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Abstract. The early development of solid tumours has been extensively studied, both ex-
perimentally viathe multicellular spheroid assay, and theoretically using mathematical mod-
dling. Thevast mgjority of previous models apply specifically to multicell spheroids, which
have a characteristic structure of a proliferating rim and a necrotic core, separated by a
band of quiescent cells. Many previous models represent these as discrete layers, separat-
ed by moving boundaries. Here, the authors develop a new model, formulated in terms of
continuum densities of proliferating, quiescent and necrotic cells, together with ageneric nu-
trient/growth factor. The model is oriented towards an in vivo rather than in vitro setting, and
crucialy alows for nutrient supply from underlying tissue, which will arise in the two-
dimensional setting of a tumour growing within an epithelium. In addition, the model
involves a new representation of cell movement, which reflects contact inhibition of
migration. Model solutions are able to reproduce the classic three layer structure famil-
iar from multicellular spheroids, but also show that hew behaviour can occur as aresult of
thenutrient supply from underlying tissue. The authors analyse these different solution types
by approximate solution of the travelling wave equations, enabling a detailed classification
of wave front solutions.

1. Introduction

Solid tumours develop initially asasingle mass of cells. These divide morerapidly
than the cellsaround them because of aproliferative advantage caused by mutation,
and anumber of genetic pathways responsible for these mutations have been iden-
tified over the last decade (see Grander (1998) and Weinberg (1991) for reviews).
Thisinitial phase of avascular growth leadsto a non-metastatic tumour, which may
remain dormant for along period, with subsequent tumour growth depending other
mutations that enable the tumour to acquireits own blood supply (see Henry (1999)
and Chaplain & Anderson (1996) for reviews).

The very early stages of tumour growth are rarely seen clinically because of
the small size of the cell masses. However, this early growth has been well studied
in vitro, via the multicellular spheroid system. This involves a ball of cells being
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grown in aliquid medium containing appropriate nutrients, initiated by a seed cell
takenfromatumour cell line; the cell masscan grow up to adiameter of several mm.
Thisassay wasintroduced by Sutherland and coworkersin the early 1970s (Suther-
land et a., 1971; seealso thereview article by Sutherland, 1988), and has been used
extensively to study internal properties of the spheroids, to investigate subsequent
stages of tumour progression, and to test therapeutic strategies (see Kunz-Schug-
hart et al. (1998) and Hamilton (1998) for recent reviews). Multicellular spheroids
have a well-established characteristic structure (illustrated in Figure 1). There is
an outer rim of proliferating cells (afew hundred pm thick) and an inner core of
dead cells. Between these is alayer of quiescent cells, which are not dividing but
are alive, and can begin dividing again if environmental conditions change. Such
quiescent cells are very important, since many cancer therapies, including radio-
therapy, specifically target dividing cells, so that a quiescent population is central
to treatment failure (Schwachofer et al., 1991).

The reason for cellsin a multicellular spheroid becoming quiescent and then
dying has been studied extensively, but there is still no definitive answer. Levels

Fig. 1. Anillustration of the structure of amulticellular tumour spheroid, with an outer rim
of proliferating cells and an inner necrotic core; these are separated by alayer of quiescent
cells. The spheroid diameter is 1.4 mm. [Reproduced from Sutherland et a. (Cancer Res.
46, 5320-5329, 1986) by courtesy of the publisher and the authors).
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of oxygen and glucose play an important role: experiments using microelectrodes
have shown that these decrease from the outside of aspheroid to theinside (e.g. Mu-
eller-Klieser et al., 1986). However, quiescence still develops in spheroids where
oxygen and glucose levels are not low enough to prevent cell proliferation (Freyer
& Sutherland, 1986; Casciari et al., 1992), indicating the involvement of other reg-
ulators such as growth factors; details of these remain unclear. An important recent
development isthefinding that quiescent cells have reduced mitochondrial function
(but not number) (Freyer, 1998), but again theimplications of thisfor regulation of
quiescence are not yet clear.

Mathematical modelling of avascular tumour growth has a long history, dat-
ing back to the work of Thomlinson & Gray (1955). The majority of previous
modelling falls into two categories. The simplest approach is that developed by
Mueller-Klieser and coworkers, who use ODE modelsto predict the variation in the
concentration of oxygen and other nutrients through aspheroid, using comparisons
with experimental datato determineunknown quantitiessuch asdiffusionrates(e.g.
Mueller-Klieser, 1984; Groebe & Mueller-Klieser, 1996). A more sophisticated cat-
egory of modelling has devel oped from an influential paper of Greenspan (1972),
who proposed dividing the proliferating, quiescent and necrotic cells into separate
compartments, with behaviour controlled by mitotic inhibitors. This reduces the
problem to determining the location of the interfaces between the compartments,
which are controlled by nutrient and inhibitor levels. This approach has been used
widely (e.g. Shymko & Glass, 1976; Adam, 1986; Chaplain & Britton, 1993); recent
extensions include the study of asymmetric growth (Byrne & Chaplain, 1997) and
detailed analytical studies of model solutions (Byrne, 1999; Friedman & Reitich,
1999). In addition to these two modelling approaches, which both address spatial
structure, there have been models which focus simply on the temporal evolution of
cell numbers, without considering spatial structure: such models are reviewed by
Bajzer et al. (1997).

Although it has proved an extremely valuable formalism, the division of prolif-
erating, quiescent and necrotic cellsinto separate spatial compartmentsis artificial.
Detailed experimental investigationsbased on measuring oxygen consumptionrates
show that the transitions between the layers can be gradual, rather than sharp (Hys-
tad & Rofstad, 1994). To our knowledge, the only previous modelling work on the
spatial structure of avascular tumours that does not assume distinct cell layersis
by Ward & King (1997, 1999). Their model is formulated in terms of densities of
live and dead cell populations, with quiescent cells omitted for simplicity, and they
assume that the cell population is space-filling, with tumour growth due entirely
to generation of new cells by division. In Ward & King (1997), the dependence of
guantitiessuch astheviablerim thickness and growth vel ocity on model parameters
isstudied, using a series of asymptotic approximations; in the 1999 paper, the work
is extended to include diffusion of “cellular material”, enabling growth saturation
to be studied.

The modelling work in this paper incorporates cell movement into the growth
of tumour spheroids. Thisis not a new idea: in particular, it was the focus of the
modelling work of McElwain & Pettet (1993); however, their study did not ex-
plicitly involve separate sub-populations of cells. Since cell movement requires
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at least a small amount of extracellular space, Ward & King's (1997,1999) work
neglects such movement. However, experimental studies show significant extra-
cellular space (up to 20%) in some multicellular spheroids (Durand, 1990), with
the composition of extracellular matrix being well characterised (Nederman et al.,
1984; Paulus et al., 1994); moreover, the limited available evidence suggests that
avascular tumoursin vivo contain more extracellular space than spheroids (Davies
et a., 1997). In this paper, we propose a new model for avascular tumour growth,
which does not assume sharp divisions in space between cell types, and in which
tumour growth is driven by cell movement acting in concert with proliferation.

2. Modd formulation

Since we are not assuming separate compartments with sub-populations of cells,
we formulate our model in terms of cell densities, denoted p(x, 1), ¢(x,t) and
n(x,t) for proliferating, quiescent and necrotic cells, respectively. Here ¢ denotes
timeand x isaspatial coordinatein aone-dimensional domain. Asdiscussed above,
we assume that the tumour is thin, approximately disc-shaped. For mathematical
simplicity, we restrict attention to one spatial dimension, corresponding to a cross-
section through the tumour; thisfacilitates analysis, and will not have a significant
effect except when the tumour radius is very small.

Necrotic cellsare of course non-motile, but both the proliferating and quiescent
sub-populationswill move, and the basic difficulty in model formulation isthe way
in which their interaction affects motility. We assume that cell movement is unbi-
ased, neglecting any directed movement — inclusion of the effects of oxygen and
other gradientsis a natural extension (see McElwain & Pettet, 1993). For asingle
cell population, unbiased movement is traditionally modelled by linear diffusion,
with along history of successful application to a variety of cell biology problems
(eg. Keller & Segel, 1971; Sherratt & Murray, 1990; Chaplain & Stuart, 1993).
However, for interacting populations, there is no established modelling formalism.
Linear diffusion of each cell typewould imply mixing of two adjacent populations,
which isinappropriate for the close-packed cell populations involved in early tu-
mour growth, since the presence of acell of one type limits the movement of acell
of the other type from moving. This phenomenon is known as “contact inhibition
of migration” (Abercrombie et a., 1970), and is very well established in a wide
range of cell types. Contact inhibition will not prevent a tumour from growing of
course—itsproliferative advantage over normal tissue ensuresthis—but it will have
asignificant effect on the rate of growth.

We therefore use a new cell movement term, which reflects this contact inhi-
bition of migration in a simple way. We assume that the overall cell flux (of both
proliferating and quiescent populations) can be taken as —%(p + ¢), correspond-
ing to linear diffusion; by asuitable rescaling of space, any motility coefficient can
be taken as 1. We assume that the two cell populations have equal moatility, that is
unaffected by necrotic cells. Thus, of thetotal cell flux, afraction p/(p +¢) will be
proliferating cells, givingtheflux —[p/(p+q)] %(p+q),withthefl ux of quiescent
cells given similarly. These expressions give new motility terms which, although
very simple, reflect the key property of contact inhibition. The terms have been
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studied previously, in the context of a very simple competition model, by Sherratt
(2000); here we consider them in the more specific context of the development of
structure within an avascular tumour.

We assume that proliferating cells divide at a rate that is limited by crowding
effects of the total cell population, and that proliferating cells become quiescent at
arate that depends on the concentration ¢(x, ) of ageneric nutrient/growth factor.
Similarly, the quiescent cellsbecome necrotic at aratethat dependson c¢. Thisgives
the model equations

0 d ol
@ _ 9 [L _(p+q)} +gapd—p—qg—n)— flo)p (1d)

ot ox [ p+gq ox
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= [p+q . (p+q)} + f()p — h(o)g (1b)
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m = h(c)q . (1c)

Here, we are assuming that cell populations have been rescaled so that a value of
1 corresponds to a completely close-packed population; we also fix g(0) = 1 by
a suitable rescaling of time. The functions f(.) and &(.) will be decreasing with
f(400) = h(+00) = 0, and g(.) will beincreasing. Moreover we expect that the
rate (per cell) of entry into quiescence to be larger than the rate of necrosis, at any
given nutrient/growth factor level, so that f(c¢) > h(c). However the functional
forms cannot be specified in further detail because of the uncertainty surrounding
the transition between the cell types (discussed in 81).

To determine the appropriate equation for c(x, #), we must consider the context
in which the tumour is growing. The mgjority of previous models for avascular
tumour growth apply specifically to multicellular spheroidsin vitro. However, we
focus attention on avascular tumours in vivo, which will differ from the in vitro
case in two main regards. Firstly, the tumour will not be growing in a medium of
nutrient-rich fluid. In particular, since the vast majority of primary tumoursdevelop
in the epithelia of tissues (these are known as carcinomas and represent about 80%
of clinically observed cancers), they will usually be surrounded by a dense cell
population. Thiswill significantly retard growth, to an extent that can be estimated
via mathematical modelling (Sherratt, 2000), but we do not anticipate that it will
significantly ater the internal tumour structure, and thus we neglect this effect ini-
tially, for simplicity —we consider the effects of surrounding tissuein 84. Note that
for secondary tumours, avery wide range of environmentsis possible: for instance,
the tumour may develop immediately adjacent to a blood vessel from which it has
entered the tissue, a case considered specifically in recent modelling by Please
et a. (1999).

Secondly, an in vivo tumour will differ from a multicellular spheroid in not
necessarily being spherical. In fact, because they initially develop in epithelia,
one expects that many primary tumours initially form as mainly two-dimensional
structures, growing within the epithelium before expanding into surrounding tis-
sues. Thereis very little data on this, because inevitably most in vivo tumours are
not observed until they are relatively large. Since the case of spherical avascular
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tumours has been studied in such detail previously, we restrict attention here to the
two-dimensional case. This significantly affects the equation for ¢, because in a
spherical tumour, nutrient can only reach the centre by diffusing through the whole
structure, whilein a structure that is approximately two-dimensional, nutrient can
access the whole tumour much more readily, from underlying tissue. Thus, we use
the following model equation for our generic nutrient ¢(x, ¢):

ac 9%c

5=Dcﬁ+k1co[1—a(p+q+n)]—klc—kzpc. 2
Here, the access of nutrient from underlying tissue is represented by the source
termkico[1l — a(p + g + n)]. Thuswe assume that the effectiveness of this source
term decreases with overall cell density; the parameter o € (0, 1], and ¢p is the
nutrient concentration in the absence of atumour cell population.

Numerical simulations of this model (1,2) demonstrate the familiar structure
of proliferating rim and a band of quiescent cells around a growing necrotic core
(Figure 2q). Parameter values and the functional formsof f(.), g(.) and 2 (.) will of
course affect thewidth and cell density of theregions, aswell asthe overall speed of
tumour growth, and thiswill bediscussed further in 83. Moreover, if f(c) decreases
to zero at afinite value of ¢, then the solution can have a quite different qualitative
form, with a growing mass of entirely proliferating cells (Figure 2b). Numerical
experiments indicate that this occurs when the parameter « is fairly small, so that
nutrient supply to thetumour from underlying tissueislarge enough to prevent cells
from entering quiescence. For other parameter values, solutions can also consist
of a proliferating rim around a wholly or partially quiescent core (not illustrated
for brevity). The possibility of athreshold level of nutrient above which cells do
not become quiescent is entirely realistic. Thus an important goal for analysisis
the determination of criteriafor the occurrence of the new types of solutions, such
as that illustrated in Figure 2b, that are introduced by our assumption of nutrient
supply from underlying tissue.

3. Reduced model

Inthissection we consider areduced model that focusseson the cell dynamicswith-
inthetumour, given by assuming that the nutrient kineticsare at aquasi-steady state.
This simplification, which greetly facilitates analysis, gives the equations

op _d | p 0 )

> =52 [p+q - (p+6])i| +g@pl—p—qg—n)— flop (39
9q _ 91 _q 9 N

o =i [Hq 8x<p+q>} + f(e)p — h(c)g (3b)
0

= = h©e)g (30)

c=coy[l—alp+q+n]/(y+p) (3d)



Model for avascular tumour growth 297

—_
<4
~

(b)

Proliferating
cells, p

Quiescent

cells, q

o
o N

§§§ T T T IIIIIIIIIIIII

Necrotic
cells, n
o
NS

0.8 o
0.6 ;—

Nutrient
c

0.4
0.2

0 50 100 150 200 2500 50 100 150 200 250
Space, x Space, x

Fig. 2. Numerical solutions of the model equations (1, 2). (a) A solution with the form of an
advancing pulse of proliferating cells (p), with aband of quiescent cells (¢) and a necrotic
core (n) behind this; in parallel with thisisareceding wave of nutrient (c). (b) A solution of
adifferent qualitative form, with an advancing front of proliferating cells (p) and areceding
wave of nutrient (c), with no quiescent or necrotic cells. This corresponds to the nutrient
supply from surrounding tissue being sufficient to keep al the tumour cells proliferating,
with no entry into quiescence. |n both cases, the solutions are plotted asafunction of space at
timest =0, 3,6, ..., 21, with arrows indicating increasing time. The parameter values are
ki =8k, =1,D.=10,¢0 = 1,and (8) « = 0.8, (b) « = 0.3. Thefunction g(c) = 1+0.2c
and h(c) = 1 f(c), with () f(c) = 3[1—tanh(4c — 2)], (b) f(c) isastep function defined
by f(¢) =1ifc < 0.5and f(c) = 0for ¢ > 0.5. Theinitia conditionswereq = n = 0,
¢ =1, p=0.01exp(—0.1x), and the boundary conditionsused at x = 0 and x = 265 were
Px = q. = ¢, = 0 (no boundary conditions are required for n). At x = 0, this represents
symmetry, but the boundary condition at x = 265 is an artificial one, required because we
cannot solve numerically on a semi-infinite domain; it is not significant since we stop the
solution before the wave of proliferating cells reaches this boundary.

wherey = k1/kp. A typical solution of thisreduced model isillustratedin Figure 3,
showing advancing pulses of proliferating and quiescent cells, with a growing
necrotic core behind this; equation (3c) implies a receding wave of nutrient (not
illustrated).

Our objective in this section is to obtain an analytical approximation to these
wave solutions, and thus we consider solutions of travelling wave form, p(x, t) =
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Fig. 3. A numerical solution of the reduced model (3), showing an advancing pulse of pro-
liferating cells (p), with a band of quiescent cells (¢) and a necrotic core (r) behind this.
The solution is plotted as a function of space at times¢ = 0, 2,4, ..., 14, with arrows
indicating increasing time. The parameter values are y = 10, ¢ = 1 and @ = 0.9, with
f(c) = 3[1 —tanh(4c — 2)], g(c) = 1+ 0.1c, and h(c) = 5 f(c). Theinitial conditions
wereqg = n =0, p = exp(—0.1x), and the boundary conditionsused at x = O and x = 210
were p, = g, = 0 (no boundary conditions are required for n). At x = 0, this represents
symmetry, but asin Figure 3, the boundary condition at x = 210isan artificial one, required
because we cannot solve numerically on a semi-infinite domain.

P(2),q(x,1) = Q(z), n(x,t) = N(z), z = x — at, where a is the wave speed.
Substituting these solution formsinto (3) gives the ODES

PP+ 0N | _
(ﬁ) +aP +g(C)PAL—P—-—Q—N)— f(C)P=0 (49
0P +0) ~
(ﬁ) +aQ'+ f(C)P —h(C)Q =0 (4b)

aN' +h(C)0 =0 (4c)
where C =coy[l—a(P + Q+ N)]/(y + P) (4d)
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3.1. Thewave speed

We begin by considering the speed a of the travelling wave solutions satisfying
(4). Linearising (4) ahead of the wave (about P = Q = 0) and assuming P(z) =
Pexp(—£z), Q(z) = Q exp(—£z), N(z) = N exp(—£z) to leading order, gives

£2P —atP +[g(co) — f(c))] P =0
£20 —agQ + f(co)P =0
—agN + h(c)Q = 0.

Thus for nontrivia solutions, we must have

£ = % <a +,/a? — 4[g(co) — f(CO)]) .

Since P, Q and N must be positive, we require £ to be real, so that a > 2
Vg(co) — f(co). This existence of a minimum possible wave speed, derived by
linearising ahead of the wave, is familiar from scalar reaction-diffusion equations
(Fisher, 1937; Kolmogoroff et a., 1937). In these cases it is known that a wave
moving with the minimum possibl e speed evolves from sufficiently localised initial
data; thisistheinitial datathat isrelevant in most biological applications, including
tumour growth. Thus we anticipate that the speed of tumour growth implied by (3)
will be 2,/g(co) — f(co), and thisis confirmed by numerical simulations.

3.2. Approximate travelling wave equations. f(¢) > Ofor all ¢

Although the wave speed is a key feature of the solutions of (3), the shape of the
wavesisalso of particular importance—for instance, it isimportant to know how the
width and density of the bands of proliferating and quiescent cells depends on mod-
el parameters. To study this, we adapt a method developed by Canosa (1973) for
approximate solution of the Fisher equation. Thisinvolves rescaling the travelling
wave coordinate by writing ¢ = —z/a, giving

PL(P+0Q)
izi <—d< Q)—d—P+g(C)P(1—P—Q—N)—f(C)P=0 (5a)

asd¢ P+ 0 d¢
1d (Q@EP+Q)/dc\ 4o B
a—2%< P+ 0 )—E-Ff(C)P—h(C)Q—O (5b)
dN
E—h(C)Q:O.(SC)

We have shown above that a > 2./g(co) — f(co). Now g(cp) > g(0) = 1, and
we expect f(co) to be very small, since there will be little or no entry into quies-
cence when ¢ = co, the nutrient level present away from the tumour. Thus 1/a?
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will be small; neglecting terms containing this factor gives two coupled first order
equations, which are most conveniently rewritten as

dP/d; =g(C)P(1—-M)— f(C)P (6a)
dM/d¢ = g(C)P(1— M) (6b)
where C =coy(l—aM)/(y + P). (6¢c)

Here M = P 4+ Q + N. For notational convenience in the following, we define
¢(C) = f(C)/8(0).

We are looking for asolution of (6) with P = M = 0 at ¢ = —oo (correspond-
ingtox = +o0: ahead of thewave). We begin by considering the caseof ¢ (C) > 0
for all finite C; then al equilibrium pointsmust have P = 0, sothat P =0, M > 0
at ¢ = +oo (behind the wave). In this subsection, we will study the solution form
in this case, using phase plane arguments.

Straightforward linear analysis showsthat P = M = 0 is an unstable steady
state, with the unstable eigenvector having slope 1 — ¢ (o). (The other eigenvector
has slope zero, corresponding to neutral stability along the M-axis). Therefore a
travelling wave solution must correspond to the unique trgjectory leaving (0, 0)
along this eigenvector. Explicit differentation shows that

d’P _ —¢(C) ¢'(C) c P
aM? = A-M2 " A— M+ P) [“ " W}

Since f(.) and g(.) are decreasing and increasing functions respectively, ¢(.) =
f(.)/g(.) isdecreasing. Thus d P/d M decreases with M whenever it is positive
(i.e. whileatrajectory isincreasing, it isconcave down). Thusthetrajectory leaving
(0, 0) remainsbelow theline P = [1 — ¢ (co)] M.

Consider now the P nullcline, ¢ (C) = 1— M. Using (6¢), thishasthe equation

P |: 1—aM B 1i|
V1A - M)/co

Provided ¢ (c) remains strictly positive for finite ¢, the function ¢ —1(.) is decreas-
ing, with ¢ ~1(0) = +o0o (because f(4+o00) = 0). Thus the P nullcline decreases
monotonically inthe M < 1 portion of the P—M plane, from+ocoat M = 1—¢(0)
(this can be positive or negative) to a negative value at M = 1, asillustrated in
Figure 4; note that behaviour for M > 1 is not relevant. We have shown already
that atrgjectory leaving (0, 0) must remain below P = [1 — ¢ (co)] M; moreover
the trajectory must have positive slope until it intersectsthe P nullcline. Therefore
this intersection must occur (see Figure 4).

Beyond this point of intersection with the P nullcline, the trgjectory has nega-
tiveslope, and cannot intersect the nullclineagain sincethisnullclineisadecreasing
function of M, and at such an intersection point, the slope of the trajectory would
have to be zero. Moreover, the trajectory must remain in the region M < 1, since
dM/dz = 0at M = 1. Therefore the trajectory must terminate on the M axis, at a
point between M = 1 and theintersection of the P nullclinewith the M axis. Thus
this trajectory has the required form for atravelling wave solution.



Model for avascular tumour growth 301

’
’
’

L P=M (1-0(y)

’

’

P nullcline

Travelling wave
trajectory

M=1

M

|
I
I
I
I
I
!
!
|
|
|
|
|
|
|
e
I
I
I
!
!
|
|
|
1
|
|
|
I
I
I
I
I
|
1
|
|

M=1-4(0)

Fig. 4. Anillustration of theform of the travelling wave trajectory in the P—M phase plane,
when f(c¢) > Ofor al finite c. The trgjectory lies below the line P = (1 — ¢ (co)) M, and
thus must intersect the P nullcline, at a point corresponding to the peak of the pulse wave
of P. Thetrajectory then decreases, terminating on the M-axis.

Fromthewavetrgjectory illustrated in Figure 3, the solution formsfor Q(¢) and
N(¢) caneasily bededuced,viaQ = M—P—NanddN /d; = h(C)-(M—P—N).
Provided that #(C) > O for dl finite C, Q — 0as¢ — +o0, corresponding to
a band of quiescent cells, with N(4+o00) > 0, representing a necrotic core. This
is the standard structure for an avascular tumour, familiar from multicell spher-
oids. However, if h(c) decreases to zero at a finite value of ¢ that is greater than
C(400) = co(1 — @), necrosis will not be complete, with the core of the tumour
consisting of amixture of necrotic and quiescent cells.

3.3. Approximate travelling wave equations: f(c) =0 for sufficiently large ¢

If ¢(c) decreases to zero at afinite value of ¢, say ¢ = ¢* (with ¢* < ¢g), an
important new feature is introduced, namely that there are equilibrium points of
(6) with P > 0. Specificdly, al pointswith M = 1and C > ¢* (i.e. P <
y(co — ¢* — coar)/c*) are equilibria, in addition to points with P = 0. For «
sufficiently large (including in particular the case « = 1) this does not alter the
qualitative behaviour discussed in 83.2. However, for smaller o there can be a
travelling wave trgjectory terminating with M = 1 and either P < 1 or P = 1.
Recalingthat M = P + Q + N, these cases correspond respectivelyto O, N > 0
(a mixture of proliferating, quiescent and necrotic cells throughout the tumour)
or Q = N = 0(no cells entering quiescence); intuitively, these occur for small «
sincethis correspondsto alargeinflux of nutrient into the tumour from surrounding
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tissue. We have not attempted to classify the possible behavioursin generd; rather,
wedo so inthe particular simple case of piecewise constant f(.) and constant g(.),
for which exact travelling wave solutions can be determined.

3.4. Analytical approximation for piecewise constant 1 (.)

In general, we have not been able to find an exact solution for the travelling wave
trajectory in (4). However, such a solution can be found in the specia case of
g(c) = 1with f(c) astep function, defined by:

ro=13 o ™

, c<c*

wherec* € (0, co) isapositive constant. Although thisisarather degenerate case,
its solution gives valuable insights into the travelling wave form. We will show
that the solution can have four different qualitative forms, depending on parameter
values. Equation (6) implies
ap 1 A
aM = 1-M
Here K isaconstant of integration, and A is given by

== P=M+rlogl—M)+K.

- 0, coayM + c*P < y(co—c*)
11 coayM +c*P > y(co—c¥).

Henceforth, we denote by £ thelinein the M—P plane given by coay M + ¢*P =
y(co — ¢*); thisisthe line along which C = ¢*.

For ¢ sufficiently large and negative, A = 0 and we have the solution P = M,
with K = 0 because the trajectory originates from (0, 0). This solution will apply
until the trajectory intersects the line £, at the point

P=M=vy(co—c")/(coay +c*) =, say (8)

For someparameter values, ¥ > 1.Inthiscase, whichwerefertoascaseA, P = M
for the entire solution, with the trgjectory terminating at (1, 1), and with C > ¢*
throughout (Figure 5a); this correspondsto nutrient supply within the tumour being
great enough to prevent any cell quiescence, as discussed above.

If ¥ < 1, then beyond the point at which the trajectory and £ intersect, the
possible solution having A = 1is

y(d —c*/co)

P=M-+logll—M)—log|1l—
+ log( ) 9( 2y /o

> =HM), say .

Provided that H’ () is greater than the slope of £, namely —coay /c*, the trgjec-
tory will continueaong P = H(M). Thefunction H (M) decreases monotonically
in (0, 1), with aunique zero in thisinterval, at M = My, say, and the subsequent
behaviour depends on the value of My. If Mg > (1 — ¢*/co)/a, then the curve
P = H(M) intersectsthe M axisbeforetheline £, and thusthe trajectory consists
simply of thiscurvetogether withtheline P = M (case D, illustrated in Figure 5d).
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Fig. 5. Anillustration of the possible forms of the travelling wave trgjectory in the P—M
phase plane, when £ (.) isthe step function (7). Parts (), (b), (c) and (d) of the figure denote
cases A, B, C and D, as described in the main text.

However, if My < (1 — ¢*/co)/«, then theintersection with theline £ occurs first
(case C, illustrated in Figure 5¢): recall that theline £ correspondsto C = ¢* and to
aswitchinthevaueof A. Beyond thisintersection, if the solution wereto lie below
the line £, then the solution would have d P/d M > 0, whileif it were above L, it
would satisfy P — M — log(1 — M) = constant. Each of these solutions drives the
trajectory towards £, and thus the remainder of the solution must be given simply
by the line £ itself (Figure 5¢). Note that in cases C and D, the trajectory reaches
the M-axisat avalue of M thatis < 1 (shown below).

The remaining case to consider (case B) iswhen H'(¥) < —coay /c*. Then
the curve P = H(M) enterstheregion C > ¢* as M increasesfrom M = , and
isthus not a possible tragjectory. In this case, the trajectory again lies along the line
L (Figure 5b), since solutions on either side of the line would drive the solution
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towards £. Whenever this case occurs, the line £ intersects the M axis at avalue
of M > 1 (shown below), and thusthetrajectory terminatesat M = 1 with P > O.
This corresponds to nutrient supply within the tumour being sufficient to maintain
amixture of proliferating and quiescent cells.

The distinctions between these four cases can easily be made explicit in terms
of parameters. The arguments above show that the conditions for the four possible
solution forms are as follows:

CaseA: ¢ >1
CaeB: Y <1 and H(¥) < —coay/c*

CaeC:. Y <1 and H (W) > —coay/c* and 1-—c*/cp >«
or  HEEl) <0

CaseD: ¢ <1 and H'(W) > —coay/c* and 1—c*/co<a
and H(EZEl0) > 0.

In distinguishing between cases C and D, the possibility that (1 — ¢*/cg) > o must
be treated separately because H (M) is only defined for M < 1. Straightforward
algebraic manipulation shows that the above conditions simplify to the following:

CaseA: o <1—c*/co— c*/(coy)
CaseB: o e (l—c*/co—c*/(coy), L—c*/co)
CaseC: o€ (1—c*/co, qcrit)
CaseD: o > agir
where a.,;; IS given by

« « c*(co — ¢¥)

cotterit [coyateris — v (co — ¢*) + ¢*] R — ©
We show inthe Appendix that this equation has aunique positive solution for a,;; .
Note that the value of «,;; is adways greater than (1 — ¢*/cg), but can be greater
than 1 (for very small ¢* and y); this would mean that case D does not arise. Note
also that the critical value 1 — ¢*/co — ¢*/(coy) can be positive or negative. The
condition @ > 1 — ¢*/cg is exactly the condition that the line £ intersects the
M-axis at avalue of M that islessthan 1, so that the trgjectory terminates with
P =0incasesCand D, but with P > 0in case B.

As discussed in 83.2, the solutions for Q and N can easily be deduced from
those for P and M. Since we require i(c) < f(c), we must have i(c) = O for al
¢ > ¢**,acritical valuethat islessthan ¢*. Thusif the P—M solutionimpliesC > ¢*
(cases A and B), the cells never enter necrosis. In case C, some cells may become
necrotic, depending on ¢**, but since C (¢ = +00) = ¢*, thereis no necrotic core,
but rather a core of quiescent cellsthat may a so include some necrotic cells. Only
in case D can a necrotic core develop, provided ¢** > C(¢ = 400) = co(1 — «).
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The solutions for P, Q and N as a function of z in the four cases are illus-
trated in Figure 6. If « is sufficiently small, nutrient supply within the tumour is
high enough to maintain a proliferating cell population (cases A and B), with no
cells entering quiescence if « is very small (case A). If « is large enough that a
proliferating popul ation cannot be sustained, but islessthan «..,;;, then the solution

z=x—at z=x—at
(c) (d)
_—_d_—_’:’:-{x ___A

z=x—at

Fig. 6. Anillustration of the travelling wave solution forms for P, Q and N in the four
cases A-D, illustrated in parts (a)—(d) of the figure. The solutions are plotted as a function
of z = x — at rather than ¢ for ease of interpretation; recall that the calculations in §3.2
and 83.3 aredone using ¢ = —z/a asindependent variable. (The wave speed a = 2 in this
case). In (a), thetumour cellsare al proliferating due to high nutrient input from underlying
tissue. Asthisinput isreduced, some (b) and then all (c) of the cellsenter quiescence. Finaly,
when nutrient input from underlying tissueislow, the quiescent cells enter necrosis, and the
solution corresponds to the well-known structure of bands of proliferating and quiescent
cells around a necrotic core. There are two possible variations on the qualitative forms of
the solutionsiillustrated. In case C, some of the quiescent cells may enter necrosis, giving a
core containing a mixture of quiescent and necrotic cells. Secondly, in case D, the necrotic
coreonly developsif o > 1— ¢**/co; otherwise, the behaviour isasin case C. The solutions
plotted are obtained by numerical solution of the ODES (6), with g(c) = 1 and f(c) defined
by (7); Q and N caculatedusingQ =M — P — N anddN/d¢ = h(C) - (M — N — P).
The dashed line is at the level zero in every plot: when it is not visible, this indicates that
the solution isidentically zero. Thelimitsonthe P, Q and N axesare —0.1 and 1.1 in each
case, and the z-interval plotted is —9 < z < 9. The parameter valuesarey = 2.5,¢o =1
and ¢* = 0.6, which imply «.,;; ~ 0.507, with & having the value (a) 0.1, (b) 0.3, (c) 0.45,
(d) 0.9. The function (c) isastep function, with 2(c¢) = O for ¢ > 0.55and i (c) = 0.9 for
¢ < 0.55: thus ¢** = 0.55.
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consists of arim of proliferating cells ahead of a core of quiescent cells (case C,
and case D witha < 1 — ¢**/cp). Finally, incase D (o > a.ri;) With « aso above
1 — ¢**/co, the solution has the characteristic form of a proliferating rim, a band
of quiescent cells, and a necrotic core.

Figure 7 shows the comparison between the analytical structure described
above, and numerical solutions of the reduced model (3), for g(¢) = 1, but with
f (¢) aswitching function that is smooth but steep. Comparison with Figure 5 shows
that the analytical form we have derived for step function £ (.) providesagood ap-
proximation to this case. Our analysis can be used to predict the dependence on
parameter values of key aspects of the model solution, as follows.
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Fig. 7. Comparison between the analytical solution form derived in the main text for step
function f(.), and numerical solution of (3) for smooth f(.). The solid line (——) denotes
the numerical solution, calculated with numerical details and end conditions as described in
the legend to Figure 3. The dotted line (¢ o o) denotesthe curve P = H(M), and the
dashed line (- ------ ) denotes the line L. The crosses (x) denote the line P = M. The
parameter valuesarey = 2, ¢o = 1and ¢* = 0.5, whichimply «,,;; ~ 0.615, with @ having
the value (@) 0.15, (b) 0.9, (c) 0.55, (d) 0.4. The function f(c¢) = %[1 — tanh(100c¢ — 50)],
with g(¢) = 1and h(c) = %f(c). Note that since f(c) is non-zero for al finite ¢ in this
case, the solution will eventually develop afully necrotic core (see §3.2). However, because
f () isvery closeto astep function, thisis along way behind the tumour edge, and has not
begun to develop in the solution illustrated here.
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The condition for the tumour to develop a rim of proliferating cellsis that case C
or D applies, i.e.
a>1-c*/cp. (10)
The condition for the tumour to develop a proliferating rim, a quiescent band and
anecrotic coreisthat case D applies, witha > 1 — ¢**, that is

a > max{oerir, 1 — C**/CO} . (11)

Thisisthe structure familiar from work on multicellular spheroidsin vitro.
When a proliferating rim devel ops, the maximum density of proliferating cellsis
given by the value of P at which theline P = M intersectsthe line C = c¢*,
namely
£
Prax = V(CO—Ci . (12)
coay +c¢
Thisisadecreasing function of ¢*, implying that the maximum density of pro-
liferating cells goes down as the nutrient level required to switch on quiescence
increases, as expected intuitively. Also, the maximum density increases with
y = ki1/ k2, since higher values of thisratio imply less nutrient uptake at given
cell densities.
When a quiescent and/or necrotic core develops, the density of cellsin thiscoreis
givenby M (—o0). If case D applies, then M (—oo) isthesolution of H (M) = 0,
so that

(13)

M(=00) +10g[1 — M(~o0)] =log (1_ M) |

coxy + c*

However, if case C applies, then M(—o0) = (1 — ¢*/co)/a. Thus M (—o0)
decreases with ¢*, and increases with y from the constant level (1 — ¢*/co)/«,
which appliesfor y < yeris.

The width of the proliferating rim cannot be determined directly from the solu-
tionin the P—M plane: this solution must be substituted back into (6a), giving
afirst order oDE for P(z). The required integration cannot be done exactly for
the part of the solution in which A = 1, which is the region of the solution
behind the peak in proliferating cells. However, numerical solutions show that
the pulse wave of P is approximately symmetric about its peak, and thus an
approximation to the width of this pulse can be found by considering theregion
inwhich A = 0. Inthisregion, P = M and C > ¢*, so that (6a) implies

dP/d¢ =P(1-P) = P:1/(1+ke—§)=1/(1+ke+z/a) (14)

where k > Qisan arbitrary constant of integration, corresponding to atransla-
tion in the wave. We take, as a simple measure of the width of the pulse wave,
the distance between the point at which P hasitsmaximum value P, (defined
in (12)) and the point with P = %Pmax; thisiseasily calculated using (14) as

_ 1N\ 2+ y)c* — (1 —2a)yco
Az =alog <1+ 1 Pmax) = alog( A1 e —A—ayo > . (15)

Note in particular that the proliferating rim becomes wider as the cell density
within it increases.
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4. Discussion

The work presented in this paper makes three main contributions to the mathe-
matical modelling of avascular tumour growth. Firstly, we have demonstrated the
development of the characteristic layered structure of proliferating rim, quiescent
band and necrotic core, within a PDE model encorporating cell movement. To the
best of our knowledge, thisis the first prediction of this structure within a model
formulated in terms of continuous cell densities rather than discrete bands of the
cell types, separated by moving boundaries calculated via oxygen concentration
thresholds imposed a priori (asin Greenspan, 1972). Experimental evidence indi-
cates gradua rather than sharp transitions between the layers (Hystad & Rofstad,
1994), suggesting that our formulation may be more redlistic.

Our second main contribution isthe use of anew movement term incorporating
contact inhibition of migration. Within the context of the model (1,2), this term
is not very important: the analysis in §3.2 and §3.3 shows that the development
of the layered structure in our model solutions is essentially afunction of the cell
kinetics, depending on rates of proliferation, quiescence and necrosis as afunction
of nutrient level. However, the term becomes very significant when one extends the
mode to include the untransformed cells from surrounding tissue, whose density
wedenoteby s(x, t). Herewe havein mind atumour growing within an epithelium,
withitsgrowth inhibited by the presence of surrounding epithelial cells. Thesecells
will themselves be motile, and will divide at arate that depends on nutrient level,
but that is intrinsically lower than that of proliferating tumour cells, by a factor
I’ < 1 say. Incorporating this new cell population gives the enlarged model

ap 0 p ad

rF_ £ 2 1-p—qg—n—s)— 16a)
o aX[pﬂlﬂax(erq+s)]+g(c)p( p—q—n—s)—f()p (163
dq a [ q bl 1

g_ )4 2 —h 16b
o ox|lprgts 8x(erqH)_ + f(e)p — h(c)g (16b)
on

— =h 16C
o (©)q (16¢c)
as o[ s d ]

—_— = — — Fr—-p—qg—n-— 16d
% = ox | pTats 8X(erqH)_ +g@sT—p—qg—n—s) (16d)
dc 82c

Fri DCW +kico[l—a(p +q +n+s)] —kic — kapc — kzsc. (16e)

Numerical simulations of this enlarged model show qualitatively similar behaviour
to that found in (1,2) (Figure 8), with the surrounding tissue cells receding as the
competing tumour cell population grows. However, the speed of tumour growth is
significantly reduced by the inclusion of the surrounding cell population, as one
expectsintuitively, and this dependsfundamentally on the use of the new movement
term reflecting contact inhibition of migration. Calculation of the rate of tumour
growthinthisenlarged model israther complex, and isdiscussed by Sherratt (2000)
for a caricature model of the competition between the tumour and surrounding
tissue.
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Fig. 8. Numerical solutions of the enlarged model equations (16), illustrating an avascular
tumour growing within an epithelium. The solution has the form of an advancing pulse of
proliferating cells (p), with aband of quiescent cells (¢) and anecrotic core (n) behind this;
in parallel with thisis a receding wave of surrounding tissue cells (s) and also of nutrient
(c). The solutions are plotted as a function of spaceattimest = 0, 7.5, 15, ..., 52.5, with
arrows indicating increasing time. Note that the solution has the same basic structure as
that illustrated in Figure 2a, but that the speed of tumour growth is significantly reduced by
the presence of surrounding tissue. The parameter values are as in Figure 2a, with k3 = 1
and I' = 0.4. Theinitia conditionsweregq = n = 0,¢c = 1, p = 0.01exp(—0.1x),
s = ' -[1— 0.01exp(—0.1x)], and the boundary conditionsused at x = 0 and x = 265
were p, = ¢g, = ¢, = s, = 0(no boundary conditions are required for n). At x = 0, this
represents symmetry, but as in Figures 2 and 3, the boundary condition at x = 265 is an
artificial one, required because we cannot solve numerically on a semi-infinite domain.

The third main contribution of this work is the inclusion in the model of a
term for nutrient supply from underlying tissue. Such an effect is clearly absent
for multicellular spheroids grown in vitro, but is expected in the early stages of
avascular tumour growth in vivo. Our results show that tumour structure can be
significantly altered by this effect, to an extent that depends on parametersin away
that we have been able to quantify. Our results argue strongly for the development
of atwo-dimensional analogue of the multicellular spheroid assay asakey stepin
bridging the gap between in vitro experiments and tumour growth in vivo.

The results of our modelling work could be tested comprehensively using an
approximately two-dimensional equivalent of the multicellular spheroid system, in
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which a sheet of tumour cells are grown on an appropriate substrate. Many model
parameters are functions of the tumour cell line and cannot easily be atered, but
crucially nutrient supply could easily be regulated, simply by altering the compo-
sition of the surrouding medium; in the model, this corresponds to varying cg. For
an experimental system of this kind, (10)—(15) are semi-quantitative predictions;
they are not exact because of the assumption made in (7) on the form of f(c). In
particular, the model predicts that at high ¢, proliferating cells would be present
throughout the tumour, with aproliferating rim devel oping at the critical value of co
implied by (10). A necrotic core would then develop as cg is reduced further until
(11) is satisfied. The experimental system would al so be able to test the predicted
relationship, given in (15), between the width of the proliferating rim and the cell
density within it. These experimental tests would provide an effective test of both
the qualitative assumptions and quantitative details in the model.

Appendix

In this short Appendix, we show that equation (9) has a unique positive solution
for a,ir. This can be seen most easily by dividing through by ozfm and writing
y = (1 - c¢*)/acis, giving the equation

ACSa) [1 _ (1_ L) y] = Q(y) (A.1)
y(

c* 1-c*)
where Q(y) = y? (1- efy)il .

Theleft hand side of (A.1) isalinear function of y, but can beincreasing or decreas-
ing depending on parameter values. Explicit differentiation shows that '(y) > 0
for y > 0, with

Q"(»=(1- e*y)_l 2 - 4wy + wy? + 2a)2y2]

where w=(1—e ) le™

B 2
:(1—e_y)7l (2w2+a)){y 2 }—f- 2 ]

_Zw—i—l 20+ 1

>0 foraly>O0.

Therefore, Q2 (y) isstrictly increasing with strictly positive second derivative; more-
over, 2(0) = 0 while the left hand side of (A.1) is strictly positive at y = 0.
Therefore (A.1) has unigue positive solution.
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