primary solution branch, but at
the same value of k (at least to this order), namely
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(g),k
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#gAwx
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#
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!wy
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2(qxy
2
!qx

2
) B (4.8)

By a similar analysis, we find that two secondary bifurcation points of
the form (2.7) can occur on the primary solution branch bifurcating
from ky

B
. In this case, however, we require (wxÇ~wyÇ)2(qxyÈ ~qxÈ)

(0. Again both
secondary bifurcations occur on separate primary solution branches at
the same value of k to leading order, which is
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2(qxy
2
!qx
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) B . (4.9)

Thus a secondary bifurcation of the form (2.7) occurs on exactly one of
the primary solution branches. Specifically, the secondary bifurcation
points lie on the primary solution branch bifurcating from kx

B
when
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(wxÇ~wy
Ç)

2(qxyÈ ~qxÈ)
'0 and on the primary solution branch bifurcating from

ky
B

when (wxÇ~wyÇ)2(qxyÈ ~qxÈ)
(0. Each of these cases are therefore considered

separately.

4.1 Solutions on the secondary branches

We can determine the leading order approximations to the secondary
solution branches bifurcating from kx

S
and ky

S
. We find, after a great

deal of tedious algebra, that the power series expansion for the second-
ary solution branch bifurcating from kx

S
is given by
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By a similar analysis we may determine the secondary solution
branches bifurcating from ky

S
. In this case the power series expansions

have the form
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Fig. 7. A comparison of (a) the truncated form of the power series approximations
(4.11) with (b) numerical solutions of the Schnackenberg model with g"0.35. The
parameter values used were A"0.2, B"0.8, C"120, k"15.74 and D"1. In this
case, ks

B
"14.9323 and k

c
"2

k"k
c
#(wy

1
#qx

2
e2
y
)g#d2g2qxy

2
#O(d3g) (4.11a)

where

e
y
"$S

(wy
1
!wx

1
)

2(qxy
2
!qx

2
)
. (4.11b)

In both cases the power series expansions show clearly the expected
two-dimensional nature of the steady state solutions which lie on the
secondary solution branches. To compare these analytical expansions
with numerically computed solutions of the full non-linear system, we
use the power series truncated at O (g1@2d).

Figure 7 compares these truncated expansions for the concentration
profile of u with numerical solutions of the full non-linear system (2.1).
As expected, we find that, for the parameter values considered, there
is reasonable qualitative agreement between the solutions for all
0(DgD(1 and 06DdD(1, but good quantitative agreement only
when the system is close to the secondary bifurcation point and g;1.
In this case, the spatial patterns are dependent almost exclusively on
a single spatial variable. As the magnitudes of DdD , gP1, however,
pattern becomes discernible in both directions. Figure 8 illustrates
typical two-dimensional spatial patterns predicted by our analytical
approximations. These patterns are the analogue of the spotted solu-
tions generated by reaction diffusion systems with spatially homogene-
ous diffusion coefficients. In this case, however, the spotted solutions
are asymmetric; the asymmetry being more clearly visible as g in-
creases. Using the truncated power series solutions, it is possible to
construct a bifurcation diagram of the secondary solution branches
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Fig. 8. Spatial patterns predicted by the truncated power series approximations (4.11)
when the threshold concentration is chosen to be u(x, y)"u

0
. The parameter values

used were (a) A"0.2, B"0.8, C"30, k"17.1, D"1, g"0.75, and (b) A"0.1,
B"0.9, C"30, k"8.57, D"1, g"0.05. In (a) k

c
"1, k

S
"kx

S
"16.6461 and in

(b) k
c
"2, k

S
"kx

S
"8.5677

Table 1. A comparison of the truncated power series approxima-
tion for the secondary bifurcation point kx

S
with the values of the

primary bifurcation points predicted by our analysis. The trun-
cated analytic approximations kx

S
"k

c
#g(wx

1
#e

x
qx
2
),kx

B
"k

c
#gwx

1
and kx

S
"k

c
#gwy

1
are used, with parameter values as in Fig. 9a

g kx
S

kx
B

ky
B

0.0 — 14.9056 14.9056
0.01 14.9323 14.9251 14.9286
0.05 15.0391 15.0029 15.0203
0.1 15.1725 15.10011 15.1349
0.5 16.2402 15.8669 16.0521
1.0 17.5746 16.8500 17.1985

bifurcating from kx
S

and ky
S
. Table 1 lists typical values of kx

S
, kx

B
and

ky
B

predicted by our analysis.
On the bifurcation diagram (Fig. 9), where we plot k against the

maximum value of DDu(x) DD, the pairs of both primary and secondary
solutions are represented by a single branch, because the value of g is
sufficiently small that the difference between solution arms are not
visible. These diagrams should be compared with the schematic repres-
entation in Fig. 1. Note that the truncated power series approxima-
tions predict a pitchfork bifurcation from either kx

S
or ky

S
. For qxy

2
'0

the secondary solution branches are supercritical and for qxy
2
(0 they

are subcritical.
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Fig. 9. Bifurcation diagram constructed from the
truncated power series approximations showing
primary and secondary solution branches. (For
clarity only one primary solution branch is
illustrated.) The parameter values used are as in
Fig. 9(a) with the exception that g"0.01. In this
case the secondary bifurcation points lie on the
primary solution branches bifurcating from kx

B
,

and has value kx
S
"14.9323. Our analysis predicts

that kx
B
"14.9252, ky

B
"14.9286

5 Stability

It is straightforward, although algebraically complex, to determine the
stability of the various solution branches. Details of the calculations
are given in Appendix 2; here we summarise the results and discuss
their implications. The key parameters controlling stability are qx

2
and

qxy
2

, and the various stability regions in the qx
2
— qxy

2
plane are shown in

Fig. 10. These results have some important implications for the pos-
sible range of observable (stable) patterns:
(i) The subcritical striped patterns, which are a novel feature intro-

duced by spatially varying diffusion, can be stable. Specifically,
this occurs for stripes perpendicular to the x-axis (on a primary
branch bifurcating from kB

x
) when k

L
(kx

B
and qx

2
'0.

(ii) Since qx
2
'0 is exactly the criterion for the primary branches

bifurcating at ky
B

to be supercritical, only supercritical striped
patterns perpendicular to the y-axis are stable.

(iii) The primary solution branch on which the secondary bifurcation
to spots occurs can change stability at this secondary bifurcation
point; this occurs when qxy

2
'qx

2
'0, on whichever primary

branch the secondary bifurcation to spots occurs.
(iv) The secondary solution branch (corresponding to spots) is never

stable when it is subcritical, so that stable spots can only appear
supercritically.

These observations together mean that stable stripes can appear either
subcritically or supercritically, and then bifurcate supercritically to
stable spots. Moreover, stable striped and spotted patterns never
co-exist. This last observation has a direct analogy in the spatially
homogeneous case g"0, in which either a striped or spotted solution
(but never both) is selected at the (primary) Turing bifurcation point
(Ermentrout, 1991; Lyons and Harrison, 1991).

For the small values of e, g and d for which our weakly nonlinear
analysis is valid, the range of subcritical values of the bifurcation
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Fig. 10. A schematic representation of the stability of the various primary and second-
ary solution branches, as predicted by the analysis in Appendix 2. The four bifurcation
diagrams all have the basic structure shown in Fig. 1; stable solutions are denoted by
solid lines, and unstable solutions by dashed lines. This representation applies when
the secondary bifurcation occurs on the primary solution branches emerging from
k"kx

B
. In the alternative case in which the secondary bifurcation occurs on the

primary branch emerging from k"ky
B
, the only difference is that the stability of the

these two sets of primary branches is reversed. There are four stability regions in the
qx
2
—qxy

2
plane: (i) qx

2
(0 in which all patterns are unstable; (ii) qx

2
'0, qxy

2
(0 in which

case the only stable patterns are on the primary branch between the primary and
secondary bifurcations; (iii) qxy

2
'qx

2
'0 in which case the primary solution branches

are stable and the secondary branches are unstable; (iv) qx
2
'qxy

2
'0 in which case the

primary branches emerging from k"ky
B

are stable, while those emerging from k"kx
B

are initially unstable, and then lose stability at the secondary bifurcation, giving stable
spotted solutions. Note that qx

2
(0 is exactly the condition for (both) solution branches

emerging from k"ky
B

to be subcritical, these solution branches change stability and
criticality simultaneously, as illustrated
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Fig. 11. Steady state solutions of the full non-linear system (2.1) for parameter values
C"30, g"1.2, A"0.2, B"0.8, (a) k"19.06 and (b) k"21.06. In this case, our
analysis predicts that the secondary bifurcation point, kx

S
, lies on the primary solution

branch bifurcating from kx
B
. From AUTO, kx

B
"19.244 and k

L
"18.988. The para-

meter values used satisfy the stability conditions qx
2
'qxy

2
'0. Note that the striped

solution is subcritical, and for other initial conditions from those used (perturbations
about the spatially heterogeneous steady state in each case) the system relaxed to the
uniform steady state

parameter for which stable stripes exist is numerically very small.
Similarly, the secondary bifurcation points lie in very close proximity
to the primary bifurcation point. It is therefore difficult to investigate
quantitatively our stability predictions by numerical simulation, be-
cause of the long relaxation time of solutions close to the bifurcation
points. For larger values of g, the subcritical part of the primary
solution branch is wider, and intuitively we would expect the position
of the secondary bifurcation point to move further from the primary
bifurcation point. In this case, therefore, it may be possible to observe
a transition from stable striped to stable spotted solutions as the value
of the bifurcation parameter is increased. Preliminary simulations
suggest that this is true, but we have not done a detailed numerical
study.

Figure 11 illustrates solutions of the full time dependent non-linear
model equations solved numerically for g90 with parameter values
satisfying qx

2
'qxy

2
'0. In this example we use a relatively large value

of g ('1), but nevertheless we find stable striped solutions close to the
primary bifurcation point (predicted numerically from the correspond-
ing one-dimensional system using AUTO) and stable spotted solutions
for larger values of the bifurcation parameter. In this case, however, the
truncated power series approximation cannot make an accurate pre-
diction of the secondary bifurcation point. A higher order approxima-
tion may provide a better prediction for large values of g, although it
must be remembered that the assumptions underlying the power series
approximation are not valid.

Unravelling the Turing bifurcation 405



We complete this section by comparing the stability of striped and
spotted solutions of the reaction diffusion system (2.1) for g90 with
the stability of similar solutions in the spatially homogeneous case
g"0. When the diffusion coefficients are constant, a similar analysis to
that in Appendix 2 may be used to determine the stability of the
primary solution branches bifurcating from k

c
, via power series expan-

sions (2.2). In this case we find that primary striped solutions are stable
if and only if qxy

2
'qx

2
'0, and that primary spotted solutions are

stable if and only if qx
2
'qxy

2
'0. These conditions are a statement of

the well known fact that for constant diffusion the primary solution
branches are stable only when the pitchfork bifurcation from the
uniform steady is supercritical. Moreover, they agree with recent ana-
lyses which show that simultaneously stable striped and spotted solu-
tions cannot exist (Ermentrout, 1991; Lyons and Harrison, 1991). It
may also be shown that, when the model equations are written in terms
of displacement from the uniform steady state, the absence of quadratic
terms forces (qxy

2
!qx

2
)(0. Our stability conditions are therefore in

agreement with the fact that certain kinetics exclude stable spotted
solutions.

Moreover, the conditions for stable spotted solutions are the same
for both g"0 and g90. The conditions for the stability of striped
solutions when g90, however, are the same as for constant diffusion
only beyond the secondary bifurcation point. In this case, the spatial
pattern selected for either g"0 or g90 is determined by the competi-
tion between cubic and quadratic terms in the kinetics. For values of
the bifurcation parameter less than the secondary bifurcation value,
however, a striped solution is always selected. Thus, a reaction diffu-
sion system, which for a given set of parameter values and constant
diffusion coefficients admits only stable spotted solutions, can be
forced to generate stable striped solutions by spatially heterogeneous
diffusion coefficients. Numerical simulations demonstrate that this
may also occur when reaction kinetics are spatially heterogeneous or
when the shape of the domain is rectangular (Lyons and Harrison,
1992).

6 Discussion

In this paper we have considered only square shaped domains. For
constant diffusion coefficients this ensures that no predescribed asym-
metry is imposed on the reaction diffusion system which might influ-
ence pattern selection. Analytically we have shown, however, that
a small spatial asymmetry in diffusion coefficients is sufficient to
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exclude the formation of spotted solutions close to a primary bifurca-
tion point. This results from the splitting of the primary bifurcation
point, which for constant diffusion is highly degenerate, into two
simple primary bifurcation points and a secondary bifurcation point.
In this respect the bifurcation structure of reaction diffusion systems
defined on square domains with spatially heterogeneous diffusion
coefficients is similar to that of systems defined on rectangular domains
with constant diffusion coefficients. In the latter case, striped steady
state solutions parallel to the x and y axes generally bifurcate from
distinct primary bifurcation points. On an almost square domain we
have found that the two primary bifurcation points lie close together
and spotted solutions appear as secondary bifurcations from one of the
primary solution branches. In contrast to the case of spatially hetero-
geneous diffusion coefficients, however, there are no transcritical bifur-
cations from the uniform steady state and hence no stable striped
solutions for subcritical values of the bifurcation parameter. This
implies that the two systems are not isomorphic. Moreover, the four
primary bifurcation branches only separate into two identical pairs on
an almost square domain, whereas with spatially varying diffusion
coefficients, all four primary branches become distinct. Thus the
introduction of a small spatial variation in the diffusion co-
efficients is a more effective way of splitting the degeneracies in the
Turing bifurcation.

Reaction diffusion systems with constant diffusion coefficients de-
fined on infinite domains do not in general have stable subcritical
striped solutions. In this case, there are three basic patterns which
tessellate the plane and appear as steady state solutions of reaction
diffusion systems. These are stripes, rhombs (which correspond to our
spotted solutions) and hexagons (which are not possible on a rectangu-
lar or square domain). According to stability analysis (see, for example,
Malomed and Tribel’skii, 1987), hexagonal patterns should appear first
via a subcritical bifurcation. These patterns are stable but become
unstable at a supercritical value of the bifurcation parameter. From the
same primary bifurcation point, stripes bifurcate supercritically. These
are unstable close to the bifurcation point, but become stable at large
values of the bifurcation parameter. There is a region of bistability
where both stripes and hexagons are stable. As on the finite domain,
stable spots can form in place of stable stripes.

These theoretical predictions have been confirmed numerically for
the Schnakenberg and Brussellator models (Dufiet and Boissonade,
1992a,b; De Wit et al., 1992). Our analysis suggests, however, that
spatially heterogeneous diffusion coefficients could enable striped solu-
tions to appear subcritically on an infinite domain. Although both
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numerical (Borcksman et al., 1992) and theoretical analyses (Walgraef
and Schiller, 1987) have been carried out on systems with spatially
inhomogeneous model parameters defined on infinite domains, to our
knowledge, subcritical striped solutions have not been reported. Re-
cently, however, such solutions were observed (Jensen et al., 1993) in
numerical solutions of a reaction diffusion system, defined on a spa-
tially homogeneous domain, in which the instability interval of a time
periodic, spatially oscillating solution overlapped with that of a Turing
pattern. The same system also produced spatial patterns which could
be localised within the domain. In both cases, the spatial patterns were
constant in time for a wide range of parameter values. In general,
however, when a Turing instability and a time oscillatory instability
occur simultaneously, the solutions are complex, spatially in-
homogeneous, non-stationary structures (Perraud et al., 1993), which
may be observed experimentally. This has led to the suggestion that by
continuously varying the value of a single parameter, one might move
from stationary Turing patterns, through spatio-temporal structures,
to travelling excitable waves (Boissonade, 1994). In particular, this
highlights the fact that reaction diffusion mechanisms have a far
greater capacity for pattern formation than is suggested by the linear
analysis of standard Turing systems.

Appendix 1

In this Appendix, we summarise the analytical determination of the
primary solution branches, supplying various details that were omitted
in Sect. 3.

A1.1 The branch bifurcating at kx
B

Substituting the expansion (2.3b) for k into the governing reaction
diffusion equations (2.1) and equating powers of eg, we find that (u1

1
, v1

1
)

is a solution of the equation

¸A
u1
1
(x
1
)

v1
1
(x
1
)B"x2A

1
k
c
mBCn2 cos (nx)#2xA

1
k
c
mBCn sin(nx)

#Dwx
1A

0
mBCn2 cos(nx), (A.1)

where ¸ is the linearised operator for the nonlinear system (2.1). Recall
that the parameters m, C and wx

1
are defined in (3.2), (3.3) and (3.4)
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respectively; k
c
is the value of k at which a Turing bifurcation occurs

when g"0.
To determine the solution we express (u1

1
, v1

1
) as the Fourier cosine

expansion

A
u1
1
(x
1
)

v1
1
(x
1
)B" +

k, j|N
a
1 k, j

cos(knx) cos( jny).

Substituting this expression into equation (A.1), multiplying both sides
by cos(knx)cos( jny) and integrating over [0, 1]][0, 1] gives, for each
k, j3N

M
k, j A

a1
k, j

a2
k, j
B"2(J

1 1
#J

1 2
#J

1 3
)

where J
1 1

, J
1 2

, J
1 3

are given by

J
1
"PCn2A

1
k
c
mBx2 cos (nx) cos (knx) cos ( jny) dx dy

"CA
1

k
c
mB G

2(1#k2)/(1!k2)2
!2(1#k2)/(1!k2)2

n2[1/6#1/4n2]
0

k91, k odd, j"0
k91, k even, j"0
k"1, j"0
k"0, j90

J
2
"P2CnA

1
k
c
mBx sin(nx) cos(knx) cos( jny) dx dy

"CA
1

k
c
mB G

!2/(1!k2)
2/(1!k2)
!1/2

0

k91, k odd, j"0
k91, k even, j"0
k"1, j"0
k"0, j90

J
3
"PDw

1
Cn2A

0
mB cos(nx) cos(knx) cos( jny) dx dy

"CA
0
mB G

Dw
1
n2/2

0

0

k"1 , j"0

k91, j"0

k"0 , j90

Here M
k, j

for k, j"1, 2, 2 are the matrices associated with the
action of ¸ on an arbitrary vector of the form (u, v)Jcos(knx)
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]cos ( jny), and are defined by

M
k,j

"A
!D(k2#j2)n2#F

u
F
v

G
u

!k
c
D(k2#j2) n2#G

v
B . (A.2)

For (k, j )9(1, 0) or (0, 1), a
k, j

"2M~1
k, j

(J
1
#J

2
#J

3
), since the ma-

trices M
k,j

are invertible. In this case, a
0,j

"0 and in general, a
k,0

90.
For (k, j)"(1, 0) or (0, 1), M

k, j
is singular. In this case a

k, j
can be

written in the form

a
k,j

"A
k, jA

1
mB#B

k, jA
1

!1/mB .

For (k, j )"(1, 0), A
k, j

must have the value 0 to satisfy the ortho-
gonality condition (2.5b) and B

k,j
may be calculated from

B
k,j

M
k, j

(1, !1/m)"2(J
1
#J

2
#J

3
). For (k, j)"(0, 1), it is easily

seen that B
k,j

"0 and that A
k,j

is undetermined. Considering higher
order expansions, however, it may be shown that A

0,1
"0. Thus we

find

A
u1
1
(x)

v1
1
(x)B"+

k

a
k
cos(knx)

where a
k
"a

k,0
. Note that this leading order power series approxima-

tion is completely independent of the spatial variable y.
To determine the leading order approximation for k we must con-

sider higher order terms in the expansions. Equating coefficients of
O(e2g0) and using the Fredholm Alternative, we find that q0

1
"0 and

A
u0
2

v0
2
B"A

a
u

a
v
B
1
2

iC2 cos(2nx)#A
b
u

b
v
B
1
2

iC2#A
1
mBP cos(nx)

#A
1
mBQcos(ny) .

Here P"0, in order to satisfy the orthogonality condition (2.5b), and
Q is still to be determined; as stated in the main text, i"1

2
F
uu
#F

uv
.

The constants a
u
, a

v
, b

u
and b

v
are defined by the equations

M
2,0A

a
u

a
v
B"A

!1
1 B , M

0,0A
b
u

b
v
B"A

!1
1 B . (A.3)

In a similar way, the constants c
u
and c

v
that are used in the main text

are defined by

M
1,1A

c
u

c
v
B"A

!1
1 B .
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Substituting this expression into the O (e2g) equations yields the
solvability conditions Q"0 and K

1
#K

2
#K

3
#K

4
"0, where

K
1
"PC(F

uu
a1
2
#F

uv
(a2

2
#ma1

2
))A

!1
1 B · A

1
pB cos(2nx) cos2(nx) dx

#PC (F
uu

a1
2
#F

uv
(a2

0
#ma1

0
))A

!1
1 B ·A

1
pB cos2(nx) dx

"C[(F
uu

a1
2
#F

uv
(a2

2
#ma1

2
))#2(F

uu
a1
0
#F

uv
(a2

0
#ma1

0
))] (1#p)/4

K
2
"P 4A2in2A

a
u

k
c
a
v
B · A

1
pBx2 cos(nx) cos(nx) dx

"!4C2i(a
u
#k

c
a
v
p)C

1
4
#

n2

6 D
K

3
"P 2C2inA

a
u

k
c
a
v
B ·A

1
pB 2x sin(nx) cos(nx) dx

"C2i(a
u
#k

c
a
v
p)

K
4
"P Dq1

1
Cn2A

0
mB ·A

1
pB cos2(nx) dx

"CDn2pmq1
1
/2,

and a
2
"(a1

2
, a2

2
). Therefore we require that

q1
1
"!2

(K
1
#K

2
#K

3
)

CDmpn2
. (A.4)

Except in special cases, q1
1
90, so that egq1

1
is a leading order term

in the expansion of k. Since q0
1
"0, the other leading order term will be

e2q0
2
, provided q0

2
90. To determine q0

2
, we consider the O (e3) expan-

sion of the model equations. Considering terms of O(e3g0), the solvabil-
ity condition is

Dmpn2q0
2

2
#(!1#p)iC2(F

uu
#F

uv
m) A

a
u

8
#

b
u

4 B
#(!1#p)iC2F

uvA
a
v
8
#

b
v

4 B#(!1#p)F
uuv

3C2

16
"0 . (A.5)

Again except in special cases, q0
2
90, and so to leading order

k"kx
B
#egq1

1
#e2q0

2
.

Unravelling the Turing bifurcation 411



A1.2 The branch bifurcating at ky
B

To approximate the solution near ky
B
, we observe, from equations (3.1)

and (3.4), that

A
u0
1

v0
1
B"A

1
mBCcos(ny)

and (u1
1
, v1

1
) is a solution of the system

¸A
u1
1

u1
1
B"x2A

1
k
c
mBCn2 cos(ny)#Dwy

1A
0
mBCn2 cos(ny) . (A.6)

Here the definition of wy
1

given in (3.4b) guarantees the existence of
a solution to equation (A.6). Again, to determine this solution we
express (u1

1
, v1

1
) as the Fourier cosine expansion

A
u1
1

v1
1
B" +

k,j|N
A
b1
k, j

b2
k, j
B cos(knx) cos( jny)

and substitute this expression into equation (2.1). This gives rise to
a series of linear equations for the b

j,k
of the form

M
k, jA

b1
k,j

b2
k,j
B cos(knx) cos( jny)"Dwy

1A
0
mBCn2 cos(ny)

#x2A
1

k
c
mBCn2cos(ny) , (A.7)

where the matrices M
k,j

are defined by (A.2). For (k, j)9(0, 1) and
(k, j)9(1, 0), the matrices M

k, j
are invertible. In this case, (A.7) may be

solved for each b
k, j

by multiplying each side of the equation by
cos(knx)cos( jny) and integrating over the unit square. When j"1 and
k90, we find that M

k, j
(b1

k, j
, b2

k, j
)"(2C/k2)cos(kn) (1, k

c
m), and when

j90 or 1 and k90, we find b
j,k

"0. When (k, j)"(0, 1) or
(k, j)"(1, 0), M

k, j
is singular and we look for a solution of the form

A
b1
k, j

b2
k, j
B"A

1
mBA#A

1
!1/mBB .

In the first case, A"0 by orthogonality but in general B is non-zero
and may be found by substitution. When (k, j)"(1, 0), it is obvious
that A"B"0. Thus we find

A
u1
1
(x)

v1
1
(x)B"+

k

b
k,1

cos(knx)cos(ny) .
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In particular this implies that the truncated power series approxima-
tion (3.9) is dependent on both spatial variables, as discussed in Sect. 3.
For D g D;1, however, the dependence on x is very small, so that the
solutions are approximately one-dimensional.

Determining the leading order approximation for k in a manner
analogous to the above, we find that the solvability condition forces
q1
1
"0. From consideration of higher order expansions in g, it is found

that qj
1
"0 for all j"2, 3, 2 . Thus the truncated approximation for

k reduces to k"k
c
#e2q0

2
.

The value of q0
2

is determined by the O (e2) expansion of the model
equations and is given by

Dmpn2q0
2

2
#(!1#p)iC2(F

uu
#F

uv
m)A

a
u

8
#

b
u

4 B
#(!1#p)iC2F

uvA
a
v
8
#

b
v

4 B#(!1#p)F
uuv

3C2

16
"0 , (A.8)

By comparison with equation (A.5), it is seen that this value of q0
2

is the
same as that for the primary solution branch bifurcating from kx

B
, and

as explained in the main text, we denote this common value by qx
2
.

Appendix 2

Here, we summarise the analysis involved in determining the stability
of the various solution branches that we have described for (2.1). The
analytical techniques are standard (see, for example, Sattinger, 1972);
we consider only linear stability. For the primary branches, linear
stability u (x, e, g) is determined by considering the eigenvalue problem

+ · (D (x, g)+uL )#F
u
(u(x, e, g)) uL #F

v
(u(x, e, g))vL"juL , (B.9a)

k+ · (D (x, g)+vL )#G
u
(u, e, g)) uL #G

v
(u (x, e, g))vL"jvL , (B.9b)

uL
x
"vL

x
"0 on x"0, 1, uL

y
"vL

y
"0 on y"0,1 , (B.9c)

and the linear stability of the secondary solution branches uN (x, d, g) is
determined by considering the eigenvalue problem

+ · (D(x, g)+uL )#F
u
(uN (x, d, g)) uL #F

v
(uN (x, d, g))vL"juL , (B.10a)

k+ · (D(x, g)+vL )#G
u
(uN , d, g)) uL #G

v
(uN (x, d, g)) vL"jvL , (B.10b)

uL
x
"vL

x
"0 on x"0,1, uL

y
"vL

y
"0 on y"0, 1. (B.10c)
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In both cases j represents the rate of linear growth of perturbations
uL (x) about the steady state solutions. In particular, the solution branch
is stable if and only if j(0 for all perturbation solutions.

To solve the eigenvalue problem for j, we substitute the power
series expansions for the primary and secondary solution branches into
equation (B.9) or (B.10) as appropriate, and assume that both j and
uL (x) may be expressed as power series expansions in the same small
parameters. Thus on the primary solution branches, we look for
solutions of the eigenvalue problem of the form

uL (x, e, g)"euL
1
(x, g)#e2uL

2
(x, g)#O(e3) (B.11a)

j(e, g)"j
0
(g)#ej

1
(g)#e2j

2
(g)#O(e3) , (B.11b)

satisfying DDuL
1
DD"1, where for i"1, 2, 2 and j"0, 1, 2, 2

uL
i
(x, g)"uL 0

i
#guL 1

i
#g2uL 2

i
#O (g3)

j
j
(g)"j0

j
#gj1

j
#g2j2

j
#O (g3) .

On the secondary solution branches, the appropriate power series
expansions are

uL (x, d, g)"duL
1
(x, g)#d2uL

2
(x, g)#O(d3) (B.12a)

j(d, g)"j
0
(g)#dj

1
(g)#d2j

2
(g)#O (e3) , (B.12b)

satisfying DDuL
1
DD"1, where for i"1, 2, 2 and j"0, 1, 2, 2

uL
i
(g)"g1@2uL 1

i
#guL 2

i
#O(g3@2)

j
j
(g)"g1@2j1

j
#gj2

j
#O(g3@2) .

Substituting these expressions into the eigenvalue equations, the two-
variable perturbation technique may then be used to determine the
leading order approximation for j. Specifically, we approximate j on
the primary solution branches by

j"gj1
0
#egj1

1
#e2j0

2
,

and on the secondary solution branches by

j"gj2
0
#d2gj2

2
.

From these approximations we are able to derive the conditions for the
stability of the primary and secondary solution branches when g90
and compare these with the conditions for the stability of primary
striped and spotted solutions when g"0 (see Sect. 5).

As this analysis is standard, we summarise the results for our
system. Considering first the primary solution branch bifurcating from
kx
B
, we find that its stability for a given value of k, or equivalently for
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a given value of the parameter e, is determined by the signs of j
x
and j

y
,

where

j
x
"

Dn2mp
1#mpGegq1

1
#e22qx

2H (B.13)

j
y
"

Dn2mp
1#mpG!g (wx

1
!wy

1
)#2e2(qxy

2
!qx

2
)H . (B.14)

When both j
x
(0 and j

y
(0 the spatially inhomogeneous steady state

solution is stable; otherwise it is unstable. Equation (B.13) implies that

j
x
(08qx

2
'0 and eN[e

L
, 0] , (B.15)

where e
L
"!gq1

1
/(2qx

2
) is the position of the limit point denoted by

k"k
L
; for qx

2
'0, the parameter interval [e

L
, 0] corresponds to the

lower part of the subcritical region of the primary solution branch (see
Fig. 1). Here we have used the fact that mp3(!1, 0) for all reaction
kinetics which exhibit diffusion driven instability; this follows from
simple algebraic manipulation of the equation (3.2) defining m and the
corresponding expression for p (given immediately before (3.4)). Sim-
ilarly, we can deduce that

j
y
(08

(qxy
2
!qx

2
)(0 and e2(e2

x
,

(qxy
2
!qx

2
)'0 and e2'e2

x
,H if e2

x
'0

j
y
(08(qxy

2
!qx

2
)'0 ∀e if e2

x
(0,

where

e
x
"C

g (wx
1
!wy

1
)

2(qxy
2
!qx

2
)D

1@2

defines the position of the secondary bifurcation point kx
S

when

wx
1
!wy

1
qxy
2
!qx

2

'0 .

Thus, when kx
S

exists, the primary solution branch is stable for
k
L
(k(kx

S
if and only if qx

2
'0, qx

2
'qxy

2
, and for k'kx

S
if and only if

qxy
2
'qx

2
'0. When kx

S
does not exist, the solution branch is stable for

all k'kx
B

whenever qxy
2
'qx

2
'0. In particular, it follows that a neces-

sary condition for stability is qx
2
'0.

By a similar analysis, we may determine the stability conditions for
the primary solution branch bifurcating from ky

B
; the results are out-

lined in Sect. 5.
Using the above ideas we can also analyse the stability of the

solutions on the secondary branches. First we determine the stability of
the secondary solution branch bifurcating from kx

S
, which has power
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series expansion (2.6). We find that the stability of the secondary
solution branch is determined by the signs of j

x
and j

y
, where

j
x
(d, g)"g

2Dn2mpqx
2

1#mp
!d2g

8Dmpn2qxy
2

(qxy
2
!qx

2
)

(1#mp)qx
2

(B.16)

j
y
(dg)"!d2g

8Dmpn2qxy
2

(qxy
2
!qx

2
)

(1#mp)qx
2

. (B.17)

The solutions are stable if both j
x
(0 and j

y
(0, and are unstable

otherwise. It follows that for sufficiently small d, j
x
(08qx

2
'0. As

before, we have used the fact that, for all parameter values lying in
the generalised Turing space, mp3(!1, 0). Similarly, j

y
(08

qxy
2

(qxy
2
!qx

2
)/qx

2
(0. Thus close to the secondary bifurcation point,

where d;1, there exist stable spotted solutions for k'kx
S
if and only if

qx
2
'qxy

2
'0.
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