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Due to the increasing importance of the extracellular matrix in many biological
problems, in this paper we develop a model for fibroblast and collagen orientation
with the ultimate objective of understanding how fibroblasts form and remodel
the extracellular matrix, in particular its collagen component. The model uses
integrodifferential equations to describe the interaction between the cells and
fibers at a point in space with various orientations. The equations are studied
both analytically and numerically to discover different types of solutions and
their behavior. In particular we examine solutions where all the fibroblasts and
collagen have discrete orientations, a localized continuum of orientations and
a continuous distribution of orientations with several maxima. The effect of
altering the parameters in the system is explored, including the angular diffusion
coefficient for the fibroblasts, as well as the strength and range of the interaction
between fibroblasts and collagen. We find the initial conditions and the range
of influence between the collagen and the fibroblasts are the two factors which
determine the behavior of the solutions. The implications of this for wound
healing and cancer are discussed including the conclusion that the major factor
in determining the degree of scarring is the initial deposition of collagen.
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1. INTRODUCTION

Alignment within biological systems has been the subject of considerable recent
interest. Applications vary over a wide variety of systems including herd move-
ment, flocks of birds, schools of fish, insect swarms (.Okuba, .1986; .Grunbaum,
.1994), cellular movement, actin networks and collagen networks ( .Elsdale, .1973;
.Pollard and Cooper, .1986; .Besseau and Giraud-Guille, .1995). This paper focuses
on cellular alignment with respect to collagen fibers. There are numerous appli-
cations of this specific system including tumor growth, angiogenesis, scar-tissue
formation, connective-tissue formation and embryonic morphogenesis.

Extracellular matrix is increasingly being identified as playing a complex and
important role in many biological processes. The collagen proteins are a major
component of the extracellular matrix in all mammalian connective tissues, and
contribute significantly to its structure by forming collagen fibers. Collagen is
produced by fibroblasts in the form of procollagen precursors, and polymerizes
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into fibrils, which combine to form a fibrous network or matrix (.Alberts et al.,
.1994). The procollagen molecules are released via secretory vesicles, which
fuse with the cell membrane to create deep, narrow recesses in the fibroblast
cell surface. It is in these recesses that the collagen fibrils are formed. .Birk
and Trelstad .(1986) theorize that these deep recesses give the fibroblast control
over the microenvironment in which the collagen fibrils are forming, and thus
control over the structure of the collagen matrix. This provides a link between
the fibroblast and collagen orientations. Conversely, the collagen matrix is an
essential framework which the fibroblasts use as scaffolding to crawl along. Thus
the collagen orientation also influences the orientation of fibroblasts and their
ability to move.

Among the various biological alignment systems, one that has been exten-
sively modeled is the intracellular actin filament network, which shows pro-
nounced alignment patterns in response to the local stress field; stress can be
either self-generated or externally applied. This was originally modeled by
.Sherratt and Lewis ( .1993) using a phenomenological spatiotemporal model, en-
abling in particular the pronounced alignment localized at epithelial wound edges
to be studied. In this model, actin alignment is taken to be a function of the ratio
of the local, instantaneous, principle components of stress. A more detailed but
spatially homogeneous framework formulated as integrodifferential equations for
the densities of bound and free actin filaments as a function of orientation and
time is developed by .Civelekoglu and Edelstein-Keshet .(1994). This work has
recently been extended by .Geigant et al. (.1998), focusing on bifurcations from
disorder to alignment.

In ecological swarming of macro-organisms and bacteria, orientation plays
an important role; here cellular automata is the most prevalent modeling tool
(.Deutsch, .1995; .Stevens .1995). .Cook .(1995) and .Grunbaum .(1998) have re-
cently proposed frameworks for reducing integrodifferential equations for align-
ment phenomena to reaction-diffusion-advection equations, which are widely ap-
plicable within both ecological and fibroblast culture contexts.

In work more directly related to ours, .Edelstein-Keshet and Ermentrout .(1990)
model the orientation between fibroblasts mediated by cell-to-cell contact. Vari-
ables are defined representing densities at one spatial location which depend upon
time and an angle of orientation. They use convolutions with different kernels to
model the long-range angular interaction of the cells, i.e. cells at the same spatial
location with different orientations. The variables in those models represent ei-
ther cells and lamellipodia or bound cells and free cells. One of the major results
of their work is to find that patterns can form as a result of only cellular contact
responses. This work is generalized and extended by .Mogilner and Edelstein-
Keshet ( .1995) and .Mogilner et al. .(1996). In these papers the authors develop
two modifications of the model for bound cells and free cells using different
assumptions. They find that all three models behave similarly, and they study
this behavior by looking at peak-like solutions which represent almost complete
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alignment. In .Mogilner and Edelstein-Keshet ( .1996) the model is modified to
include a spatial component. This work provides a good foundation from which
we develop a model specifically suited for fibroblast collagen interactions. Two
key differences between our model and this previous work are the focus on the
cell-to-cell interactions, which we ignore, and more importantly, the fact that, in
our system, there is no conversion between the variables i.e. fibroblasts do not
become collagen and vice-versa.

The rest of the paper is organized in the following manner. In Section 2 we
present the mathematical model with Section 3 giving some analysis of the equa-
tions. Section 4 discusses the numerical implementation of the model, and in
Section 5 some simple numerical tests are given which confirm both the analysis
and the numerical scheme. The remaining sections deal with different numerical
simulations of the model. First, in Section 6 we examine numerical solutions
which evolve from initial conditions in which collagen and fibroblasts have iden-
tical alignment. Finally, in Section 7 we examine the interactions of fibroblasts
with collagen. Our findings are discussed in Section 8.

2. THE MODEL

In our model, f (τ, θ) and c(τ, θ) denote the densities of fibroblasts and col-
lagen fibers respectively at time τ , oriented at an angle θ with respect to an
arbitrary reference direction. For simplicity we restrict our attention to spatially
homogeneous situations. The fibroblasts can be oriented in any direction, so
that f is defined for θ ∈ [0, 2π ]. However, collagen fibers are inherently non-
directional-making fiber orientations of θ and θ + π equivalent. Thus the model
can be formulated either by taking this equivalence into account when formulat-
ing the effect of the collagen on fibroblasts, or by defining c only for values of
θ ∈ [0, π]; we choose the latter approach. This feature of the system, namely
that collagen is non-directional, has some important consequences for the model
predictions, as well as causing technical difficulties. In the formulation which
we have chosen, difficulties which recur throughout the paper are associated with
the different domains of the variables. Both variables satisfy periodic boundary
conditions for themselves and their angular derivatives.

The equation for the fibroblasts has a diffusion term, modeling random reori-
entation, and also a flux term, modeling directed orientation. Biologically it is
known that fibroblasts move up ridges in the substratum ( .Bray, .1992) and more
specifically, experiments by .Guido and Tranquillo. (1993) show that, within ori-
ented collagen gels, fibroblasts move preferentially in the direction of collagen
orientation by pulling themselves along the fibers. Thus the flux term is due to
this tendency of fibroblasts to move in the direction of collagen fibers, so that
if there is a gradient of collagen (with orientation, θ ), the fibroblasts tend to
reorient so as to move up that gradient. The flux term can be better understood
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by comparing it with the standard chemotaxis flux term ( .Murray, .1993)

J = f χ(c)∇c. (1)

Since we are considering a fixed spatial location, even collagen which is far away
in angle space influences the fibroblasts. This is modeled in the attractant term
by replacing c with a convolution (defined formally below) which represents a
weighted averaging over other orientations. This long-range interaction is a fun-
damental feature of alignment models and we have followed the same approach
as .Edelstein-Keshet and Ermentrout .(1990) and .Mogilner and Edelstein-Keshet
(.1995) where they also use convolutions. Thus our model has a flux term involv-
ing the density of fibroblasts and the gradient of a convolution term involving
the collagen. For simplicity, we take the factor χ(c) to be constant.

Within the extracellular matrix, collagen takes the form of a fibrous network
with an elaborate structure including cross links, and consequently there is essen-
tially no random reorientation of the collagen. Because the fibroblasts degrade
and produce collagen, thus reforming the network with collagen oriented in the
direction of the fibroblasts, the equation for c has an angular flux term. For sim-
plicity, in our system we do not allow any net change in the amount of collagen:
the fibroblasts simply remodel the existing network. As a result there is only
one term in the c equation, which involves the density of collagen, a convolution
with fibroblasts, and the gradient of a convolution with fibroblasts. This term is
similar to the flux term in the equation for the fibroblasts but it contains an addi-
tional convolution which arises because the rate of collagen remodeling depends
on the density of fibroblasts doing that remodeling. The factor is comparable
to the χ(c) factor in equation 1, but since this is in the evolution equation for
collagen, it depends on f , which is the attractant for the c variable.

The model consists of the following evolution equations:

∂ f

∂τ
= ∂

∂θ


random orientation︷ ︸︸ ︷

D̄
∂ f

∂θ
−

orientation by collagen︷ ︸︸ ︷
ᾱ1 f

∂

∂θ
(W1 ∗ c)

 for θ ∈ [0, 2π ] (2)

∂c

∂τ
=−ᾱ2

∂

∂θ

orientation by fibroblasts︷ ︸︸ ︷(
c(W2 ∗ f )

∂

∂θ
(W3 ∗ f )

)
for θ ∈ [0, π]. (3)

For an alternate motivation of the terms in the above equations the reader is ref-
ered to .Mogilner and Edelstein-Keshet .(1995) where the authors interpret similar
terms using force and angular velocities.

The boundary conditions are periodic in θ , namely

f (τ, 0) = f (τ, 2π), fθ (τ, 0) = fθ (τ, 2π),
c(τ, 0) = c(τ, π), cθ (τ, 0) = cθ (τ, π),

(4)
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and the normalization conditions are given by∫ 2π

0
f (0, θ)dθ = 1,

∫ π

0
c(0, θ)dθ = 1. (5)

The normalization conditions simply avoid the necessity to keep track of the
initial total densities. The convolution is defined by

(W ∗ u)(θ) =
∫

W(θ − x)u(x)dx

where the integral is over the domain of u; thus if the convolution involves f
the limits of integration are 0 and 2π , while for c the limits are 0 and π . In
these weighted averages, the kernel W1 is determined by the way the orientation
of the fibroblasts is changed due to collagen and W2 and W3 are determined by
how the fibroblasts reorient the collagen.

Rescaling time by setting t = ᾱ1τ simplifies the system, giving the final form
of the equations as

∂ f

∂t
= ∂

∂θ

(
D
∂ f

∂θ
− f

∂

∂θ
(W1 ∗ c)

)
for θ ∈ [0, 2π ] (6)

∂c

∂t
=−α ∂

∂θ

(
c(θ)(W2 ∗ f )(θ)

∂

∂θ
(W3 ∗ f )(θ)

)
for θ ∈ [0, π] (7)

where D = D̄/ᾱ1 and α = ᾱ2/ᾱ1. The only conditions on W1,W2 and W3 are
that the W1 is π periodic and the others are 2π periodic. Again for convenience,
and without loss of generality, we add a normalization requirement so that∫ π

2

−π
2

W1(θ)dθ = 1 and
∫ π

−π
W2(θ)dθ =

∫ π

−π
W3(θ)dθ = 1. (8)

The detailed behavior of the model of course depends on the forms of W1,W2 and
W3, which are determined by biological features of the system that are currently
unknown. However, some basic properties of the kernels can be deduced from
intuitive expectations. In particular, the influence of collagen fibers on fibroblasts
and vice versa should depend only on the magnitude of the angular separation
and not on its sign; thus the kernels should be even, Wi (x) = Wi (−x) for
i = 1–3. If the kernels are differentiable at zero then being even implies that
W′i (0) = 0 for i = 1–3. This means that due to the symmetry there is a turning
point at zero, which we expect intuitively to be a local maximum. Whether the
angular distance between a collagen fiber and a fibroblast is θ or θ + π , the
fibroblast has the same influence on the collagen, making Wi a periodic function
with period π ; thus Wi (x + π) = Wi (x) for i = 2, 3. For simplicity we let
W1(θ) = 2W2(θ) = 2W3(θ) and unless stated otherwise we use

W1(θ) =
{

Ce−aθ2
for −π2 ≤ θ ≤ π

2
the periodic extension otherwise

(9)
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if a is sufficiently small that C exp(−aπ2/4) > ε, and otherwise

W1(θ) =
Ce−aθ2

for θ2 ≤ −1
a ln ε

C

0 for −1
a ln ε

c < θ2 < π2

4
the periodic extension otherwise.

(10)

Thus we use kernels in the form of a Gaussian, but truncated so that the kernels
are set to zero whenever the Gaussian would be less than ε; in all our simulations
we take ε = 5×10−5. This truncation is significant in a number of our numerical
simulations; biologically, it allows the possibility of a limited range of orientations
within which fibroblasts and collagen fibers affect one another. The constant C
is chosen so that the kernels satisfy (8).

Notice that the parameter a determines the support, or range of influence, for
these kernels. As was stated earlier, the details of the appropriate shape for these
kernels are unknown, and the above form is chosen simply as being intuitively
reasonable. In ecological models integrodifferential equations are widespread and
the kernels are called redistribution kernels, representing dispersal in physical
space. In that setting, where more is known experimentally about the shape
of redistribution kernels, different kernel shapes have been derived from first
principles ( .Neubert et al. .1995). A similar approach may be possible in cell
biology, and one of the aims of this paper is to suggest potential experimental
approaches for this (see Section 8).

In addition to parameters affecting the kernels, the model contains two dimen-
sionless parameters, namely D, which reflects the angular diffusion coefficient of
the cells, and α, which reflects the rate at which collagen is realigned by the cells.
Experimental data is already available in the work of .Guido and Tranquillo . (1993)
which enables the value of D to be estimated as 0.27; we derive this estimate in
Section 8 of the paper. However, the experimental procedure prevents estimation
of the underlying timescales, so that the corresponding dimensional value cannot
be estimated. In addition, we are unaware of existing data from which α can be
estimated, although we suggest appropriate experimental approaches in Section 8.

3. ANALYSIS OF THE MODEL

3.1. General properties.Solutions of the evolution equations (6) and (7) with
the associated boundary conditions (4) and initial conditions which satisfy equa-
tions (5) have the following properties:

1. If f and c, the fibroblast and collagen densities, are initially non-negative,
they remain so. This is true provided that the solutions are continuous and
differentiable.

2. The total density of collagen and fibroblasts remains constant in time, i.e.∫ 2π

0
f (t, θ)dθ = 1 and

∫ π

0
c(t, θ)dθ = 1 (11)
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provided f and c are integrable with respect to θ for each t and ct and ft

are continuous.
3. The constant solution f = 1

2π and c = 1
π

is a steady state. This corresponds
to a fully isotropic representation of fibroblasts and collagen fibers.

4. When the diffusion coefficient of the fibroblast D = 0, solutions in which
all the collagen and fibroblasts are oriented in parallel are also steady
states; of course the fibroblast orientations can be in either of the directions
parallel to the collagen. More precisely, by considering weak solutions
when D = 0 show that a steady-state solution is ( f (θ), c(θ)) = (δ(θ −
a), δ(θ−a)) where δ is the Dirac distribution. This requires that W′1(0) = 0
and W2(0)W′3(0) = 0, which are expected intuitively (see section 2) and
are satisfied by the kernels in equations (9) and (10). If in addition, we
assume that W2 and W3 are π periodic, then (δ(θ + π − a), δ(θ − a)) and
(δ(θ − a) + δ(θ + π − a), δ(θ − a)) are steady-state solutions also. In
some cases, series of delta-like functions, corresponding to several isolated
orientations, are also steady states; this is discussed in more detail later in
the paper (see section 6).

5. Solutions where the delta functions are symmetric with respect to one
another are steady states when there is no diffusion. In other words, f =∑k

i=1 ai δ(x − bi ) where bi ∈ [0, 2π ] can be a steady-state solution if for
each i, f (bi − x) = f (bi + x), with similar conditions for c. These types
of solutions are encountered in Section 6.3 where they are referred to as
type-II solutions.

3.2. Linear stability. As a first step to understanding the behavior of the sys-
tem we examine the stability of the constant steady-state solution u0 = ( f0, c0) =
( 1

2π ,
1
π
) with respect to angularly inhomogeneous perturbations. In order to do

this we first linearize equations (6) and (7) about u0. Note that any angularly ho-
mogeneous perturbations would be steady-state solutions except that those other
that u0 do not satisfy the normalization condition. By observing that Wi ∗ k = k,
with all its derivatives zero, for i = 1, 2 or 3 and k a constant, one can see that
the linearized equations are:

∂ f

∂t
= ∂

∂θ

(
D
∂ f

∂θ
− f0

∂

∂θ
(W1 ∗ c)

)
for θ ∈ [0, 2π ] (12)

∂v

∂t
= −α ∂

∂θ

(
c0(W2 ∗ f0)(θ)

∂

∂θ
(W3 ∗ f )(θ)

)
for θ ∈ [0, π]. (13)

We assume perturbations of the form

f =
∞∑

k=0

eλkt(ak cos kθ + bk sin kθ) (14)

c =
∞∑

k=0

eλkt(βk cos kθ + γk sin kθ) (15)
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where f is 2π periodic and c is π periodic, i.e. βk = γk = 0 for k odd. The
π periodicity of c implies that ct is also π periodic which in turn implies that
ak = bk = 0 for k odd. In order to meet the boundary conditions only even wave
numbers need to be considered. First we observe that if W and u are periodic
with period T , then when evaluating W∗u it does not matter over which interval
of length T the integral is taken. We chose the interval which is symmetric about
zero. Simplification using trigonometric identities then gives

W3 ∗ f (t, θ)=
∞∑
k=0

k even

eλkt
(
ak cos kθŴ3(k)+ bk sin kθŴ3(k)

)
(16)

W1 ∗ c(t, θ)=
∞∑
k=0

k even

eλkt
(
βk cos kθŴ1(k)+ γk sin kθŴ1(k)

)
(17)

where

Ŵ(k) =
∫ a

−a
W(x) cos kx dx. (18)

When equations (14) and (15) are substituted into the linearized equations (12)
and (13), the coefficients must satisfy the following equations:

λkak =−k2 Dak + k2 f0βββkŴ1(k) (19)

λkβββk = k2α f0c0akŴ3(k) (20)

where ak = (ak,bk), βββk = (βk, γk) and ak = βββk = 0 for k odd. For k even,
ak 6= 0 and βββk 6= 0, λk must satisfy the condition

λk = −k2

2

(
D ±

√
D2 + 4αc0 f 2

0 Ŵ1(k)Ŵ3(k)

)
. (21)

Our assumption that W1 = 2W3 implies 2Ŵ3(k) = Ŵ1(k). Thus for k even there
is always one positive and one negative λk. The mode with the largest positive
λk is expected to be dominant. Analytical comparison of the growth rates is not
possible because of the complex forms W1(k), but by numerically computing λk

the wave number with the maximum growth rate can easily be found; typical
results are shown in Fig. 1(a). Since the odd wave numbers do not satisfy the
boundary conditions, the even wave number with the maximum growth rate is
2. This is more clearly seen in Fig. 1(b) where λ2 and λ4 are plotted against D.
The maximum dominant mode switches from 4 to 2 as D is increased and once
they switch the growth rates remain very similar. Thus the homogeneous steady
state is always unstable, and our linear analysis suggests that depending upon the
diffusion coefficient either one or two peaks should begin to evolve corresponding
to either one or two orientations for the collagen. This is verified numerically in



An Orientation Model 109

0
0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5
Wave number

6 7 8 9 10 0
0

0.05
0.1

0.15
0.2

G
ro

w
th

 r
at

e

G
ro

w
th

 r
at

e

0.25
0.3

0.35
0.4

.1 .2 .3 .4 .5
Diffusion

.6 .7 .8 .9 1

(a) (b)

Figure 1. The growth rate, λk, predicted by the linear analysis is plotted for different
wave numbers. In graph (a) the growth rate is plotted as a function of the wave number
k when D = 1. In graph (b) the maximal growth rates, k = 4 (dotted line) and k = 2
(solid line), are plotted as a function of D, the diffusion coefficient. In both cases α = 1
and the kernels are defined by a = 4 in equation (9).

Section 5, and the dependence on the diffusion coefficient is explored more fully
later in the paper.

By decreasing the range of influence that collagen and fibroblasts have on each
other, which means decreasing the support of the kernels, the graph in Fig. 1(a)
shifts to the right. In the case where D = 0, the mode with the maximum growth
rate seems to be the maximum number of independent peaks possible, subject to
peak separation being greater than half the support of the kernel (see Section 6).

3.3. Nonlinear analysis. Having determined the stability of the uniform steady-
state using linear-stability analysis, we now consider the full non-linear problem.
By so doing we try to understand how the non-linearities affect the system. Being
motivated by previous work where patterns with two characteristic wave lengths
are seen ( .Maini, .1990), we proceed by considering solutions of the form

f = a0 + a2(t) cos 2θ + a4(t) cos 4θ + . . . (22)

c= b0 + b2(t) cos 2θ + b4(t) cos 4θ + . . . . (23)

Substituting these into the non-linear equations (6) and (7), using equations (16)
and (17) and integrating the equations after multiplying by 1, cos 2θ and cos 4θ
gives

a′0(t)= 0 (24)

a′2(t)=−4Da2(t)+ 4a0b2(t)Ŵ1(2)+ 4a2(t)b4(t)Ŵ1(4)+ . . . (25)

a′4(t)=−16Da4(t)+ 16a0b4(t)Ŵ1(4)+ 4a2(t)b2(t)Ŵ1(2)+ . . . (26)

b′0(t)= 0 (27)
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b′2(t)= 2αb0a2(t)Ŵ3(2)(a0 − 4a4(t)Ŵ3(4))

−4αb2(t)a4(t)Ŵ3(4)(a0 − 3a4(t)Ŵ3(4))+ . . . (28)

b′4(t)= 2αb0(a
2
2(t)Ŵ

2
3 (2)+ 2a0a4(t)Ŵ3(4))

−αb2(t)a2(t)Ŵ3(2)(2a0 − 3a4(t)Ŵ3(4))+ . . . . (29)

The same procedure could be carried out for a more general form of the solution
but this suffices for our purposes. The interesting feature of these equations can
be seen in equation (26) where the last term depends only on the mode 2 terms
and similarly in equation (29) where the second to last term depends only on
terms from lower modes. This means that in the full non-linear model, initial
conditions with a purely mode 2 induce a small mode 4 contribution to the
solution. In principle, this in turn induces a mode 8 term in the solution, etc. but
because of constraints imposed by the conservation of mass and the low growth
rates of the very high modes, these high-mode contributions are negligible. We
confirm the growth of a mode 4 solution out of mode 2 initial data numerically
in Section 5.

4. NUMERICAL IMPLEMENTATION

Now that we have a basic analytical understanding of the system, we proceed to
investigate its behavior in more detail using numerical methods. Before looking
at simulations we describe the numerical method used to solve the equations by
first dealing with the convolutions and then with the equations.

The convolutions are calculated by discretizing the domain with a uniform grid
of mesh length h = π

N and using the left-hand rectangular rule. We denote half
the length of the support of the kernel by se. Henceforth, any reference to W1,W2

or W3 means the discretized version, in which the equations are only evaluated
at points on the spatial grid.

In order to solve the model numerically the equations are discretized using
centered difference formula while keeping them in conservation form. The time
derivative is calculated implicitly using the trapezoidal rule. Thus the diffusive
part of the system is simply a Crank–Nicolson discretization. The domain [0, π]
is discretized into N points and the domain [0, 2π ] is discretized into 2N points.
The resulting discretized non-linear equations are solved using the software pack-
age nksol (.Brown and Saad, .1987). This software uses an inexact Newton method
to solve the nonlinear system with linear krylov iterations used to approximate
the Newton equations. We refer to solutions of the discretized equations as fn

and cm where n ∈ [0, 2N − 1] and m ∈ [0, N − 1] denote the grid points (unless
otherwise noted N = 100 in our simulations). One property of the true solutions
f and c is that if they are initially non-negative then they remain so. However,
this is not the case for the numerical solutions fn and cm: when the densities
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become sufficiently aggregated and thus there is an abrupt transition from low
density to high density, the numerical solutions become negative and begin to os-
cillate. This is a common problem in discretized systems with abrupt transitions
(.Osher and Chakravarthy, .1984). In our case the oscillations are re-enforced due
to the nature of the equations and quickly grow. Thus, the discretized system
does not maintain an important feature of the system, non-negative solutions.

In the discretized system, the case corresponding to total alignment in one
direction is a discrete version of the delta function, δi

n defined to be

δi
n =

{
1 for i − n = 0
0 otherwise

, (30)

where i defines the grid point at which the function is located, and n ∈ [0, 2N−1]
denotes the grid point. These are the types of solutions we expect to develop in
the model, based on our preliminary analysis and intuitive expectation. Yet these
are precisely the type of solutions which are difficult to reproduce in a discretized
system due to the discontinuities. To get around this problem, a common practice
in advective schemes is the use of flux limiters which smooth the oscillations that
occur near abrupt changes in the solutions ( .Thuburn, .1996; .Sweby, .1984). We
also adopt this approach albeit in a very crude manner. When the solution is
about to become negative, the algorithm limits the flux to retain positivity. In
practice this is implemented in the following manner: if fn (or cm) is negative,
it is added to the larger of its neighbors, fn+1 or fn−1, and then it is set to zero.
If its modified neighbor is negative, say fn+1, then fn+1 is also set to zero. The
numerical solution now remains non-negative and still conserves mass. This not
only acts as a crude flux limiter, but also makes sense in the context of the
behavior of the underlying equations. Those equations have the property that
when f = 0 then fθ is also zero, and our ad hoc ‘flux limiter’ has the effect of
reducing the numerical derivative at the point where the solution is set to zero.
As always, but particularly in light of the unsophisticated flux limiter added to
our algorith, we interpret and accept our numerical results only as far as they are
consistent with the analytical predictions of the model.

5. NUMERICAL CONFIRMATION OF THE BASIC PROPERTIES OF THE

MODEL

In order to verify both the numerical scheme and the analysis of Section 3 we
look at perturbations about the homogeneous steady state ( 1

2π ,
1
π
).

When solving the non-linear system given by equations (6) and (7) with initial
conditions corresponding to a mode 2 type perturbation about the steady state,
one sees both the growth of this term, and the appearance of a mode 4 term as
predicted in Section 3.3. To ensure that the mode 4 term is due to the non-linearity
and is not being introduced through numerical errors, we solve the linear system
(12) and (13), with the initial conditions again having purely mode 2 terms. In
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Figure 2. Collagen density is plotted for two simulations with the same initial conditions
and different fibroblast diffusion coefficients, illustrating that the collagen evolves to
two distinct isolated orientations when the diffusion coefficient is small and to a single
orientation when the diffusion coefficient is larger. In (a) D = 0 and the collagen evolves
from an almost isotropic state to two distinct orientations; whereas in (b) where D = 0.5,
the collagen evolves to a single orientation. This agrees with the results of the linear
analysis; in fact in (b) the Mode 4 terms (corresponding to two peaks on [0, π] can be
seen growing as predicted. In both simulations α = 1 and the kernels are defined by
a = 4 in equations (9). The initial conditions are random perturbations of magnitude
0.03 about the homogeneous steady state keeping c(0, θ) = f (0, θ + π). The darker
shading between the contour lines indicates higher density.

this case the mode 2 terms grow and now other modes appear. As verification
of our numerical scheme, we confirmed that the growth rate in the linear and
non-linear problem are consistent with the analysis.

We now consider the effect of a single-point perturbation to the steady state
in both f and c at the same point. The modes with λ = 4 and λ = 2 initially
grow, and depending on the diffusion coefficient D either two peaks form (small
diffusion) or one peak forms (high diffusion). This again agrees with the analysis,
although it is hard to determine if the resulting peak formation is due to the
different growth rates of the modes or to the constraints imposed by the support
of the kernels; one problem is that the two growth rates are very similar for most
parameter values. When small random perturbations to the steady state are used
as the initial conditions which maintain c(0, θ) ∝ f (0, θ) = f (0, θ +π), similar
results are obtained—either one or two peaks form depending on the value of the
diffusion coefficient (see Fig. 2).

The results from this section help us to understand the model in two ways.
Depending on the diffusion coefficient, the long-term behavior of the collagen
is to have either one or two isolated orientations. The other important result is
that even with the ad hoc modification, the numerical scheme captures the basic
features of the system predicted by the analysis. This gives us confidence in the
numerical simulations, enabling further numerical experiments.
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6. PATTERNS GENERATED FROM SIMPLE INITIAL CONDITIONS

In order to understand more fully the types of behavior which the system can
exhibit, we examine in this section the evolution of numerical solutions from
simple initial conditions, with f ∝ c on the interval [0, π] in all cases. With
this condition the fibroblasts and collagen initially have the same orientation, so
that one expects intuitively the behavior to be less complicated than when they
have different initial orientations; the latter case is considered in Section 7. First
we shall examine what happens when the collagen and fibroblast orientations are
limited to one, two, or three isolated initial directions. We then address the case
in which the collagen and fibroblasts have a continuous interval of orientations,
and finally we look at solutions which arise from initial conditions with several
local maxima.

6.1. Isolated initial orientations. Of particular interest is the case when all the
collagen and fibroblasts are ordered in a few directions. This is modeled by
weighted delta functions located at each orientation, with the weights reflecting
the fraction of density oriented at each of the angles. Starting with the simplest
case in which everything is oriented in one direction, θ = ih, we have initial
conditions of the form fn ∝ δi

n and cm ∝ δi
m. In the case D = 0, corresponding

to no random reorientation in the fibroblast population, these solutions are steady
states, as predicted by the analysis in Section 3. As D is increased above zero, the
long-term solution for the fibroblast density becomes more uniform, eventually
approaching a constant f (θ) ≡ 1

2π ; the collagen density remains localized at
a single grid point. Because the domain of f is [0, 2π ], we also consider the
initial conditions for f of the type fn = d1δ

i
n+d2δ

i+N
n (recall that Nh= π ). This

corresponds to having fibroblasts oriented both in the direction of the collagen
and opposite to that direction. Biologically, one expects this scenario to behave
exactly as that above, in which the fibroblasts are all oriented with the collagen,
and this is confirmed in simulations.

Moving to the next simplest case in which the collagen and fibroblasts have
two orientations, θ = ih and θ = jh, the initial conditions are fn ∝ δi

n + δ j
n and

cm ∝ δi
m + δ j

m. In this case the two peaks move together until they merge and
form a single peak in each variable [see Fig. 3(a)]. This behavior is determined
by the kernels W1,W2 and W3; in the simulations shown in Fig. 3, these are
given by equations (9) with a = 4. This makes the support, se ≈ 1.28 radians for
W1. Biologically this means that collagen with orientation θ = φ influences any
fibroblast orientation θ ∈ [φ− se, φ+ se]. This influence brings the fibroblasts to
an orientation closer to that of the collagen, and the influence of the fibroblasts
on the collagen has a similar effect. If se is less than the separation of the two
initially imposed peaks, the long-range interaction does not extend from one peak
to the other, making them independent of each other and one would expect the
initial conditions to be a steady state. In Fig. 3(a) the peak separation is about
0.94, which is less than se ≈ 1.28, and thus the peaks should influence each other
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Figure 3. The evolution of collagen densities when collagen and fibroblasts initially have
(a) two and (b) three distinct, isolated orientations. In both cases the peaks in orientation
merge to give a single isolated collagen orientation, with the fibroblast orientations local-
ized around this. The collagen densities are plotted for simulations where the parameters
are the same: D = 0, α = 1 and in equation (9) a = 4 making se ≈ 1.28 radians. The
initial conditions are f = c = 0 except for f30 = c30 = f60 = c60 = 50

π in (a) and
f30 = c30 = f60 = c60 = f90 = c90 = 100

3π in (b) giving a peak separation of about
0.94 radians. The fibroblast densities look similar.

resulting in their merging.
Finally we consider the case of three initial localized orientations. If two of

these orientations are symmetric about the third then this middle peak remains
stationary. Each neighboring peak pulls on the middle peak with the same inten-
sity resulting in no net change in position [see Fig. 3(b)]. However, the two outer
peaks are drawn into the middle, resulting in the eventual merging of all three
peaks. There is of course a special case when the three peaks are symmetric
about each other which results in an unstable steady state of type II which is
more fully explained in Section 6.3.

This description depends critically on the initial outer peaks having the same
intensities, and if the neighboring peaks have differing heights, their influence is
no longer symmetric. In order to understand this we mention here two points.
The first is that there may be up to three factors which influence a fibroblast
peak—the random reorienting of fibroblasts due to a non-zero D, the pull of the
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coinciding collagen peak due to the special initial conditions f ∝ c, and the pull
of neighboring collagen peaks. The second point is that for most parameters the
collagen changes more slowly than the fibroblasts. This is because the rate of
collagen remodeling depends on fibroblast density, reflected mathematically by
the flux term having an additional convolution in equation (7) compared with the
flux term in equation (6). When neighboring peaks have different heights they
pull each other with different strengths. The smaller peaks of fibroblasts tend
to reorient to the direction of the larger neighboring peaks of collagen, yet the
collagen peak at the same orientation tends to keep the fibroblasts at their original
orientation. If the coinciding collagen peak did not exist there would not be any
reason for the fibroblasts to maintain the original orientation and they would not
remain localized, but rather would almost immediately reorient to the direction
of the other collagen peaks. The result is that the smaller fibroblast peaks remain
localized but they spread out in angle space as they slowly move towards the
orientation of the larger peaks until all the peaks merge at a new orientation.

6.2. Intervals of initial orientation. Having confirmed and clarified the behav-
ior of the model for discrete initial orientations, we now consider more complex
scenarios. Specifically, we consider initial conditions representing collagen and
fibroblasts which have a localized range of orientations. This is described by a
hat function which we define on the grid as

Hi,k
n =

{
1 for −k ≤ n− i ≤ k
0 otherwise.

(31)

Thus, i denotes the grid point at the center of the hat, 2k+ 1 denotes the width
of the hat, in grid points, and n denotes the grid point where the function is
being evaluated. Starting from initial conditions fn ∝ Hi,k

n and cm ∝ Hi,k
m with

kh < π
2 , these initial orientations evolve into densities with all the collagen and

fibroblasts oriented in one direction, θ = ih, described by δi
n [see Fig. 4(a)]. As

with the previous simulations, this result is determined by the type of kernels used
in the convolutions, with the support of the kernels being crucial. Recall that
the support of the kernel, W1, determines the range of orientations over which
collagen influences the fibroblasts, and vice versa for W2 and W3. When this
support is less than the support of the hat function [see Fig. 4(b), (c), (d)], two
peaks form initially. This is a continuum version of the case discussed above, in
which two peaks are placed symmetrically about a third. At the edge of the hat
function the pull is only in one direction—towards the center of the hat function—
while far enough into the hat function the pull is equal in both directions, causing
no net change. By looking at the convolution of the initial conditions it is easy
to predict where these peaks will form. The convective term draws the densities
toward the center of the hat function until the convolution forms a plateau. Peaks
continue to form in the hat until it is filled with non-interacting peaks. Peaks
are non-interacting depending on their separation and the support of the kernels.
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Figure 4. Collagen densities in simulations where the effect of varying the angular
distance over which fibroblasts and the collagen influence one another is studied. As
the distance is decreased, reflected by increasing a in equations (9), more peaks which
are independent of one another are able to form. Halving the support almost doubles
the number of peaks which are formed. In these four simulations, in order to alter this
distance, only a is changed: in (a) a = 4 making se = 1.28 radians, in (b) a = 20
making se = 0.6 radians, in (c) a = 75 making se = 0.38 radians and in (d) a = 250
making se = 0.16 radians. The initial conditions are f = c = γ H59,22

n with D = 0 and
α = 1. The fibroblast densities look very similar. These results are plotted in a different
way in Fig. 5.

If the separation is too small, the kernel causes the peaks to interact and merge
otherwise they persist. This link can be easily seen in Fig. 5 where the support
of the hat function, the length of the support of W1 or 2se, and the last time plot
of the collagen density are shown. Knowing this, it seems reasonable to expect
the wave number with the maximum growth rate to increase as the support of
the kernel decreases as was found in section 3.2.

Increasing the diffusion coefficient, D, causes the fibroblast density to spread
out, rendering a broad range of fibroblast orientations. The main consequence is
that peaks may merge [see Fig. 6(b)]. As the diffusion is increased, the shape of
the kernel becomes more important. If the kernel is steep enough around zero then
it keeps the fibroblast peaks very narrow, counteracting the effect of diffusion,
but if the kernel is not steep near zero then the diffusion spreads the fibroblast
density more readily. As the regions of high fibroblast density become close,
they merge into one peak. This occurs to a greater extent as D is increased, and
helps to explain why the wave number with the maximum growth rate depends
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Figure 5. Collagen density plotted at one instant in time to show the relationship between
the peak separation and the range of influence between the collagen and the fibroblasts.
The dark bar on top shows the length of the support of W1 or 2se and the grey bar at
the bottom shows the support of the initial hat function. These simulations are the same
as those shown in Fig. 4.

on D—as D is increased the dominant wave number decreases (see Section 3.2).
The more spread out the density, the more slowly the peaks form. Finally, at
very high diffusion coefficients, peaks in f which are a distance π away from
those imposed initially are formed [see Fig. 6(c)]. This is due to the periodic
nature of the kernels and of c. If the diffusion causes enough of the density to
spread into the interval [π, 2π ], it starts to form peaks corresponding to those in
the interval [0, π], provided that the diffusion is not strong enough to level them
out. Biologically this corresponds to fibroblasts traveling in either direction with
the same orientation as the fibers.

6.3. A continuum of orientations with several maxima.Having established the
evolution from a few discrete initial orientations as well as the behavior of an
initial localized continuum of orientations, we now look at initial conditions which
are a mixture of the two—continuous, with several local maxima. Specifically
we consider initial conditions where fn and cm are proportional to 1 + cos knh
and 1+ cos kmh respectively; recall that n and m denote mesh points, whereas k
and h represent the wave number and the angular step size respectively. Here k
must be even to satisfy the periodic boundary conditions for c. Our simulations
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Figure 6. An illustration of the effect of increasing the angular diffusion coefficient on
the distribution of fibroblast orientations. As the diffusion coefficient is increased, the
orientations become more spread out around the localized collagen orientations. In (a)
D = 0 and the fibroblasts end up having four isolated orientations (this is the same
simulation as Fig. 4(c) where the collagen density is shown). As the diffusion coefficient
is increased in (b) to D = 0.1 the peaks no longer represent isolated orientations since
they are spread over several grid points and the middle two have merged leaving only
three peaks. Increasing D further in (c) to D = 1.0 shows the formation, of three
additional peaks, at a distance π away from the first set representing fibroblasts orienting
in the direction opposite the collagen fibers. The initial conditions and parameters (other
than D) are the same as in Fig. 4(c).

suggest that these initial conditions evolve to two different types of solutions:
delta functions which are independent [see Fig. 7(b)] and delta functions which
are symmetric with respect to each other [see Fig. 7(a)]. We refer to these as type-
I and type-II, respectively. When D 6= 0 the long-term behavior is either type-I
or type-II. In the previous simulations all the solutions have been of type-I, where
the peaks are separated by a distance larger than se making them independent of
each other. Type-II solutions were mentioned briefly in Section 3.

Type-II solutions are unstable steady states and as such do not persist biologi-
cally. However, studying the evolution of type-II solutions from initial data gives
valuable insight, which is particularly useful in Section 7 where transients similar
to type-II solutions persist for a long time. Type-II solutions are formed with k

2
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Figure 7. An illustration of type-I (a), (c) and type-II (b), (d) solutions evolving from
initial conditions with several orientation maxima. We plot contour lines of the collagen
density with darker shading indicating higher densities. As this shows, the solutions
change from type-II in (a) when there are four local maxima in the initial conditions,
or k = 8, to type-I in (b) when there are five local maxima, or k = 10, and a = 4 in
equations (9). By increasing a to a = 10, the range of influence of the collagen and
the fibroblasts is decreased and the transition from type-II solutions to type-I solutions
occurs at higher k values, between k = 12 and k = 14. In (c) k = 10 now forms a
type-II solution and in (d) k = 14 forms a type-I solution with three independent peaks.
The initial conditions for both f and c are proportional to sin kx+ 1. In all cases D = 0
and α = 1. The fibroblast densities look similar.
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peaks when k is fairly small: in the case a = 4, we observe such solutions when
k < 10. The same factors as before determine the solution type, namely the
range of the collagen and fibroblast interactions and the separations of the peaks
in their initial densities. If this separation is sufficiently large, it allows a quick
consolidation to delta functions separated by equal distances. Since the peaks
are distributed about each other symmetrically and are of equal heights, they
form an unstable steady state (see Section 6.1). When the diffusion coefficient is
increased from zero, the value of k where the transition from simulations which
develop type-II solutions to simulations which develop type-I solutions will de-
crease. This is due to the fact that the random reorientation keeps the maximum
from coalescing as quickly and compactly, which allows the noise (introduced
via numerical errors) to destroy the symmetry.

Solutions of type-I are stable steady states and are therefore biologically at-
tainable and more significant. Such solutions are formed when k is sufficiently
large: for a = 4 we observe these solutions when k > 8, with the solutions
always having two peaks. This latter observation is because a = 4, se ≈ 1.28
for W1, which determines that at most two peaks can form on the interval [0, π].
However, because k is large in these cases, the initial densities are sufficiently
spread out that it takes a long time for the localization to occur. Mathematically,
the explanation for this is that the convolutions of the initial conditions with the
kernels are sufficiently smooth that they have very small derivatives, which thus
concentrate the density only very slowly. This is so slow the small asymme-
tries, arising from the discretization, perturb the system, leading to the formation
of type-I solutions. In applications, of course, any symmetric initial conditions
would be perturbed by natural fluctuations.

By decreasing the range of influence of collagen and fibroblasts, more peaks
in type-I solutions form and type-II solutions should form from initial conditions
where the density is more evenly distributed. Changing a from 4 to 10 verifies
this by causing k = 10 to form a five-peaked solution of type-II [see Fig. 7(c)]
and k = 14 to form a three-peaked solution of type-I [see Fig. 7(d)].

6.4. Conclusions. All of the types of initial conditions considered so far have
resulted in solutions where the collagen densities are concentrated at discrete, iso-
lated orientations and the fibroblast densities are localized around these discrete
orientations, with the degree of aggregation increasing as the angular diffusion
coefficient goes down. There are two types of solutions which have been ob-
served: type-I solutions where the peaks are independent of one another, and
type-II solutions where the solution is symmetric about each peak. Only type-I
solutions are physically relevant since type-II solutions are unstable, to asym-
metric perturbations, developing into type-I solutions. The independence of the
peaks in type-I solutions, is due to the half-range of influence of the collagen and
fibroblasts being less than the separation of the peaks. Thus the support of the
kernel, which corresponds biologically to the range of directions over which the
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collagen and fibroblasts are able to reorient one another, determines the maximum
number of peaks that can occur in type-I solutions.

7. INTERACTION BETWEEN FIBROBLASTS AND COLLAGEN

Previously the initial conditions have been chosen so that the collagen and fi-
broblast densities were proportional to each other, in order to reduce the extent
of their interaction, and thus simplify the results. Now we change this strategy
and investigate the interaction between the fibroblasts and the collagen. When
their initial configurations are different, the parameter α becomes very important.
Recall that α determines how strongly the collagen is reordered. Figure 8 illus-
trates the results from a simulation in which the collagen is initially all set at one
angle and the fibroblasts at another. When α is small the initial conditions of the
collagen are more important in determining the final solution, and the fibroblasts
reorient in the direction of the collagen (Fig. 8(c)). When α is increased suffi-
ciently the situation is reversed and the initial conditions of the fibroblast become
more important, causing the collagen to reorient in the direction of the fibroblasts
(Fig. 8(d)). At intermediate values of α both the fibroblast and the collagen ori-
entations alter, stabilizing at some intermediate orientation (Fig. 8(a)). Increasing
the diffusion coefficient simply makes the fibroblast density more spread out, as
seen in Fig. 8(b).

If the initial conditions are changed to hat functions, similar results are obtained,
but with some additional complications. The hat functions can become split
depending on their width and the separation. Figure 8(e) illustrates the case
when the initial densities for fibroblasts and collagen are both hat functions, but
with different weights. As expected the hat function with more density draws the
collagen to a greater extent than the function with less density. They all merge
to form single coinciding peaks.

The final type of simulation that we have used to understand the interaction of
fibroblasts and collagen have initial conditions with fn proportional to 1+sin jnh
and cm proportional to 1 + sin kmh here we are using the same notation as
above, but the wave numbers j for the variable f and k for the variable c can
be different. In these simulations the collagen has several orientation maxima
which are different from the orientation maxima of the fibroblasts. The short-
term behavior of the solution depends on α: if α is sufficiently small, then
the fibroblasts initially try to reorient to the form of the initial collagen density
(see Fig. 9(a)), and vice-versa if α is large (see Fig. 9(b)). However, these
initial reorientations do not persist long enough to significantly alter the long-
term behavior of the collagen and only moderately influence the fibroblasts. The
variables reorient in a manner largely determined by the initial conditions; this
can be seen in Fig. 9. In the context of scar-tissue formation, this suggests that
the initial deposition of collagen is the most important factor in determining its
long-term orientation. More specifically the model shows that the remodeling of
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Figure 8. Fibroblast and collagen densities in simulations which demonstrate how they
influence each other. Initially, the fibroblasts and collagen have separate orientations. The
evolution depends on the parameters α, which determines how strongly the fibroblasts
reorient the collagen, and D, the angular diffusion coefficient of the fibroblasts. The
simulations shown in (a), (c) and (d) differ only in the value of α which is used. In (a)
where α = 3, the fibroblasts and collagen roughly have the same influence on each other
causing the final orientation to be at an intermediate value from the initial ones. In (c)
where α = 0.1, the fibroblasts are drawn to the orientation of the collagen, whereas in (d)
where α = 30, the collagen is drawn to the orientation of the fibroblasts. By comparing
(b) with (a) the effect of the diffusion coefficient is shown. The only difference between
the simulation shown in (a) and (b) is that the diffusion coefficient is changed from D = 0
to D = 0.1 respectively. In (b) the fibroblasts have a greater range of orientations. In
(e) the collagen is drawn closer to the orientation of the greater mass of fibroblasts.
Here α = 20 and the initial conditions are hat functions with different heights, that is
f ∝ 2H5,2

n + H40,2
n and c ∝ H20.5,5

n . (The non-integer value in the superscript for
H indicates that the hat function is centered between grid points.) The region for the
collagen density when c > 1 is shaded and the contour for f = 1 is a bold shaded line.
Unless otherwise stated D = 0 and the initial conditions are c ∝ δ35

n and f ∝ δ15
n .



An Orientation Model 123

0
0

10

20

30T
im

e 40

50

60

π/2

Angle

π

(a) 1

0.8

0.6

T
im

e
0.4

0.2

0
0 π/2

Angle

π

(b)

Figure 9. Collagen and fibroblast densities from simulations which illustrate that initial
conditions have a greater influence than the parameter α on the final solutions. In (a)
although α = 0.1 causing the fibroblasts to try and quickly reorient in the direction of the
collagen, the final solution has most of the fibroblast density at two peaks corresponding
to the fibroblasts initial condition with two maxima, or k = 2 (only half the fibroblast
domain is shown). The long-term behavior of the collagen is two peaks with roughly half
the collagen density in each, again a consequence of the initial conditions for collagen
with four maxima, or k = 8. The left-hand side shows 81% of the fibroblast density
divided between this peak and the corresponding peak in the interval π to 2π . Similarly
the right-hand side shows 19% of the fibroblast density is divided between this peak and
that on π to 2π . The two collagen peaks shown to the right in (a) eventually merge
into one. In (b) α = 150 causing the collagen to try and take the orientation of the
fibroblasts, but again the initial conditions prevail and most of the collagen density is
oriented at one peak corresponding to the initial conditions with k = 2. The left-hand
side shows 96% of the collagen density at this peak and the right-hand side shows 4%
of the collagen density at this peak. The long-term behavior of the fibroblast density is
four peaks, two have about 75% of the total density divided equally between them and
the rest is divided equally between the remaining two peaks. The initial conditions for
the fibroblast has four maxima, or k = 8. In (a) the shaded region shows where the
collagen density is greater than 0.4 and the dark line is the contour for fibroblast density
0.1 and in (b) the shaded region shows where the collagen density is greater than 0.5
and the dark line is the contour for fibroblast density 0.27. Both simulations have D = 0
and initial conditions where f and c are proportional to sin kθ + 1.
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the collagen by the fibroblasts alters the collagen orientation in a manner which
is less dependent on the properties and initial conditions of the fibroblasts than
on the initial conditions of the collagen. Yet in scar-tissue formation, where
the fibroblasts produce and degrade collagen (processes which are purposely not
included in this model) the initial conditions of the fibroblasts may be crucial
to the initial deposition of collagen. Despite this, once the collagen alignment
is established and possibly just initiated the conclusion of our model holds and
remains valid for the period of collagen remodeling which continues for months
post wounding ( .Mast, .1992). These results are consistent with the observation
that anti-scarring therapies such as application of TGFβs are only effective in the
very early phase of wound repair ( .Shah et al., .1994) despite the fact that scar
remodeling occurs on a relatively long-time scale. Restating, this model indicates
that the parameter α is important for the initial behavior of the solutions, but the
initial density distributions are more significant for the final form of the solution.

It is interesting to note that in these simulations, the fibroblasts and collagen
can form isolated orientations which persist for long transient periods. This is
contrary to behavior described in Section 6.3, where the initial maxima did not
become compact before coalescing. The fact that the peaks here do become
compact explains why they persist for long periods. Their influence on each
other is in the tail of the kernel, making it small until they move closer. This
type of solution could be biologically significant, for example if the fibroblasts
become inactive during this long transient period.

A final situation to consider is when both fibroblast and collagen densities have
random initial conditions, set by randomly choosing a value between zero and
one for each grid point. Those values are then rescaled so that fn and cm satisfy
the normalization condition. As expected from previous considerations, we have
found in a large number of simulations that the long-time behavior involves the
maximum number of peaks which can form in a type-I solution (not illustrated
for brevity). Changes in the parameter α simply change the time it takes for the
peaks to form; if α is small then f forms peaks very quickly, while if α is large
then c forms peaks very quickly. If the diffusion coefficient is increased, the f
solution smoothes out and the c solution takes longer to form peaks.

8. DISCUSSION

In this paper we have developed a simple model for fibroblast and collagen
alignment interactions and investigated its behavior using a combination of ana-
lytical and numerical techniques. The results have yielded a number of insights
into the alignment process, and we begin the discussion by considering the ap-
plication of these insights to wound healing and cancer.

Dermal wound repair is currently a very active research topic, due to recent
advancements which promise to lead to new clinical techniques for reducing scar-
ring (.McCallion and Ferguson, .1996). Despite a large volume of experimental
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research (see .Clark, .1996a for review) and some mathematical modeling ( .Olsen
et al., .1995; .Dale et al., .1996), many details of the process remain poorly un-
derstood. It is known that collagen alignment plays a key role in the healing
process; in fact, collagen alignment is one method for characterizing scar quality.
In humans and other tight-skinned animals, collagen has a cross-weave structure
in normal tissue, whereas in scar tissue it is aligned parallel to the plane of the
skin (.Harmon et al., .1995; .Welch et al., .1990). As a dermal wound is repaired,
fibroblasts replace the provisional matrix of fibrin with a collagen matrix (.Clark,
.1996b). The collagen is then reorganized for months by the fibroblasts until at
some time they become quiescent and the matrix remains relatively unchanged
(.Mast, .1992), corresponding mathematically to a steady rate. In our model, the
configuration observed in normal skin can be represented by the collagen density
having two peaks of orientation, with roughly 90◦ separation, and scar tissue can
be represented by a collagen density profile with one alignment peak. Both of
these solutions are indeed steady-state solutions of our model. Moreover, the
model predicts that both of these steady states can be stable for the same param-
eters. Thus the properties of the fibroblasts, characterized by the parameters D,
α and the kernels W1,W2 and W3, need not be changed in order to obtain either
type of solution. Rather our model predicts that it is the initial conditions which
determine which of the steady states form. This is consistent with biological
observations that transient application of growth factors can permanently alter
the quality of repair .(Shah et al., .1994).

Cancer invasion is another area of application in which the key process is the
movement of a cell population through a collagen-dominated extracellular ma-
trix. For most cancers, the relevant cell type is transformed epithelial cells, but
these share many phenotypic similarities with fibroblasts, and our model is quite
applicable in this context. In tumor invasion, the role of cell and matrix orien-
tation has received relatively little attention, with recent work focusing instead
on the details and interaction of protease production, directed cell movement and
altered cell adhesion; a review of recent experimental work in this area is given
in .Jiang and Mansel ( .1996), and modeling approaches are described in .Byrne
and Chaplain ( .1996) and .Perumpanai et al. (.1996). Determination of the role
of collagen reorientation during invasion is an important modeling challenge for
which our work lays the foundations.

A number of investigators have studied the interaction between fibroblasts and
collagen using in vitro experiments involving fibroblasts in collagen gels ( .Clark
et al., .1995; .Guido and Tranquillo, .1993; .Stopak and Harris, .1982). Our model
relates directly to this type of experiment, and our results suggest a series of
experiments that could be performed in order to estimate the model parameters.

1. The first and most fundamental experiment is to introduce fibroblasts into
a collagen gel in which all the collagen is oriented in a single direction.
This procedure has in fact been performed by .Guido and Tranquillo. (1993),
and their data can be used to estimate the dimensionless diffusion coeffi-
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cient D, as mentioned in Section 2. Specifically, Guido and Tranquillo
present a histogram of fibroblast orientations, which can be conveniently
summarized by the standard deviation away from the mean, which is ap-
proximately 0.39 radians (the mean is of course the predominant collagen
direction). Simulations of our model imply that in a unidirectional collagen
network, the standard deviation of the fibroblast orientations is an increas-
ing function of D, as expected intuitively, and the standard deviation of
0.39 radians implies that D ≈ 0.27. Strictly, this is only an upper bound on
D, because in the experiments, the collagen deviates to some extent from
being unidirectional, to an extent that can not be determined quantitatively.
However, model simulations show that fibroblast distribution is in fact rel-
atively insensitive to this deviation in collagen distribution, suggesting that
D ≈ 0.27 is a reasonable estimate. Unfortunately, the experimental pro-
cedure in .Guido and Tranquillo .(1993) means that only the steady state
is considered, so that no dimensional information is available. However,
if it were possible to modify their procedure and introduce the cells after
aligning the gel, this type of information would be accessible.

2. Further experiments would require extensions of the procedure of .Guido
and Tranquillo .(1993), so that the gel has two (or more) isolated collagen
orientations. The natural approach, in keeping with the development of
this paper, is to begin by constructing experimental ‘initial conditions’ in
which there are two different isolated collagen orientations, with fibroblast
directions localized around these as in the simulations for Fig. 3(a). Mea-
surement of the time evolution of the distribution of fibroblast directions
could be compared with model simulations, to delineate D and W1. We
suggest that this may be achievable by obtaining two separate unidirec-
tional collagen gels with corresponding cell populations, as in 1 above,
and then placing one above the other, at an angle.

3. As in the theoretical development in the paper, the next experimental step
would be to construct experimental initial conditions in which fibroblasts
and collagen had different orientations. One possible approach to achiev-
ing this would be to juxtapose two collagen gels, with the collagen uni-
directional in one, and oriented in two different isolated directions in the
other. The fibroblasts could be placed in the unidirectional gel, from where
they would enter the other gel with one predominant direction of motion.
Measurement of the long-term distribution of collagen and fibroblast ori-
entations near the interface, compared with model simulations, would then
enable, α, W1,W2 and W3 to be determined. For instance if α is very
large the collagen in the dual-directional gel should become unidirectional,
whereas if α is small the fibroblasts should become orientated in both di-
rections of the gel. Although the spatial aspect, which is ignored in our
model, will certainly play a role, in this region the local dynamics should
dominate.
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The work in this paper provides a theoretical framework on which more com-
plex models could be built. There are three important modifications that could
naturally be made to the model in order to make it more widely applicable. The
most important is to add a spatial component, and study the way in which orien-
tations develop as the fibroblasts move spatially. We are particularly interested
in the transitions between two regions with different characteristic patterns of
orientation, such as from scar tissue to normal tissue. Such an extension would
greatly increase the complexity of the model, requiring the collagen and fibrob-
last densities to be a function of time, orientation, and two spatial coordinates.
The second important modification would be to add a term to the model repre-
senting production of collagen by fibroblasts. This is relevant in a number of
applications: for example, scar tissue has a greater density of collagen than does
normal tissue, due to production by fibroblasts entering the wound ( .Shah et al.,
.1992). Finally we would like to extend our model to three space dimensions
by using two angular variables. Conceptually this is straightforward, but the re-
sulting model would be computationally much more intensive, and experimental
verification of the two-dimensional framework is an essential precursor to this
extension.
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