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Abstract. The early development of solid tumours has been extensively studied, both ex-
perimentally via the multicellular spheroid assay, and theoretically using mathematical mod-
elling. The vast majority of previous models apply specifically to multicell spheroids, which
have a characteristic structure of a proliferating rim and a necrotic core, separated by a
band of quiescent cells. Many previous models represent these as discrete layers, separat-
ed by moving boundaries. Here, the authors develop a new model, formulated in terms of
continuum densities of proliferating, quiescent and necrotic cells, together with a generic nu-
trient/growth factor. The model is oriented towards an in vivo rather than in vitro setting, and
crucially allows for nutrient supply from underlying tissue, which will arise in the two-
dimensional setting of a tumour growing within an epithelium. In addition, the model
involves a new representation of cell movement, which reflects contact inhibition of
migration. Model solutions are able to reproduce the classic three layer structure famil-
iar from multicellular spheroids, but also show that new behaviour can occur as a result of
the nutrient supply from underlying tissue. The authors analyse these different solution types
by approximate solution of the travelling wave equations, enabling a detailed classification
of wave front solutions.

1. Introduction

Solid tumours develop initially as a single mass of cells. These divide more rapidly
than the cells around them because of a proliferative advantage caused by mutation,
and a number of genetic pathways responsible for these mutations have been iden-
tified over the last decade (see Grander (1998) and Weinberg (1991) for reviews).
This initial phase of avascular growth leads to a non-metastatic tumour, which may
remain dormant for a long period, with subsequent tumour growth depending other
mutations that enable the tumour to acquire its own blood supply (see Henry (1999)
and Chaplain & Anderson (1996) for reviews).

The very early stages of tumour growth are rarely seen clinically because of
the small size of the cell masses. However, this early growth has been well studied
in vitro, via the multicellular spheroid system. This involves a ball of cells being

J.A. Sherratt: Centre for Theoretical Modelling in Medicine, Department of Mathematics,
Heriot-Watt University, Edinburgh EH14 4AS, UK. e-mail: jas@ma.hw.ac.uk

M.A.J. Chaplain: Centre for Nonlinear Systems in Biology, Department of Mathematics,
University of Dundee, Dundee DD1 4HN, UK. e-mail:chaplain@mcs.dundee.ac.uk

Key words or phrases: Avascular tumour – Reaction-diffusion – Cancer – Travelling wave
– Multicellular spheroid



292 J.A. Sherratt, M.A.J. Chaplain

grown in a liquid medium containing appropriate nutrients, initiated by a seed cell
taken from a tumour cell line; the cell mass can grow up to a diameter of several mm.
This assay was introduced by Sutherland and coworkers in the early 1970s (Suther-
land et al., 1971; see also the review article by Sutherland, 1988), and has been used
extensively to study internal properties of the spheroids, to investigate subsequent
stages of tumour progression, and to test therapeutic strategies (see Kunz-Schug-
hart et al. (1998) and Hamilton (1998) for recent reviews). Multicellular spheroids
have a well-established characteristic structure (illustrated in Figure 1). There is
an outer rim of proliferating cells (a few hundred µm thick) and an inner core of
dead cells. Between these is a layer of quiescent cells, which are not dividing but
are alive, and can begin dividing again if environmental conditions change. Such
quiescent cells are very important, since many cancer therapies, including radio-
therapy, specifically target dividing cells, so that a quiescent population is central
to treatment failure (Schwachofer et al., 1991).

The reason for cells in a multicellular spheroid becoming quiescent and then
dying has been studied extensively, but there is still no definitive answer. Levels

Fig. 1. An illustration of the structure of a multicellular tumour spheroid, with an outer rim
of proliferating cells and an inner necrotic core; these are separated by a layer of quiescent
cells. The spheroid diameter is 1.4 mm. [Reproduced from Sutherland et al. (Cancer Res.
46, 5320–5329, 1986) by courtesy of the publisher and the authors].
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of oxygen and glucose play an important role: experiments using microelectrodes
have shown that these decrease from the outside of a spheroid to the inside (e.g. Mu-
eller-Klieser et al., 1986). However, quiescence still develops in spheroids where
oxygen and glucose levels are not low enough to prevent cell proliferation (Freyer
& Sutherland, 1986; Casciari et al., 1992), indicating the involvement of other reg-
ulators such as growth factors; details of these remain unclear. An important recent
development is the finding that quiescent cells have reduced mitochondrial function
(but not number) (Freyer, 1998), but again the implications of this for regulation of
quiescence are not yet clear.

Mathematical modelling of avascular tumour growth has a long history, dat-
ing back to the work of Thomlinson & Gray (1955). The majority of previous
modelling falls into two categories. The simplest approach is that developed by
Mueller-Klieser and coworkers, who use ode models to predict the variation in the
concentration of oxygen and other nutrients through a spheroid, using comparisons
with experimental data to determine unknown quantities such as diffusion rates (e.g.
Mueller-Klieser, 1984; Groebe & Mueller-Klieser, 1996). A more sophisticated cat-
egory of modelling has developed from an influential paper of Greenspan (1972),
who proposed dividing the proliferating, quiescent and necrotic cells into separate
compartments, with behaviour controlled by mitotic inhibitors. This reduces the
problem to determining the location of the interfaces between the compartments,
which are controlled by nutrient and inhibitor levels. This approach has been used
widely (e.g. Shymko & Glass, 1976; Adam, 1986; Chaplain & Britton, 1993); recent
extensions include the study of asymmetric growth (Byrne & Chaplain, 1997) and
detailed analytical studies of model solutions (Byrne, 1999; Friedman & Reitich,
1999). In addition to these two modelling approaches, which both address spatial
structure, there have been models which focus simply on the temporal evolution of
cell numbers, without considering spatial structure: such models are reviewed by
Bajzer et al. (1997).

Although it has proved an extremely valuable formalism, the division of prolif-
erating, quiescent and necrotic cells into separate spatial compartments is artificial.
Detailed experimental investigations based on measuring oxygen consumption rates
show that the transitions between the layers can be gradual, rather than sharp (Hys-
tad & Rofstad, 1994). To our knowledge, the only previous modelling work on the
spatial structure of avascular tumours that does not assume distinct cell layers is
by Ward & King (1997, 1999). Their model is formulated in terms of densities of
live and dead cell populations, with quiescent cells omitted for simplicity, and they
assume that the cell population is space-filling, with tumour growth due entirely
to generation of new cells by division. In Ward & King (1997), the dependence of
quantities such as the viable rim thickness and growth velocity on model parameters
is studied, using a series of asymptotic approximations; in the 1999 paper, the work
is extended to include diffusion of “cellular material”, enabling growth saturation
to be studied.

The modelling work in this paper incorporates cell movement into the growth
of tumour spheroids. This is not a new idea: in particular, it was the focus of the
modelling work of McElwain & Pettet (1993); however, their study did not ex-
plicitly involve separate sub-populations of cells. Since cell movement requires
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at least a small amount of extracellular space, Ward & King’s (1997,1999) work
neglects such movement. However, experimental studies show significant extra-
cellular space (up to 20%) in some multicellular spheroids (Durand, 1990), with
the composition of extracellular matrix being well characterised (Nederman et al.,
1984; Paulus et al., 1994); moreover, the limited available evidence suggests that
avascular tumours in vivo contain more extracellular space than spheroids (Davies
et al., 1997). In this paper, we propose a new model for avascular tumour growth,
which does not assume sharp divisions in space between cell types, and in which
tumour growth is driven by cell movement acting in concert with proliferation.

2. Model formulation

Since we are not assuming separate compartments with sub-populations of cells,
we formulate our model in terms of cell densities, denoted p(x, t), q(x, t) and
n(x, t) for proliferating, quiescent and necrotic cells, respectively. Here t denotes
time and x is a spatial coordinate in a one-dimensional domain. As discussed above,
we assume that the tumour is thin, approximately disc-shaped. For mathematical
simplicity, we restrict attention to one spatial dimension, corresponding to a cross-
section through the tumour; this facilitates analysis, and will not have a significant
effect except when the tumour radius is very small.

Necrotic cells are of course non-motile, but both the proliferating and quiescent
sub-populations will move, and the basic difficulty in model formulation is the way
in which their interaction affects motility. We assume that cell movement is unbi-
ased, neglecting any directed movement – inclusion of the effects of oxygen and
other gradients is a natural extension (see McElwain & Pettet, 1993). For a single
cell population, unbiased movement is traditionally modelled by linear diffusion,
with a long history of successful application to a variety of cell biology problems
(e.g. Keller & Segel, 1971; Sherratt & Murray, 1990; Chaplain & Stuart, 1993).
However, for interacting populations, there is no established modelling formalism.
Linear diffusion of each cell type would imply mixing of two adjacent populations,
which is inappropriate for the close-packed cell populations involved in early tu-
mour growth, since the presence of a cell of one type limits the movement of a cell
of the other type from moving. This phenomenon is known as “contact inhibition
of migration” (Abercrombie et al., 1970), and is very well established in a wide
range of cell types. Contact inhibition will not prevent a tumour from growing of
course – its proliferative advantage over normal tissue ensures this – but it will have
a significant effect on the rate of growth.

We therefore use a new cell movement term, which reflects this contact inhi-
bition of migration in a simple way. We assume that the overall cell flux (of both
proliferating and quiescent populations) can be taken as − ∂

∂x
(p+ q), correspond-

ing to linear diffusion; by a suitable rescaling of space, any motility coefficient can
be taken as 1. We assume that the two cell populations have equal motility, that is
unaffected by necrotic cells. Thus, of the total cell flux, a fraction p/(p+q)will be
proliferating cells, giving the flux −[p/(p+q)] ∂

∂x
(p+q), with the flux of quiescent

cells given similarly. These expressions give new motility terms which, although
very simple, reflect the key property of contact inhibition. The terms have been
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studied previously, in the context of a very simple competition model, by Sherratt
(2000); here we consider them in the more specific context of the development of
structure within an avascular tumour.

We assume that proliferating cells divide at a rate that is limited by crowding
effects of the total cell population, and that proliferating cells become quiescent at
a rate that depends on the concentration c(x, t) of a generic nutrient/growth factor.
Similarly, the quiescent cells become necrotic at a rate that depends on c. This gives
the model equations

∂p

∂t
= ∂

∂x

[
p

p + q
∂

∂x
(p + q)

]
+ g(c)p(1 − p − q − n)− f (c)p (1a)

∂q

∂t
= ∂

∂x

[
q

p + q
∂

∂x
(p + q)

]
+ f (c)p − h(c)q (1b)

∂n

∂t
= h(c)q . (1c)

Here, we are assuming that cell populations have been rescaled so that a value of
1 corresponds to a completely close-packed population; we also fix g(0) = 1 by
a suitable rescaling of time. The functions f (.) and h(.) will be decreasing with
f (+∞) = h(+∞) = 0, and g(.) will be increasing. Moreover we expect that the
rate (per cell) of entry into quiescence to be larger than the rate of necrosis, at any
given nutrient/growth factor level, so that f (c) > h(c). However the functional
forms cannot be specified in further detail because of the uncertainty surrounding
the transition between the cell types (discussed in §1).

To determine the appropriate equation for c(x, t), we must consider the context
in which the tumour is growing. The majority of previous models for avascular
tumour growth apply specifically to multicellular spheroids in vitro. However, we
focus attention on avascular tumours in vivo, which will differ from the in vitro
case in two main regards. Firstly, the tumour will not be growing in a medium of
nutrient-rich fluid. In particular, since the vast majority of primary tumours develop
in the epithelia of tissues (these are known as carcinomas and represent about 80%
of clinically observed cancers), they will usually be surrounded by a dense cell
population. This will significantly retard growth, to an extent that can be estimated
via mathematical modelling (Sherratt, 2000), but we do not anticipate that it will
significantly alter the internal tumour structure, and thus we neglect this effect ini-
tially, for simplicity – we consider the effects of surrounding tissue in §4. Note that
for secondary tumours, a very wide range of environments is possible: for instance,
the tumour may develop immediately adjacent to a blood vessel from which it has
entered the tissue, a case considered specifically in recent modelling by Please
et al. (1999).

Secondly, an in vivo tumour will differ from a multicellular spheroid in not
necessarily being spherical. In fact, because they initially develop in epithelia,
one expects that many primary tumours initially form as mainly two-dimensional
structures, growing within the epithelium before expanding into surrounding tis-
sues. There is very little data on this, because inevitably most in vivo tumours are
not observed until they are relatively large. Since the case of spherical avascular
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tumours has been studied in such detail previously, we restrict attention here to the
two-dimensional case. This significantly affects the equation for c, because in a
spherical tumour, nutrient can only reach the centre by diffusing through the whole
structure, while in a structure that is approximately two-dimensional, nutrient can
access the whole tumour much more readily, from underlying tissue. Thus, we use
the following model equation for our generic nutrient c(x, t):

∂c

∂t
= Dc ∂

2c

∂x2
+ k1c0 [1 − α(p + q + n)] − k1c − k2pc . (2)

Here, the access of nutrient from underlying tissue is represented by the source
term k1c0[1 − α(p+ q + n)]. Thus we assume that the effectiveness of this source
term decreases with overall cell density; the parameter α ∈ (0, 1], and c0 is the
nutrient concentration in the absence of a tumour cell population.

Numerical simulations of this model (1,2) demonstrate the familiar structure
of proliferating rim and a band of quiescent cells around a growing necrotic core
(Figure 2a). Parameter values and the functional forms of f (.), g(.) and h(.)will of
course affect the width and cell density of the regions, as well as the overall speed of
tumour growth, and this will be discussed further in §3. Moreover, if f (c) decreases
to zero at a finite value of c, then the solution can have a quite different qualitative
form, with a growing mass of entirely proliferating cells (Figure 2b). Numerical
experiments indicate that this occurs when the parameter α is fairly small, so that
nutrient supply to the tumour from underlying tissue is large enough to prevent cells
from entering quiescence. For other parameter values, solutions can also consist
of a proliferating rim around a wholly or partially quiescent core (not illustrated
for brevity). The possibility of a threshold level of nutrient above which cells do
not become quiescent is entirely realistic. Thus an important goal for analysis is
the determination of criteria for the occurrence of the new types of solutions, such
as that illustrated in Figure 2b, that are introduced by our assumption of nutrient
supply from underlying tissue.

3. Reduced model

In this section we consider a reduced model that focusses on the cell dynamics with-
in the tumour, given by assuming that the nutrient kinetics are at a quasi-steady state.
This simplification, which greatly facilitates analysis, gives the equations

∂p

∂t
= ∂

∂x

[
p

p + q
∂

∂x
(p + q)

]
+ g(c)p(1 − p − q − n)− f (c)p (3a)

∂q

∂t
= ∂

∂x

[
q

p + q
∂

∂x
(p + q)

]
+ f (c)p − h(c)q (3b)

∂n

∂t
= h(c)q (3c)

c = c0γ [1 − α(p + q + n)] /(γ + p) (3d)
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Fig. 2. Numerical solutions of the model equations (1, 2). (a) A solution with the form of an
advancing pulse of proliferating cells (p), with a band of quiescent cells (q) and a necrotic
core (n) behind this; in parallel with this is a receding wave of nutrient (c). (b) A solution of
a different qualitative form, with an advancing front of proliferating cells (p) and a receding
wave of nutrient (c), with no quiescent or necrotic cells. This corresponds to the nutrient
supply from surrounding tissue being sufficient to keep all the tumour cells proliferating,
with no entry into quiescence. In both cases, the solutions are plotted as a function of space at
times t = 0, 3, 6, . . . , 21, with arrows indicating increasing time. The parameter values are
k1 = 8, k2 = 1,Dc = 10, c0 = 1, and (a) α = 0.8, (b) α = 0.3. The function g(c) = 1+0.2c
and h(c) = 1

2f (c), with (a) f (c) = 1
2 [1 − tanh(4c− 2)], (b) f (c) is a step function defined

by f (c) = 1 if c < 0.5 and f (c) = 0 for c > 0.5. The initial conditions were q ≡ n ≡ 0,
c ≡ 1, p = 0.01 exp(−0.1x), and the boundary conditions used at x = 0 and x = 265 were
px = qx = cx = 0 (no boundary conditions are required for n). At x = 0, this represents
symmetry, but the boundary condition at x = 265 is an artificial one, required because we
cannot solve numerically on a semi-infinite domain; it is not significant since we stop the
solution before the wave of proliferating cells reaches this boundary.

where γ = k1/k2. A typical solution of this reduced model is illustrated in Figure 3,
showing advancing pulses of proliferating and quiescent cells, with a growing
necrotic core behind this; equation (3c) implies a receding wave of nutrient (not
illustrated).

Our objective in this section is to obtain an analytical approximation to these
wave solutions, and thus we consider solutions of travelling wave form, p(x, t) =
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Fig. 3. A numerical solution of the reduced model (3), showing an advancing pulse of pro-
liferating cells (p), with a band of quiescent cells (q) and a necrotic core (n) behind this.
The solution is plotted as a function of space at times t = 0, 2, 4, . . . , 14, with arrows
indicating increasing time. The parameter values are γ = 10, c0 = 1 and α = 0.9, with
f (c) = 1

2 [1 − tanh(4c − 2)], g(c) = 1 + 0.1c, and h(c) = 1
2f (c). The initial conditions

were q ≡ n ≡ 0, p = exp(−0.1x), and the boundary conditions used at x = 0 and x = 210
were px = qx = 0 (no boundary conditions are required for n). At x = 0, this represents
symmetry, but as in Figure 3, the boundary condition at x = 210 is an artificial one, required
because we cannot solve numerically on a semi-infinite domain.

P(z), q(x, t) = Q(z), n(x, t) = N(z), z = x − at , where a is the wave speed.
Substituting these solution forms into (3) gives the odes(

P(P ′ +Q′)
P +Q

)′
+ aP ′ + g(C)P (1 − P −Q−N)− f (C)P = 0 (4a)

(
Q(P ′ +Q′)
P +Q

)′
+ aQ′ + f (C)P − h(C)Q = 0 (4b)

aN ′ + h(C)Q = 0 (4c)

where C = c0γ [1 − α(P +Q+N)] /(γ + P) (4d)
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3.1. The wave speed

We begin by considering the speed a of the travelling wave solutions satisfying
(4). Linearising (4) ahead of the wave (about P = Q = 0) and assuming P(z) =
P̂ exp(−ξz),Q(z) = Q̂ exp(−ξz), N(z) = N̂ exp(−ξz) to leading order, gives

ξ2P̂ − aξP̂ + [g(c0)− f (c0)] P̂ = 0

ξ2Q̂− aξQ̂+ f (c0)P̂ = 0

−aξN̂ + h(c0)Q̂ = 0 .

Thus for nontrivial solutions, we must have

ξ = 1
2

(
a ±

√
a2 − 4 [g(c0)− f (c0)]

)
.

Since P , Q and N must be positive, we require ξ to be real, so that a ≥ 2√
g(c0)− f (c0). This existence of a minimum possible wave speed, derived by

linearising ahead of the wave, is familiar from scalar reaction-diffusion equations
(Fisher, 1937; Kolmogoroff et al., 1937). In these cases it is known that a wave
moving with the minimum possible speed evolves from sufficiently localised initial
data; this is the initial data that is relevant in most biological applications, including
tumour growth. Thus we anticipate that the speed of tumour growth implied by (3)
will be 2

√
g(c0)− f (c0), and this is confirmed by numerical simulations.

3.2. Approximate travelling wave equations: f (c) > 0 for all c

Although the wave speed is a key feature of the solutions of (3), the shape of the
waves is also of particular importance – for instance, it is important to know how the
width and density of the bands of proliferating and quiescent cells depends on mod-
el parameters. To study this, we adapt a method developed by Canosa (1973) for
approximate solution of the Fisher equation. This involves rescaling the travelling
wave coordinate by writing ζ = −z/a, giving

1

a2

d

dζ

(
P d
dζ
(P +Q)
P +Q

)
− dP
dζ

+ g(C)P (1 − P −Q−N)− f (C)P = 0 (5a)

1

a2

d

dζ

(
Q d
dζ
(P +Q)/dζ
P +Q

)
− dQ
dζ

+ f (C)P − h(C)Q = 0 (5b)

dN

dζ
− h(C)Q = 0 . (5c)

We have shown above that a ≥ 2
√
g(c0)− f (c0). Now g(c0) ≥ g(0) = 1, and

we expect f (c0) to be very small, since there will be little or no entry into quies-
cence when c = c0, the nutrient level present away from the tumour. Thus 1/a2
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will be small; neglecting terms containing this factor gives two coupled first order
equations, which are most conveniently rewritten as

dP/dζ = g(C)P (1 −M)− f (C)P (6a)

dM/dζ = g(C)P (1 −M) (6b)

where C = c0γ (1 − αM)/(γ + P) . (6c)

Here M ≡ P + Q + N . For notational convenience in the following, we define
φ(C) ≡ f (C)/g(C).

We are looking for a solution of (6) with P = M = 0 at ζ = −∞ (correspond-
ing to x = +∞: ahead of the wave). We begin by considering the case of φ(C) > 0
for all finiteC; then all equilibrium points must have P = 0, so that P = 0,M > 0
at ζ = +∞ (behind the wave). In this subsection, we will study the solution form
in this case, using phase plane arguments.

Straightforward linear analysis shows that P = M = 0 is an unstable steady
state, with the unstable eigenvector having slope 1−φ(c0). (The other eigenvector
has slope zero, corresponding to neutral stability along the M-axis). Therefore a
travelling wave solution must correspond to the unique trajectory leaving (0, 0)
along this eigenvector. Explicit differentation shows that

d2P

dM2
= −φ(C)
(1 −M)2 + φ ′(C)

(1 −M)(γ + P)
[
αγ + C dP

dM

]
.

Since f (.) and g(.) are decreasing and increasing functions respectively, φ(.) ≡
f (.)/g(.) is decreasing. Thus dP/dM decreases with M whenever it is positive
(i.e. while a trajectory is increasing, it is concave down). Thus the trajectory leaving
(0, 0) remains below the line P = [1 − φ(c0)]M .

Consider now the P nullcline, φ(C) = 1−M . Using (6c), this has the equation

P = γ
[

1 − αM
φ−1(1 −M)/c0 − 1

]
.

Provided φ(c) remains strictly positive for finite c, the function φ−1(.) is decreas-
ing, with φ−1(0) = +∞ (because f (+∞) = 0). Thus the P nullcline decreases
monotonically in theM < 1 portion of the P–M plane, from +∞ atM = 1−φ(0)
(this can be positive or negative) to a negative value at M = 1, as illustrated in
Figure 4; note that behaviour for M > 1 is not relevant. We have shown already
that a trajectory leaving (0, 0) must remain below P = [1 − φ(c0)]M; moreover
the trajectory must have positive slope until it intersects the P nullcline. Therefore
this intersection must occur (see Figure 4).

Beyond this point of intersection with the P nullcline, the trajectory has nega-
tive slope, and cannot intersect the nullcline again since this nullcline is a decreasing
function ofM , and at such an intersection point, the slope of the trajectory would
have to be zero. Moreover, the trajectory must remain in the regionM < 1, since
dM/dz = 0 atM = 1. Therefore the trajectory must terminate on theM axis, at a
point betweenM = 1 and the intersection of the P nullcline with theM axis. Thus
this trajectory has the required form for a travelling wave solution.
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Fig. 4. An illustration of the form of the travelling wave trajectory in the P–M phase plane,
when f (c) > 0 for all finite c. The trajectory lies below the line P = (1 − φ(c0))M , and
thus must intersect the P nullcline, at a point corresponding to the peak of the pulse wave
of P . The trajectory then decreases, terminating on theM-axis.

From the wave trajectory illustrated in Figure 3, the solution forms forQ(ζ) and
N(ζ) can easily be deduced, viaQ = M−P−N and dN/dζ = h(C)·(M−P−N).
Provided that h(C) > 0 for all finite C, Q → 0 as ζ → +∞, corresponding to
a band of quiescent cells, with N(+∞) > 0, representing a necrotic core. This
is the standard structure for an avascular tumour, familiar from multicell spher-
oids. However, if h(c) decreases to zero at a finite value of c that is greater than
C(+∞) = c0(1 − α), necrosis will not be complete, with the core of the tumour
consisting of a mixture of necrotic and quiescent cells.

3.3. Approximate travelling wave equations: f (c)=0 for sufficiently large c

If φ(c) decreases to zero at a finite value of c, say c = c∗ (with c∗ < c0), an
important new feature is introduced, namely that there are equilibrium points of
(6) with P > 0. Specifically, all points with M = 1 and C ≥ c∗ (i.e. P ≤
γ (c0 − c∗ − c0α)/c∗) are equilibria, in addition to points with P = 0. For α
sufficiently large (including in particular the case α = 1) this does not alter the
qualitative behaviour discussed in §3.2. However, for smaller α there can be a
travelling wave trajectory terminating with M = 1 and either P < 1 or P = 1.
Recalling thatM ≡ P +Q+N , these cases correspond respectively toQ,N > 0
(a mixture of proliferating, quiescent and necrotic cells throughout the tumour)
or Q = N = 0 (no cells entering quiescence); intuitively, these occur for small α
since this corresponds to a large influx of nutrient into the tumour from surrounding
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tissue. We have not attempted to classify the possible behaviours in general; rather,
we do so in the particular simple case of piecewise constant f (.) and constant g(.),
for which exact travelling wave solutions can be determined.

3.4. Analytical approximation for piecewise constant f (.)

In general, we have not been able to find an exact solution for the travelling wave
trajectory in (4). However, such a solution can be found in the special case of
g(c) ≡ 1 with f (c) a step function, defined by:

f (c) =
{

0, c > c∗
1, c < c∗ (7)

where c∗ ∈ (0, c0) is a positive constant. Although this is a rather degenerate case,
its solution gives valuable insights into the travelling wave form. We will show
that the solution can have four different qualitative forms, depending on parameter
values. Equation (6) implies

dP

dM
= 1 − λ

1 −M ⇒ P = M + λ log(1 −M)+K .

Here K is a constant of integration, and λ is given by

λ =
{

0, c0αγM + c∗P < γ (c0 − c∗)
1, c0αγM + c∗P > γ (c0 − c∗) .

Henceforth, we denote by L the line in theM–P plane given by c0αγM + c∗P =
γ (c0 − c∗); this is the line along which C = c∗.

For ζ sufficiently large and negative, λ = 0 and we have the solution P = M ,
with K = 0 because the trajectory originates from (0, 0). This solution will apply
until the trajectory intersects the line L, at the point

P = M = γ (c0 − c∗)/(c0αγ + c∗) ≡ ψ , say (8)

For some parameter values,ψ > 1. In this case, which we refer to as case A,P = M
for the entire solution, with the trajectory terminating at (1, 1), and with C > c∗
throughout (Figure 5a); this corresponds to nutrient supply within the tumour being
great enough to prevent any cell quiescence, as discussed above.

If ψ < 1, then beyond the point at which the trajectory and L intersect, the
possible solution having λ = 1 is

P = M + log(1 −M)− log

(
1 − γ (1 − c∗/c0)

αγ + c∗/c0

)
≡ H(M), say .

Provided that H′(ψ) is greater than the slope of L, namely −c0αγ/c∗, the trajec-
tory will continue along P = H(M). The function H(M) decreases monotonically
in (0, 1), with a unique zero in this interval, at M = M0, say, and the subsequent
behaviour depends on the value of M0. If M0 > (1 − c∗/c0)/α, then the curve
P = H(M) intersects theM axis before the line L, and thus the trajectory consists
simply of this curve together with the lineP = M (case D, illustrated in Figure 5d).
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Fig. 5. An illustration of the possible forms of the travelling wave trajectory in the P–M
phase plane, when f (.) is the step function (7). Parts (a), (b), (c) and (d) of the figure denote
cases A, B, C and D, as described in the main text.

However, ifM0 < (1 − c∗/c0)/α, then the intersection with the line L occurs first
(case C, illustrated in Figure 5c): recall that the line L corresponds toC = c∗ and to
a switch in the value of λ. Beyond this intersection, if the solution were to lie below
the line L, then the solution would have dP/dM > 0, while if it were above L, it
would satisfy P −M − log(1 −M) = constant. Each of these solutions drives the
trajectory towards L, and thus the remainder of the solution must be given simply
by the line L itself (Figure 5c). Note that in cases C and D, the trajectory reaches
theM-axis at a value ofM that is < 1 (shown below).

The remaining case to consider (case B) is when H′(ψ) < −c0αγ/c∗. Then
the curve P = H(M) enters the region C > c∗ asM increases fromM = ψ , and
is thus not a possible trajectory. In this case, the trajectory again lies along the line
L (Figure 5b), since solutions on either side of the line would drive the solution
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towards L. Whenever this case occurs, the line L intersects the M axis at a value
ofM > 1 (shown below), and thus the trajectory terminates atM = 1 with P > 0.
This corresponds to nutrient supply within the tumour being sufficient to maintain
a mixture of proliferating and quiescent cells.

The distinctions between these four cases can easily be made explicit in terms
of parameters. The arguments above show that the conditions for the four possible
solution forms are as follows:

Case A: ψ > 1

Case B: ψ < 1 and H′(ψ) < −c0αγ/c∗

Case C: ψ < 1 and H′(ψ) > −c0αγ/c∗ and 1 − c∗/c0 > α
or H( 1−c∗/c0

α
) < 0

Case D: ψ < 1 and H′(ψ) > −c0αγ/c∗ and 1 − c∗/c0 < α
and H( 1−c∗/c0

α
) > 0 .

In distinguishing between cases C and D, the possibility that (1− c∗/c0) > α must
be treated separately because H(M) is only defined for M < 1. Straightforward
algebraic manipulation shows that the above conditions simplify to the following:

Case A: α < 1 − c∗/c0 − c∗/(c0γ )
Case B: α ∈ (1 − c∗/c0 − c∗/(c0γ ), 1 − c∗/c0)
Case C: α ∈ (1 − c∗/c0, αcrit )
Case D: α > αcrit

where αcrit is given by

c0αcrit
[
c0γαcrit − γ (c0 − c∗)+ c∗] = c∗(c0 − c∗)

1 − exp{−(1 − c∗/c0)/αcrit } . (9)

We show in the Appendix that this equation has a unique positive solution for αcrit .
Note that the value of αcrit is always greater than (1 − c∗/c0), but can be greater
than 1 (for very small c∗ and γ ); this would mean that case D does not arise. Note
also that the critical value 1 − c∗/c0 − c∗/(c0γ ) can be positive or negative. The
condition α > 1 − c∗/c0 is exactly the condition that the line L intersects the
M-axis at a value of M that is less than 1, so that the trajectory terminates with
P = 0 in cases C and D, but with P > 0 in case B.

As discussed in §3.2, the solutions for Q and N can easily be deduced from
those for P andM . Since we require h(c) < f (c), we must have h(c) ≡ 0 for all
c ≥ c∗∗, a critical value that is less than c∗. Thus if theP–M solution impliesC ≥ c∗
(cases A and B), the cells never enter necrosis. In case C, some cells may become
necrotic, depending on c∗∗, but since C(ζ = +∞) = c∗, there is no necrotic core,
but rather a core of quiescent cells that may also include some necrotic cells. Only
in case D can a necrotic core develop, provided c∗∗ > C(ζ = +∞) = c0(1 − α).
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The solutions for P , Q and N as a function of z in the four cases are illus-
trated in Figure 6. If α is sufficiently small, nutrient supply within the tumour is
high enough to maintain a proliferating cell population (cases A and B), with no
cells entering quiescence if α is very small (case A). If α is large enough that a
proliferating population cannot be sustained, but is less than αcrit , then the solution

Fig. 6. An illustration of the travelling wave solution forms for P , Q and N in the four
cases A–D, illustrated in parts (a)–(d) of the figure. The solutions are plotted as a function
of z = x − at rather than ζ for ease of interpretation; recall that the calculations in §3.2
and §3.3 are done using ζ = −z/a as independent variable. (The wave speed a = 2 in this
case). In (a), the tumour cells are all proliferating due to high nutrient input from underlying
tissue. As this input is reduced, some (b) and then all (c) of the cells enter quiescence. Finally,
when nutrient input from underlying tissue is low, the quiescent cells enter necrosis, and the
solution corresponds to the well-known structure of bands of proliferating and quiescent
cells around a necrotic core. There are two possible variations on the qualitative forms of
the solutions illustrated. In case C, some of the quiescent cells may enter necrosis, giving a
core containing a mixture of quiescent and necrotic cells. Secondly, in case D, the necrotic
core only develops if α > 1− c∗∗/c0; otherwise, the behaviour is as in case C. The solutions
plotted are obtained by numerical solution of the odes (6), with g(c) ≡ 1 and f (c) defined
by (7); Q and N calculated using Q = M − P − N and dN/dζ = h(C) · (M − N − P).
The dashed line is at the level zero in every plot: when it is not visible, this indicates that
the solution is identically zero. The limits on the P ,Q and N axes are −0.1 and 1.1 in each
case, and the z-interval plotted is −9 < z < 9. The parameter values are γ = 2.5, c0 = 1
and c∗ = 0.6, which imply αcrit ≈ 0.507, with α having the value (a) 0.1, (b) 0.3, (c) 0.45,
(d) 0.9. The function h(c) is a step function, with h(c) = 0 for c > 0.55 and h(c) = 0.9 for
c < 0.55: thus c∗∗ = 0.55.
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consists of a rim of proliferating cells ahead of a core of quiescent cells (case C,
and case D with α < 1 − c∗∗/c0). Finally, in case D (α > αcrit ) with α also above
1 − c∗∗/c0, the solution has the characteristic form of a proliferating rim, a band
of quiescent cells, and a necrotic core.

Figure 7 shows the comparison between the analytical structure described
above, and numerical solutions of the reduced model (3), for g(c) ≡ 1, but with
f (c) a switching function that is smooth but steep. Comparison with Figure 5 shows
that the analytical form we have derived for step function f (.) provides a good ap-
proximation to this case. Our analysis can be used to predict the dependence on
parameter values of key aspects of the model solution, as follows.

Fig. 7. Comparison between the analytical solution form derived in the main text for step
function f (.), and numerical solution of (3) for smooth f (.). The solid line (——) denotes
the numerical solution, calculated with numerical details and end conditions as described in
the legend to Figure 3. The dotted line (• • •) denotes the curve P = H(M), and the
dashed line (- - - - - - -) denotes the line L. The crosses (∗) denote the line P = M . The
parameter values are γ = 2, c0 = 1 and c∗ = 0.5, which imply αcrit ≈ 0.615, with α having
the value (a) 0.15, (b) 0.9, (c) 0.55, (d) 0.4. The function f (c) = 1

2 [1 − tanh(100c − 50)],
with g(c) ≡ 1 and h(c) = 1

2f (c). Note that since f (c) is non-zero for all finite c in this
case, the solution will eventually develop a fully necrotic core (see §3.2). However, because
f (.) is very close to a step function, this is a long way behind the tumour edge, and has not
begun to develop in the solution illustrated here.
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The condition for the tumour to develop a rim of proliferating cells is that case C
or D applies, i.e.

α > 1 − c∗/c0 . (10)

The condition for the tumour to develop a proliferating rim, a quiescent band and
a necrotic core is that case D applies, with α > 1 − c∗∗, that is

α > max{αcrit , 1 − c∗∗/c0} . (11)

This is the structure familiar from work on multicellular spheroids in vitro.
When a proliferating rim develops, the maximum density of proliferating cells is

given by the value of P at which the line P = M intersects the line C = c∗,
namely

Pmax = γ (c0 − c∗)
c0αγ + c∗ . (12)

This is a decreasing function of c∗, implying that the maximum density of pro-
liferating cells goes down as the nutrient level required to switch on quiescence
increases, as expected intuitively. Also, the maximum density increases with
γ = k1/k2, since higher values of this ratio imply less nutrient uptake at given
cell densities.

When a quiescent and/or necrotic core develops, the density of cells in this core is
given byM(−∞). If case D applies, thenM(−∞) is the solution of H(M) = 0,
so that

M(−∞)+ log [1 −M(−∞)] = log

(
1 − γ (c0 − c∗)

c0αγ + c∗
)
. (13)

However, if case C applies, then M(−∞) = (1 − c∗/c0)/α. Thus M(−∞)
decreases with c∗, and increases with γ from the constant level (1 − c∗/c0)/α,
which applies for γ < γcrit .

The width of the proliferating rim cannot be determined directly from the solu-
tion in the P–M plane: this solution must be substituted back into (6a), giving
a first order ode for P(z). The required integration cannot be done exactly for
the part of the solution in which λ = 1, which is the region of the solution
behind the peak in proliferating cells. However, numerical solutions show that
the pulse wave of P is approximately symmetric about its peak, and thus an
approximation to the width of this pulse can be found by considering the region
in which λ = 0. In this region, P ≡ M and C > c∗, so that (6a) implies

dP/dζ = P(1 − P) ⇒ P = 1/
(
1 + ke−ζ ) = 1/

(
1 + ke+z/a) (14)

where k > 0 is an arbitrary constant of integration, corresponding to a transla-
tion in the wave. We take, as a simple measure of the width of the pulse wave,
the distance between the point at whichP has its maximum valuePmax (defined
in (12)) and the point with P = 1

2Pmax ; this is easily calculated using (14) as

)z = a log

(
1 + 1

1 − Pmax

)
= a log

(
(2 + γ )c∗ − (1 − 2α)γ c0
(1 + γ )c∗ − (1 − α)γ c0

)
. (15)

Note in particular that the proliferating rim becomes wider as the cell density
within it increases.
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4. Discussion

The work presented in this paper makes three main contributions to the mathe-
matical modelling of avascular tumour growth. Firstly, we have demonstrated the
development of the characteristic layered structure of proliferating rim, quiescent
band and necrotic core, within a pde model encorporating cell movement. To the
best of our knowledge, this is the first prediction of this structure within a model
formulated in terms of continuous cell densities rather than discrete bands of the
cell types, separated by moving boundaries calculated via oxygen concentration
thresholds imposed a priori (as in Greenspan, 1972). Experimental evidence indi-
cates gradual rather than sharp transitions between the layers (Hystad & Rofstad,
1994), suggesting that our formulation may be more realistic.

Our second main contribution is the use of a new movement term incorporating
contact inhibition of migration. Within the context of the model (1,2), this term
is not very important: the analysis in §3.2 and §3.3 shows that the development
of the layered structure in our model solutions is essentially a function of the cell
kinetics, depending on rates of proliferation, quiescence and necrosis as a function
of nutrient level. However, the term becomes very significant when one extends the
model to include the untransformed cells from surrounding tissue, whose density
we denote by s(x, t). Here we have in mind a tumour growing within an epithelium,
with its growth inhibited by the presence of surrounding epithelial cells. These cells
will themselves be motile, and will divide at a rate that depends on nutrient level,
but that is intrinsically lower than that of proliferating tumour cells, by a factor
+ < 1 say. Incorporating this new cell population gives the enlarged model

∂p

∂t
= ∂

∂x

[
p

p + q + s
∂

∂x
(p + q + s)

]
+ g(c)p(1−p−q−n−s)−f (c)p (16a)

∂q

∂t
= ∂

∂x

[
q

p + q + s
∂

∂x
(p + q + s)

]
+ f (c)p − h(c)q (16b)

∂n

∂t
= h(c)q (16c)

∂s

∂t
= ∂

∂x

[
s

p + q + s
∂

∂x
(p + q + s)

]
+ g(c)s(+ − p − q − n− s) (16d)

∂c

∂t
= Dc ∂

2c

∂x2
+ k1c0 [1 − α(p + q + n+ s)] − k1c − k2pc − k3sc . (16e)

Numerical simulations of this enlarged model show qualitatively similar behaviour
to that found in (1,2) (Figure 8), with the surrounding tissue cells receding as the
competing tumour cell population grows. However, the speed of tumour growth is
significantly reduced by the inclusion of the surrounding cell population, as one
expects intuitively, and this depends fundamentally on the use of the new movement
term reflecting contact inhibition of migration. Calculation of the rate of tumour
growth in this enlarged model is rather complex, and is discussed by Sherratt (2000)
for a caricature model of the competition between the tumour and surrounding
tissue.
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Fig. 8. Numerical solutions of the enlarged model equations (16), illustrating an avascular
tumour growing within an epithelium. The solution has the form of an advancing pulse of
proliferating cells (p), with a band of quiescent cells (q) and a necrotic core (n) behind this;
in parallel with this is a receding wave of surrounding tissue cells (s) and also of nutrient
(c). The solutions are plotted as a function of space at times t = 0, 7.5, 15, . . . , 52.5, with
arrows indicating increasing time. Note that the solution has the same basic structure as
that illustrated in Figure 2a, but that the speed of tumour growth is significantly reduced by
the presence of surrounding tissue. The parameter values are as in Figure 2a, with k3 = 1
and + = 0.4. The initial conditions were q ≡ n ≡ 0, c ≡ 1, p = 0.01 exp(−0.1x),
s = + · [1 − 0.01 exp(−0.1x)], and the boundary conditions used at x = 0 and x = 265
were px = qx = cx = sx = 0 (no boundary conditions are required for n). At x = 0, this
represents symmetry, but as in Figures 2 and 3, the boundary condition at x = 265 is an
artificial one, required because we cannot solve numerically on a semi-infinite domain.

The third main contribution of this work is the inclusion in the model of a
term for nutrient supply from underlying tissue. Such an effect is clearly absent
for multicellular spheroids grown in vitro, but is expected in the early stages of
avascular tumour growth in vivo. Our results show that tumour structure can be
significantly altered by this effect, to an extent that depends on parameters in a way
that we have been able to quantify. Our results argue strongly for the development
of a two-dimensional analogue of the multicellular spheroid assay as a key step in
bridging the gap between in vitro experiments and tumour growth in vivo.

The results of our modelling work could be tested comprehensively using an
approximately two-dimensional equivalent of the multicellular spheroid system, in
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which a sheet of tumour cells are grown on an appropriate substrate. Many model
parameters are functions of the tumour cell line and cannot easily be altered, but
crucially nutrient supply could easily be regulated, simply by altering the compo-
sition of the surrouding medium; in the model, this corresponds to varying c0. For
an experimental system of this kind, (10)–(15) are semi-quantitative predictions;
they are not exact because of the assumption made in (7) on the form of f (c). In
particular, the model predicts that at high c0, proliferating cells would be present
throughout the tumour, with a proliferating rim developing at the critical value of c0
implied by (10). A necrotic core would then develop as c0 is reduced further until
(11) is satisfied. The experimental system would also be able to test the predicted
relationship, given in (15), between the width of the proliferating rim and the cell
density within it. These experimental tests would provide an effective test of both
the qualitative assumptions and quantitative details in the model.

Appendix

In this short Appendix, we show that equation (9) has a unique positive solution
for αcrit . This can be seen most easily by dividing through by α2

crit and writing
y ≡ (1 − c∗)/αcrit , giving the equation

γ (1 − c∗)
c∗

[
1 −

(
1 − c∗

γ (1 − c∗)
)
y

]
= -(y) (A.1)

where -(y) = y2 (1 − e−y)−1
.

The left hand side of (A.1) is a linear function of y, but can be increasing or decreas-
ing depending on parameter values. Explicit differentiation shows that -′(y) > 0
for y > 0, with

-′′(y) = (
1 − e−y)−1

[
2 − 4ωy + ωy2 + 2ω2y2

]
where ω ≡ (1 − e−y)−1e−y

= (
1 − e−y)−1

[
(2ω2 + ω)

{
y − 2

2ω + 1

}2

+ 2

2ω + 1

]

> 0 for all y > 0 .

Therefore,-(y) is strictly increasing with strictly positive second derivative; more-
over, -(0) = 0 while the left hand side of (A.1) is strictly positive at y = 0.
Therefore (A.1) has unique positive solution.
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Univ. Bull. Math., 1, 1–25 (1937)
Kunz-Schughart, L. A., Kreutz, M., Knuechel, R.: Multicellular spheroids: a three-dimen-
sional in vitro culture system to study tumour biology, Int. J. Exp. Path., 79, 1–23 (1998)
McElwain, D. L. S. & Pettet, G. J.: Cell migration in multicell spheroids: swimming against
the tide, Bull. Math. Biol., 55, 655–674 (1993)
Mueller-Klieser, W.: Method for determination of oxygen consumption rates and diffusion
coefficients in multicellular spheroids, Biophys. J., 46, 343–348 (1984)
Mueller-Klieser, W., Freyer, J. P., Sutherland, R. M.: Influence of glucose and oxygen supply
conditions on the oxygenation of multicellular spheroids, Br. J. Cancer., 53, 345–353 (1986)
Nederman, T., Norling, B., Glimelius, B., Carlsson, J., Brunk, U.: Demonstration of an
extracellular matrix in multicellular tumour spheroids, Cancer Res., 44, 3090–3097 (1984)
Paulus, W., Huettner, C., Tonn, J. C.: Collagens, integrins and the mesenchymal drift in
glioblastomas: a comparison of biopsy specimens, spheroid and early monolayer cultures,
Int. J. Cancer., 58, 841–846 (1994)
Please, C. P., Pettet, G. J., McElwain, D. L. S.: Avascular tumour dynamics and necrosis,
Math. Models Methods Appl. Sci., 9, 569–580 (1999)
Schwachofer, J. H. M., Acker, H., Crooijmans, R. P. M. A., Vangasteren, J. J. M., Holtermann,
G., Hoogenhout, J., Jerusalem, C. R., Kal, H. B.: Oxygen tensions in two human tumor cell
lines grown and irradiated as multicellular spheroids, Anticancer Res., 11, 273–279 (1991)
Sherratt, J. A.: Wave front propagation in a competition equation with a new motility term
modelling contact inhibition between cell populations, Proc. R. Soc. Lond., A 456, 2365–
2386 (2000)
Sherratt, J. A., Murray, J. D.: Models of epidermal wound healing, Proc. R. Soc. Lond., B
241, 29–36 (1990)
Shymko, R. M., Glass, L.: Cellular and geometric control of tissue growth and mitotic
instability, J. Theor. Biol., 63, 355–374 (1976)
Sutherland, R. M., McCredie, J. A., Inch, W. R.: Growth of multicell spheroids in tissue
culture as a model of nodular carcinomas, J. Natl. Cancer Inst., 46, 113–120 (1971)
Sutherland, R. M., Sordat, B., Bamat, J., Gabbert, H., Bourrat, B., Mueller-Klieser, W.: Ox-
ygenation and differentiation in multicellular spheroids of human colon carcinoma, Cancer
Res., 46, 5320–5329 (1986)
Sutherland, R. M.: Cell and environment interactions in tumour microregions: the multicell
spheroid model, Science, 240, 177–184 (1988)
Thomlinson, R. H., Gray, L. H.: Histological structure of some human lung cancers and the
possible implications for radiotherapy, Brit. J. Cancer., 9, 539–549 (1955)
Ward, J. P., King, J. R.: Mathematical modelling of avascular tumour growth, IMA J. Math.
Appl. Med. Biol., 14, 39–70 (1997)
Ward, J. P., King, J. R.: Mathematical modelling of avascular tumour growth, IMA J. Math.
Appl. Med. Biol., 16, 171–211 (1999)
Weinberg, R. A.: Tumour suppressor genes, Science, 254, 1138–1146 (1991)


