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Abstract. Periodic travelling waves are a fundamental solution form in oscillatory reaction-
diffusion equations. Here I discuss the generation of periodic travelling waves in a reaction-diffusion
system of the generic λ-ω form. I present numerical results suggesting that when this system is
solved on a semi-infinite domain subject to Dirichlet boundary conditions in which the variables are
fixed at zero, periodic travelling waves develop in the domain. The amplitude and speed of these
waves are independent of the initial conditions, which I generate randomly in numerical simulations.
Using a combination of numerical and analytical methods, I investigate the mechanism of periodic
travelling wave selection. By looking for an appropriate similarity solution, I reduce the problem to
an ODE system. Using this, I derive a formula for the selected speed and amplitude as a function of
parameters. Finally, I discuss applications of this work to ecology.
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1. Introduction. Periodic travelling waves (PTWs) are a fundamental solution
form in oscillatory reaction-diffusion equations, by which I mean reaction-diffusion
systems whose kinetics have a stable limit cycle. PTWs are the one-dimensional
analogue of spiral waves and target patterns, and underlie many observed behaviors
in biology and chemistry (Bjørnstad, Ims, and Lambin (1999); Scott et al. (2000)).
In 1973, Kopell and Howard published their seminal paper, which showed that a
reaction-diffusion system develops a one-parameter family of PTWs as its kinetics
pass through a Hopf bifurcation. Wave speed or amplitude are convenient parameters
for this family, and an oscillatory reaction-diffusion equation has a PTW solution for
any speed above a critical minimum value and for any amplitude below that of the
limit cycle in the kinetics. Building on Kopell and Howard’s work, periodic travelling
waves were studied extensively in the 1970s and 1980s. This work focussed primarily
on the existence and stability of the solutions. For instance, Maginu (1981) showed
that PTWs of sufficiently high speed are stable in general systems, and Ermentrout
(1981) demonstrated stable small amplitude waves in a particular reaction-diffusion
system. More recent work includes nonlinear stability analysis (Kapitula (1994)), the
application of symmetry methods (Romero, Gandarias, and Medina (2000)), and the
generation of PTWs behind invasive fronts (Sherratt (1994a,b); Sneyd and Sherratt
(1997); Ermentrout, Chen, and Chen (1997); Petrovskii and Malchow (1999), (2000);
Ashwin et al. (2002)).

The simplest behavior of an oscillatory system is a spatially uniform oscillation.
In many cases, this solution is stable on an infinite, spatially homogeneous domain:
for instance, in reaction-diffusion systems, stability is guaranteed when the diffusion
coefficients are sufficiently similar (Kopell and Howard (1973)). However, spatially
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uniform oscillations are incompatible with spatial heterogeneities, which can arise via
spatially varying parameter values or via conditions imposed on finite boundaries.
Such situations provide a potential mechanism for the generation of PTWs in oscilla-
tory chemical or biological systems. For instance, it is well known that in experiments
with the oscillatory Belousov–Zhabotinskii chemical reaction, small impurities such
as dust particles force target patterns or spiral waves rather than homogeneous os-
cillations (Nagashima (1991), Winfree (2001)). Mathematically, the effects of such
heterogeneities have been studied most fully for systems of discrete coupled oscilla-
tors. In particular, the work of Ermentrout, Kopell, and colleagues gives a detailed
account of the response of chains of weakly coupled oscillators to both boundary- and
parameter-based heterogeneities (Ermentrout and Kopell (1984), (1986); Kopell, Er-
mentrout, and Williams (1991); Ren and Ermentrout (1998)). In oscillatory reaction-
diffusion systems, there has been some study of periodic wave generation by spatial
inhomogeneities in the domain (Hagan (1981a); Kopell (1981); Kay and Sherratt
(2000)). However, heterogeneities imposed at the edges of a domain have received
little attention, despite early work by Auchmuty and Nicolis (1976), who developed
series solutions for the Brusselator model close to Hopf bifurcation on a finite domain
with Neumann and Dirichlet end conditions.

In the present paper, I study the generation of PTWs by particular Dirichlet con-
ditions at one edge of a semi-infinite domain. In section 2, I introduce this behavior
with the results of numerical simulations. In section 3, I show that solutions of the
observed form satisfy an ODE system with one free parameter, which corresponds to
the temporal frequency of the oscillations. I then present a combination of analyti-
cal and numerical results suggesting that this ODE system has a solution satisfying
appropriate end conditions for a countably infinite set of values of this parameter.
In section 5, I discuss the hypothesis that in only one of these solutions does the
amplitude vary monotonically in space, and that this determines the stability of the
solutions. In section 6, I use a similarity solution to derive a formula for the speed and
amplitude of the observed periodic wave. Finally, in section 7, I discuss extensions to
two space dimensions and applications of the results.

2. Numerical simulations of PTW generation. All of the work in this paper
involves the following oscillatory reaction-diffusion system:

∂u

∂t
= ∇2u+ (1 − r2)u− (ω0 − ω1r

2)v,(2.1a)

∂v

∂t
= ∇2v + (ω0 − ω1r

2)u+ (1 − r2)v,(2.1b)

where r =
√
u2 + v2. This belongs to the “λ-ω” class of equations introduced by

Kopell and Howard (1973). The kinetics in (2.1) are the normal form of any oscillatory
kinetics close to a supercritical Hopf bifurcation, and, as such, (2.1) is the natural
system for studying generic behavior in systems in which each variable has the same
diffusion coefficient. This system is often seen with (1 − r2) replaced by (λ0 − λ1r

2),
but the coefficients λ0 and λ1 can easily be removed by rescaling. All of the work
in sections 2–6 is in one space dimension; in section 7, two-dimensional behavior is
discussed briefly.

The kinetics of (2.1) have an unstable equilibrium at u = v = 0 and a stable
circular limit cycle centered at this equilibrium, of radius 1. Standard theory, due
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originally to Kopell and Howard (1973), shows that the family of PTWs is given by

u = r∗ cos
[
θ0 ±

√
1 − r∗ 2x+

(
ω0 − ω1r

∗ 2
)
t
]
,(2.2a)

v = r∗ sin
[
θ0 ±

√
1 − r∗ 2x+

(
ω0 − ω1r

∗ 2
)
t
]
,(2.2b)

where r∗ parameterizes the family and θ0 is an arbitrary constant. The wave is stable
as a solution of (2.1), provided that

r∗ > rstab ≡
(

2 + 2ω2
1

3 + 2ω2
1

)1/2

(2.3)

(Kopell and Howard (1973)). In many situations, it is convenient to rewrite system
(2.1) using r and θ = tan−1(v/u), which are polar coordinates in the u-v plane. In
one space dimension, this gives

rt = rxx − rθ2x + r(1 − r2),(2.4a)

θt = θxx +
2rxθx
r

+ ω0 − ω1r
2.(2.4b)

Here and throughout the paper, the suffixes x and t denote derivatives. The PTW
solutions (2.2) are of course given in terms of r and θ by

r = r∗, θ = θ0 ±
√

1 − r∗ 2 x+
(
ω0 − ω1r

∗ 2
)
t.

In fact, it is easy to show that any solution with r constant and < 1 is a PTW.
The starting point of my work is the following very simple situation. I consider

(2.1) on a semi-infinite domain x > 0, say, with the boundary condition u = v = 0
at x = 0. Numerically this can be reproduced by solving on the finite domain 0 <
x < X∞, with X∞ large and with ux = vx = 0 at x = X∞. I consider the solution
that develops from random initial conditions, by which I mean that I use a random
number generator to calculate u and v values, between ±1, at points with an equal
spacing of about ∆x = 5 throughout the domain, and then join these random values
by straight lines to give the initial condition.

For a wide range of values of the parameters ω0 and ω1, the numerical solutions
of this problem show the same behavior (Figure 1). The solution changes rapidly
from the random initial conditions to spatially uniform oscillations everywhere away
from the x = 0 boundary. A transition wave then develops, which has homogeneous
oscillations ahead of it and a PTW behind; this PTW is the long term solution form
away from the x = 0 boundary. The development and persistence of PTWs in these
solutions depends intrinsically on the boundary condition at x = 0. For example, if
the boundary condition is switched to zero flux (ux = vx = 0 at x = 0), the PTWs
disappear, to be replaced by spatially uniform oscillations (see Kay and Sherratt
(1999)). Moreover, the speed/amplitude of the PTWs is independent of the seed in
the random number generator used for the initial conditions. This suggests that the
Dirichlet boundary condition robustly selects a particular member of the PTW family.
The basic goal of the paper is to investigate the details of this selection process.

Before I begin analytical investigation of the solution shown in Figure 1, I men-
tion one final and important result from the numerical simulations. The behavior
illustrated in Figure 1 applies when |ω1| is relatively small. For larger |ω1|, the long
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Fig. 1. Solutions of (2.1) with boundary conditions u = v = 0 at x = 0, and ux = vx = 0 at
x = 400; only part of the solution is plotted. A transition front moves across the domain, behind
which PTWs develop, moving in the positive x-direction in (a), and the negative x-direction in
(b). The solutions are space-time plots, with u plotted at equally spaced times between t = 100
and t = 200 (time increasing up the page). The solutions for v are qualitatively similar. Initial
conditions (t = 0) are generated randomly as described in the main text. The parameter values
are ω1 = 1.0 and (a) ω0 = 1.5, (b) ω0 = −1.3. The equations were solved numerically using a
semi-implicit Crank–Nicolson method.

term behavior consists not of PTWs, but of irregular spatiotemporal oscillations (Fig-
ure 2). Later in the paper, I will show that this behavior arises through the same basic
mechanism and occurs when the PTW that is selected by the boundary conditions
has an amplitude below rstab, defined in (2.3), so that the selected PTW is unstable
as a solution of the PDEs.

3. Reduction to an ODE system. The solutions shown in Figure 1 are illus-
trated more clearly by plotting r and θx rather than u and v (Figure 3). The solution
changes rapidly from the initial conditions, until r ≈ 1 and θx ≈ 0 everywhere away
from the x = 0 boundary, corresponding to spatially homogeneous oscillations in u
and v. A transition wave front in r and θx then develops, moving in the positive
x-direction. Ahead of this front, r → 1 and θx → 0; behind it, r and θx have constant
values, rptw and ψptw say, corresponding to the PTW. Numerical results indicate that
this transition front moves with constant shape and speed, suggesting that one look
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Fig. 2. Long-term solution of (2.1) for which irregular spatiotemporal oscillations develop. The
boundary conditions are u = v = 0 at x = 0, and ux = vx = 0 at x = 500; only part of the solution
is plotted. Note that a band of PTWs is visible close to the x = 0 boundary. The solution is a space-
time plot, with u plotted at equally spaced times between t = 1900 and t = 2000 (time increasing
up the page). The solution for v is qualitatively similar. Initial conditions (t = 0) are generated
randomly as described in the main text. The parameter values are ω0 = 1.5 and ω1 = 1.65. The
equations were solved numerically using a semi-implicit Crank–Nicolson method.

for solutions of (2.1) with the form

r(x, t) = r̂(x− st) and θx(x, t) = ψ̂(x− st) ⇒ θ(x, t) =

∫ z=x−st

ψ̂(z) dz + f(t).

Here s > 0 is the front speed, and f(t) is an arbitrary function of time that enters as
a constant of integration. Substituting these solution forms into (2.4) gives

r̂′′ + sr̂′ + r̂(1 − r̂2 − ψ̂2) = 0,(3.1a)

ψ̂′ + sψ̂ + ω0 − ω1r̂
2 + 2ψ̂r̂′/r̂ = f ′(t).(3.1b)

Thus f ′(t) must be a constant, independent of t. Moreover, since r̂ → 1 and ψ̂ → 0 as

x−st→ ∞, this constant value must be ω0−ω1. Substituting r̂ = rptw and ψ̂ = ψptw

(values at x− st = −∞) gives solutions for rptw and ψptw in terms of s:

rptw =

√
1 − s2

ω2
1

, ψptw = − s

ω1
.(3.2)

Unfortunately, these formulae cannot be used to obtain the values of rptw and ψptw,
since the front speed s is an unknown. However, they do provide one key piece of
information: ψptw has the sign opposite to that of ω1, since s must be positive. This
will be required in what follows.

Having established the sign of ψptw, I now move on to consider the large time form
of the solution for r and θx. Numerical simulations suggest that this is an equilibrium,
which I denote by r(x, t) = R(x) and θx(x, t) = Ψ(x). Hence θ =

∫ x
Ψ(x) dx + g(t),

where g(t) is a constant of integration. Substituting these solution forms into (2.4)
implies that g′(t) must be a constant, which it is convenient to take as ω0 − k, where
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Fig. 3. Time evolution of the solution of (2.1) subject to u = v = 0 at x = 0. I solve on
0 < x < 400 with ux = vx = 0 at x = 400, to approximate a semi-infinite domain. The randomly
generated initial condition rapidly evolves to u, v ≈ 1. A transition wave front then develops, moving
in the positive x-direction. Ahead of the front, r = 1 and ψ = 0, while behind it, r and ψ have values
that are constants corresponding to a periodic travelling wave. The parameter values are ω0 = 0.3
and ω1 = 0.8. The equations were solved numerically using a semi-implicit Crank–Nicolson method.

k is arbitrary and of either sign. The substitution also gives the following equations
for R and Ψ:

Rxx +R(1 −R2 − Ψ2) = 0,(3.3a)

Ψx +
2ΨRx

R
+ k − ω1R

2 = 0.(3.3b)

The boundary condition u = v = 0 implies that R = 0 at x = 0, and I am looking
for solutions for which R and Ψ tend to constant values, denoted rptw and ψptw, as
x → ∞, with the sign of ψptw opposite to that of ω1. In a solution of this form, the
values of rptw and ψptw will be related to k and ω1 by

rptw =

√
k

ω1
, ψptw = −sign(ω1)

√
1 − k

ω1
.(3.4)

These are given simply by substituting the constant values into (3.3) and using the
result that ψptw and ω1 have opposite signs; k is related to the speed s introduced
above by k = ω1 − s2/ω1. Note that k must have the same sign as ω1.
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It is convenient to rescale (3.3) as follows,

φ = R
(ω1

k

)1/2

, w = Rx

(
ω1 − k

k

)1/2

· sign(ω1)

k
,

Γ = −Ψ

R

(
k

ω1 − k

)1/2

sign(ω1), z = x

(
ω1

ω1 − k

)1/2

· k · sign(ω1),

which gives

φz = w,(3.5a)

wz =
−α
k2
φ
[
1 − φ2 − αφ2(Γ2 − 1)

]
,(3.5b)

Γz =
1 − 3wΓ − φ2

φ
,(3.5c)

where α = 1− k/ω1, so that 0 ≤ α ≤ 1. In terms of these new variables, the required
end conditions are

φ = 0 at z = 0 and φ = 1, w = 0, Γ = 1 at z = ∞.(3.6)

Recall that the parameter k in (3.5) is an arbitrary constant of integration, and the
initial question to be studied is for which values of k there are solutions of (3.5)
satisfying these end conditions.

Numerical investigation of appropriate solutions to (3.5) is easiest if one integrates
backwards in z from (1, 0, 1). Straightforward calculation of the eigenvalues at this
equilibrium shows that there is a unique stable eigenvector, and one can calculate
numerically both trajectories corresponding to this eigenvector. For given values of
k and ω1, there is a solution of (3.5) of the required form if φ becomes zero along
one of these trajectories. Numerical investigation indicates that this occurs at a large
but discrete set of values of k. As illustrated in Figure 4, these values of k are widely
separated when |k| is just below |ω1|, and become closer together as |k| approaches
zero. (Recall that the sign of k is determined by that of ω1.) Figure 5 illustrates how
the critical values of k vary with ω1.

4. Solution for small ω1. I have been unable to calculate in general the values
of k for which (3.5) has a solution of the required form. However for small |ω1|
the solutions, and thus the critical values of k, can be found using perturbation
theory. Here I am exploiting the relative simplicity of (2.1) when ω1 = 0, a special
case which has been used by a number of previous authors (for example, Kopell and
Howard (1981)). Figure 6 illustrates the typical form of the solution for the largest
few critical values of |k| when |ω1| is small. There is a characteristic solution form,
with almost periodic oscillations in φ, w, and Γ. To calculate the solutions, it is
enough to investigate one cycle of these oscillations.

Numerical solutions suggest that when |ω1| is small, |k| is also small, with the
ratio A ≡ α/k2 being O(1) as |ω1| → 0. Then α2/k2 = A2ω2

1 + O(ω4
1), and thus the

equations (3.5) have the form

φzz = −Aφ(1 − φ2) + εA2φ3(Γ2 − 1),(4.1a)

Γz =
1 − 3φzΓ − φ2

φ
,(4.1b)
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Fig. 4. A typical plot of the variation with k of φmin, the minimum value of φ along the two
solution trajectories passing through the point φ = 1, w = 0, Γ = 1. The variation has a “zig-
zag” form, with φmin approaching zero at a series of discrete values of k. The case shown is for
ω1 = 0.3, and the dotted line is k = ω1; the constant k must lie between 0 and ω1. The value of φmin

is calculated by solving (3.5) in the negative z-direction starting on the (unique) stable eigenvector
at (1, 0, 1). The solution is continued until φ > 1, keeping track of the minimum value of φ. For
each parameter set, this procedure must be followed twice, starting on either side of (1, 0, 1) along
the stable eigenvector.

where ε = ω2
1 . The appropriate solution structure for these equations when ε 
 1 is

illustrated in Figure 7. I consider one cycle of the solution in three separate regions a–
c, with a fourth region a′ corresponding to region a in the next cycle. The boundary
between regions a and b is the position at which φ has its local maximum, while
region c is a thin layer centered on the local minimum of φ. No thin transition layer is
required between regions a and b, but the location z = z1 of the interface may depend
on ε, as may the location z = z2 of region c, and these dependencies must be found
as part of the solution. The position z = z0 to the left of region a is arbitrary.

In region a, there is no rescaling, and the leading order solutions φa0 , Γa
0 satisfy

(4.1) with ε set to zero. The two equations decouple, giving

d2φa0
dz2

= −Aφa0
[
1 − φa 2

0

]
,

dΓa
0

dz
=

1 − 3Γa
0dφ

a
0/dz − φa 2

0

φa0
.
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Fig. 5. A plot of the amplitude (
√
k/ω1) of possible PTW solutions, corresponding to the

critical values of k for which (3.5) has a solution of the required form. For a series of values of ω1,
I plot the amplitude corresponding to the largest 20 critical values of k, calculated numerically as
discussed in the legend to Figure 4. Superimposed on the plot are the amplitude of PTWs predicted
by numerical simulations of the PDEs (2.1), the theoretical prediction (6.2) of the PTW amplitude,
and the curve determining PTW stability, which is given by (2.3). Note that this last curve does
not refer to the stability of the solution of (3.5), (3.6), but simply to the PTW which this solution
approaches as z → ∞. Stability of this PTW is clearly a necessary but not sufficient condition for
the stability of the solution of (3.5), (3.6).

Thus (
dφa0
dz

)2

=
1

2
A(φa 2

0 − 1)2 + C1,

where C1 is a constant of integration. Numerical solutions suggest that the local
maxima in φ occur at φ = 1 + o(1) as ε → 0, and thus C1 = 0. By construction, φa0
has positive slope, and thus further integration gives

φa0 = tanh

[
(z − z0)

√
A

2

]
,(4.2a)

Γa
0 =

√
2

9A
+

k1

tanh3[(z − z0)
√
A/2 ]

.(4.2b)

Here I am taking φa0 = 0 at z = z0, since numerical solutions suggest that the minima
of φ are o(1) as ε→ 0; k1 is a constant of integration.
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Fig. 6. Typical solutions of (3.5) for small |ω1|. I show the solution for the largest three critical
values of |k|, illustrating the typical form of the solution. For the largest value of |k|, the solution is
monotonic in φ, and in successive solutions the variables cycle. The parameter values are ω1 = 0.03
and (a) k = 0.029994, (b) k = 0.029947, (c) k = 0.02986, (d) k = 0.02973.

Similarly, in region b

φb0 = − tanh

[
(z − z2)

√
A

2

]
,(4.3a)

Γb
0 = −

√
2

9A
+

k2

tanh3[(z − z2)
√
A/2 ]

,(4.3b)

where k2 is a constant of integration. The solutions in regions a and b are linked by
conditions at z = z1, namely, that dφ/dz = 0 with φ and Γ continuous. Continuity of
φ requires z1 − z0 = z2 − z1 ≡ Z, say, so that z1 = (z0 + z2)/2. The zero derivative
for φ then implies that sech2 [Z

√
A/2 ] = o(1), so that Z → ∞ as ε → 0. Thus the

widths of regions a and b become infinite as ε→ 0. Further details of these widths are
not determined at leading order, but higher order solutions (omitted for brevity) show
that Z = Os(log ε) as ε → 0. Finally, continuity of Γ at z = z1 gives a relationship
between k1 and k2:

k2 = k1 +

√
8

9A
;

here I use the fact that tanh(Z
√
A/2) = 1 + o(1) as ε→ 0.
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Fig. 7. A schematic illustration of one cycle of the solution for φ of (3.5) when ω1 is small,
illustrating the different regions into which the solution is divided for the perturbation theory calcu-
lation.

In region c, which is centered on the minimum of φ, a rescaling of the variables is
required. Numerical solutions suggest that φ is small and Γ large in this region, with
rapid changes in z. Therefore I substitute

φ̃ =
φ

ν1
, Γ̃ = Γ · ν2, ζ =

z − z2
ν1

into (3.5), where ν1 and ν2 are o(1) as ε → 0; the rescaling of φ and z must be the
same to allow matching of φ in regions b and c. This gives

d2φ̃

dζ2
= −ν2

1Aφ̃(1 − ν2
1 φ̃

2) + εA2ν4
1 φ̃

3

(
Γ̃2

ν2
2

− 1

)
,

dΓ̃

dζ
=
ν2 − 3Γ̃dφ̃/dζ − ν2

1ν2φ̃
2

φ̃
.

Therefore the distinguished limit has ε1/2ν2
1/ν2 = 1, in which case the leading order

solutions φ̃c0 and Γ̃c
0 satisfy

d2φ̃c0
dζ2

= A2φ̃c 3
0 Γ̃c 2

0 ,

dΓ̃c
0

dζ
=

−3Γ̃c
0dφ̃

c
0/dζ

φ̃c0
.
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Thus Γ̃c
0 = k3/φ̃

c 3
0 and

(
dφ̃c0
dζ

)2

= k4 − A2k2
3

φ̃c 2
0

.(4.4)

Here k3 and k4 are constants of integration, which are determined by matching the
solution to that in region b. As ζ → ±∞, (4.4) implies that φ̃c0 = ±k1/2

4 ζ + o(ζ), so

that Γ̃c
0 = ±k3/(k

3/2
4 ζ3) + o(ζ−3). In comparison, as z → z−2 , φb0 ∼ −(z − z2)

√
A/2

and Γb
0 ∼ (2/A)3/2k2(z− z2)−3. Therefore, matching requires k4 = A/2, k2 = k3, and

ν2 = ν3
1 ⇒ ν1 = ε1/2, ν2 = ε3/2.

The final step in the leading order solution is to determine behavior in region a′.
The solution here is the same as in region a, but with new constants of integration:

φa
′

0 = tanh

[
(z − z′0)

√
A

2

]
,(4.5a)

Γa′
0 =

√
2

9A
+

k′1
tanh3[(z − z0)

√
A/2 ]

.(4.5b)

Matching this solution with that in region c is directly analogous to the matching of
solutions in regions b and c, and requires k′1 = k3. Hence k′1 = k1 +

√
8/9A.

Consider now a solution of the form illustrated in Figure 6, and with N local max-
ima in φ before φ approaches 1 asymptotically. Let ki1 be the constant of integration
k1 in the leading order solution in region a before the ith maximum (i = 1, . . . , N−1)
or in the part of the solution in which φ approaches 1 asymptotically (i = N). Then
I have shown that ki1 = ki−1

1 +
√

8/9A. Now I require Γ finite at z = 0, and Γ → 1 as

z → ∞. Thus k1
1 = 0 and

√
2/9A+ kN1 = 1 +O(ε1/2); the correction is based on the

next order term in the expansion for Γ in region a (omitted for brevity). Therefore√
2/9A+ (N − 1)

√
8/9A = 1, which can be rearranged to give A = 8

9 (N − 1
2 )2.

This calculation shows that there are a discrete but infinite set of values of A for
which (4.1) has a solution of the required form. These correspond to the values of
k plotted in Figure 4. To make this correspondence precise, recall that A = α/k2,
with α = 1 − k/ω1 and ω1 = ε1/2, so that k = ε1/2 − Aε3/2 + O(ε5/2). Therefore, at
least for sufficiently small ω1, there are solutions of (3.5) for an infinite set of values
of k, given by k = ω1 − 8

9 (N − 1
2 )2ω3

1 + O(ω5
1) (N = 1, 2, . . . ). The solution with

index N has N − 1 local maxima and minima in φ. The values of φ at these extrema
depend on ε: the minima have a height that is O(ε1/2) = O(ω1), and the leading order
correction to φ in regions a and b is O(ε), implying that the maxima have a height
that is 1 −O(ε) = 1 −O(ω2

1).

5. Solutions for general ω1. In the plot of the critical values of k in Figure 4, I
superimpose a plot of the amplitude of the PTW that develops in numerical solutions
of (2.1) subject to u = v = 0 at x = 0 on 0 < x <∞. In every case, this corresponds
to the critical value of k with largest absolute value. This is despite the fact that each
of the other critical values of k corresponds to a possible long term solution of (2.1).
In this section, I will discuss in more detail the structure of the φ-w-Γ phase plane,
to give further insight into the equation forms at different critical values of k.

I begin by investigating the behavior of (3.5) near φ = 0, which is a singularity.
As φ → 0, simple inspection of (3.5c) shows that |dΓ/dz| → ∞ away from the curve
wΓ = 1/3. Behavior near this curve requires more careful investigation, and I look
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for trajectories of the form w = w0 + w̃(φ), Γ = w0/3+Γ̃(φ), where w0 is an arbitrary
constant and w̃ and Γ̃ are o(1) as φ→ 0. Substituting these solution forms into (3.5)
shows that to leading order

w̃(φ) =
−α

2k2w0
φ2, Γ̃(φ) =

1

10w0

(
α

w2
0k

2
− 2

)
φ2.(5.1)

Therefore, despite the singularity of (3.5) at φ = 0, there is a family of nonsingular
trajectories which cross the φ = 0 plane through the curve Γw = 1/3. Such a curve
is sometimes known as a “hole in a singular barrier” (Perumpanani et al. (1999);
Pettet, McElwain, and Norbury (2000)). Of the trajectories crossing φ = 0 through
this curve, only those crossing at positive values of w and Γ are of interest, and taken
together, these make up a surface in φ-w-Γ phase space, which I denote by S(k).
There is a trajectory of the required form for a given value of k if and only if this
surface S(k) contains the point φ = 1, w = 0, Γ = 1.

The surface S(k) has a very complex form, especially for small values of k, making
visualization in three dimensions very difficult. I have found it most instructive to
plot a cross section of the surface, and a natural cross section is the w = 0 plane,
which is illustrated in Figure 8 for the largest three critical values of k when ω1 = 1.
Note that, in each case, the intersection includes the point Γ = φ = 1.

In Figure 8(a) the trajectories making up S(k) intersect the wz < 0 portion of the
w = 0 plane only once. This implies that the corresponding solution of (3.5), (3.6) is
monotonic in φ, and numerical results suggest that this is also true for other ω1, when
k is at its largest critical value. Conversely, for the other critical values of k, numerical
solutions suggest that the trajectory passing through φ = Γ = 1, w = 0 does so only
after previously crossing the w = 0 plane. Based on this, I hypothesize that for given
ω1 there is only one solution of (3.5), (3.6) that is monotonic in φ, namely, that corre-
sponding to the largest initial value of k. Further, I hypothesize that any solutions of
(3.5) with nonmonotonic φ are unstable as solutions of (2.1). A number of results of
the form “nonmonotonicity implies instability” are known for scalar reaction-diffusion
equations (Hagan (1981b), Henry (1981)), and numerical simulations using the solu-
tions of (3.5), (3.6) with small perturbations as initial conditions for (2.1) suggest that
a corresponding result applies in this case. Taken together, these hypotheses provide
an explanation for the solution of (2.1) always corresponding to the solution of (3.5),
(3.6) with the largest critical value of k.

Although I cannot prove these hypotheses, I will present a sketch proof of the
first one. Proof that a solution that is monotonic in φ exists for some value of k is
obtained by direct construction. Numerical solutions of (2.1) with u = v = 0 at x = 0
suggest that the ratio of Ψ and R is constant in the observed solution. Based on this,
I look for a solution of (3.5) in which Γ ≡ 1. The equations (3.5) then give

φz = w,(5.2a)

wz = −
( α
k2

)
φ(1 − φ2),(5.2b)

3w + φ2 = 1.(5.2c)

Combining (5.2a) and (5.2b), and requiring φ = 1 when w = 0, gives

w2 =
α

2k2
(1 − φ2)2.

This is consistent with (5.2c) if and only if k2 = 9α/2. (Recall that the sign of k must
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Fig. 8. An illustration of the intersection between the surface S(k) and the w = 0 plane
for the largest three critical values of k when ω1 = 1. The small circles represent the curve
φ2

[
1− α+ αΓ2

]
= 1; to the right of this curve, wz > 0, so that the trajectories are crossing

from negative to positive w, and to the left of the curve, wz < 0. I have solved (3.5) numerically
for values of w0 increasing from 0.01 in increments of 10−6; initial conditions are w = w0 + w̃,
Γ = Γ0+Γ̃ with w̃ and Γ̃ given by (5.1), and φ = 0.001. In each of these solutions, I record and plot
each point at which the w = 0 plane is crossed. The values of k are (a) k = 0.842, (b) k = 0.621,
(c) k = 0.523.

be the same as that of ω1.) Recalling that α = 1 − k/ω1, this implies

k = k∗ ≡ −9 +
√

81 + 72ω2
1

4ω1
.

Note that the solution trajectory corresponding to this value of k is monotonic in w
as well as φ, and thus lies within Ŝ(k), the subset of S(k) formed by the portion of
the trajectories starting on φ = 0, wΓ = 1/3, until they leave the region φ > 0, w > 0,
φ2[1 + α(Γ2 − 1)] < 1; this last condition is simply wz < 0.
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To study uniqueness, it is convenient to consider varying k with α, rather than
ω1, fixed. Suppose that there is a value of k, k1 say, not equal to k∗, for which there
is a trajectory that is monotonic in φ and connects φ = 0, wΓ = 1/3 with w = 0,
φ = Γ = 1. To be specific, I assume that k1 < k∗, though a corresponding argument
is valid if k1 > k∗. The solution trajectories for k = k1 and k∗ are contained in
S(k1) and Ŝ(k∗), respectively; note that in general the trajectories for k∗ and k1 will
cross φ = 0 at different points along wΓ = 1/3. Straightforward examination of the
eigenvalues and eigenvectors of (3.5) at w = 0, φ = Γ = 1 implies that S(k1) lies
above Ŝ(k∗) close to this point, in the sense that w is greater on S(k1) than on Ŝ(k∗).
Moreover eliminating w0 in (5.1) implies that Ŝ(k∗) lies above S(k1) for sufficiently
small φ. This suggests that the surfaces S(k1) and Ŝ(k∗) intersect, which is impossible
since (3.5b) implies that wz increases with k in the region φ2[1 + α(Γ2 − 1)] < 1. It
remains possible that S(k1) and Ŝ(k∗) wind around one another; I have been unable
to rule this out, although numerical solutions suggest that it does not happen.

6. The form of the observed periodic travelling wave. The sketch proof
in the previous section is constructive, in the sense that it explicitly determines a
formula for k∗. The corresponding solution of (3.5) can easily be determined from
(5.2c) as φ = tanh(z/3). Converting back to the original variables gives

R(x) = rptw tanh

(
x√
2

)
, Ψ(x) = ψptw tanh

(
x√
2

)
,(6.1)

where

rptw =

{
1

2

[
1 +

√
1 +

8

9
ω2

1

]}−1/2

, ψptw = −sign(ω1)



√

1 + 8
9ω

2
1 − 1√

1 + 8
9ω

2
1 + 1




1/2

.

(6.2)

The solution given by (6.1), (6.2) is an excellent match with the long term behavior
predicted by numerical simulations of (2.1) subject to u = v = 0 at x = 0, as
illustrated in Figure 4. Moreover, (6.2) enables direct determination of the properties
of PTWs generated by Dirichlet boundary conditions. For example, substitution of
(6.2) into (2.3) gives the condition for PTW stability as

8ω6
1 + 16ω4

1 − 10ω2
1 − 27 < 0 ⇐⇒ |ω1| < 1.110468 . . . .(6.3)

A detailed numerical study shows that cases such as that shown in Figure 3, in which
irregular oscillations develop, correspond exactly to values of ω1 above this critical
value. Similarly the direction of the PTWs can be determined—this depends on ω0

as well as ω1. The PTW solution for u and v, given in (2.2), moves in the positive
x-direction if and only if (ω0 −ω1r

2) and θx have opposite signs. Therefore the PTW
given by (6.2) moves in the positive x-direction if and only if

ψptw · (ω0 − ω1r
2
ptw) < 0 ⇔ ω0 and ω1 have the same sign(6.4a)

and |ω0| > 2|ω1|
1 +

√
1 + 8

9ω
2
1

.(6.4b)

Conditions (6.3) and (6.4) are illustrated graphically in Figure 9.
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Fig. 9. An illustration of conditions (6.3) and (6.4) for the stability and direction of the PTW
solution generated in the region x > 0 by the boundary condition u = v = 0 at x = 0.

7. Discussion. Using a combination of analysis and numerical simulation, I have
shown that when the λ-ω system (2.1) is solved on a finite domain subject to zero
Dirichlet boundary conditions, PTWs develop. I have shown that there is a discrete
family of possible wave amplitudes for which solutions exist, but my results suggest
that in only one of these cases does the amplitude vary monotonically in space. I
hypothesize that this family is the only stable solution, implying that the boundary
conditions select a unique PTW amplitude that is independent of initial conditions.
A formula for this amplitude is given in (6.2).

An obvious extension of the work presented in this paper is to consider behavior
in two spatial dimensions. I have done a limited program of numerical simulations of
the λ-ω system (2.1) in two dimensions, and a typical result is illustrated in Figure 10.
For this figure, equations (2.1) were solved on an approximately circular but irregular
domain, with the boundary condition u = v = 0. A solution of “target pattern”
form develops, moving inwards from the boundary; an animation of this solution can
be seen at www.ma.hw.ac.uk/∼jas/supplements/dirichlet/. This solution is a natural
two-dimensional extension of the one-dimensional results I have been discussing, in
which planar PTW solutions are modulated by the curvature of the domain. A natural
topic for future analytical work is the spatial scale over which the curvature of the
wave fronts varies.

The mathematical study of PTWs has been given a significant boost recently
by the identification by ecologists of PTWs in cyclic populations. This empirical
work is slow, requiring spatiotemporal field data gathered over many years. (Pop-
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u, v = −1 u, v = 1

Fig. 10. Numerical simulation of the λ-ω system (2.1) in two space dimensions on an ir-
regular domain with boundary condition u = v = 0 on the perimeter. The solutions for u (left)
and v (right) are shown at time t = 400; a “target pattern”-type solution moves inwards from the
boundary towards the center of the domain. The initial conditions (at t = 0) are generated ran-
domly, and the parameters are ω0 = ω1 = 1. The size of the spatial domain is indicated by the
scale bar, which is 50 space units long. An animation corresponding to this figure can be seen at
http://www.ma.hw.ac.uk/∼jas/supplements/dirichlet/. The equations were solved numerically
using an alternating direction semi-implicit method.

ulation cycles typically have a period of between 4 and 10 years.) The analysis of
the data then depends on spatiotemporal statistical methods developed only recently
(Bjørnstad, Ims, and Lambin (1999)). For these reasons, it is too early to assess how
widespread PTWs are in real populations. However, there is now very strong evidence
for the existence of a PTW in cyclic field vole populations in the Kielder forest, on
the Scotland–England border (Lambin et al. (1998); MacKinnon et al. (2001)), and
more limited evidence for PTWs in various other populations, including red grouse in
Northeast Scotland (Moss, Elston, and Watson (2000)), water voles in Eastern France
(Giraudoux et al. (1997)), and larch budmoths in the European Alps (Bjørnstad et
al. (2002)). The major question raised by these ecological studies is, what are the
cause(s) of the PTWs? One possibility is that the PTWs are generated by the invasion
of a prey population by predators (Sherratt, Lewis, and Fowler (1995); Sherratt et al.
(2000)). However, once a whole domain has been invaded, PDE models predict that
the waves will gradually die out (with zero flux boundary conditions; see Kay and
Sherratt (1999)). Thus this mechanism requires a recent invasion, which does not ap-
ply in most cases. In contrast, the mechanism studied in this paper is consistent with
conditions found in many real ecological systems. A Dirichlet boundary condition
(with population density equal to zero) is appropriate when the domain is surrounded
by a region of different habitat in which the population cannot survive—for example,
an area of woodland surrounded by open fields. In a companion paper (Sherratt et al.
(2002)), coworkers and I show that numerical simulations of both PDE and spatially
discrete predator-prey models predict the generation of periodic waves by Dirichlet
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boundary conditions. Extension of the analytical results in the present paper to real-
istic predator-prey models is a major challenge for future work, which would enable
systematic prediction of the occurrence of periodic waves in real populations.
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