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Linear di¬usion is an established model for spatial spread in biological systems,
including movement of cell populations. However, for interacting, closely packed cell
populations, simple di¬usion is inappropriate, because di¬erent cell populations will
not move through one another: rather, a cell will stop moving when it encounters
another cell. In this paper, I introduce a nonlinear di¬usion term that re®ects this
phenomenon, known as contact inhibition of migration. I study this term in the con-
text of two competing cell populations, one of which has a proliferative advantage
over the other; this is motivated by the very early stages of solid tumour growth. I
focus in particular on travelling-wave solutions, corresponding to moving interfaces
between the two cell populations. Numerical simulations indicate that there are wave-
front solutions for wave speeds above a critical minimum value, and I present linear
analysis that explains the selection of wave speeds by initial conditions. I obtain an
approximation to the shape of these waves for high speeds, and show that the min-
imum speed arises via quite new behaviour in the travelling-wave equations, with
the proportion of cells of each type approaching a step function as the wave speed
decreases towards the minimum. Exploiting this structure, I use singular perturba-
tion theory to investigate the wave shape for speeds close to the minimum.

Keywords: travelling wave; competition; reaction{di ® usion; contact inhibition

1. Introduction

Di¬usion has a long history as a model for spatial spread in biological systems. In
ecology it was  rst used by Skellam (1951), and has subsequently become widespread
in work on both invasion and patterning (reviewed in Okubo (1980) and Murray
(1989)). For motile cell populations, di¬usion has been used very successfully for
ca. 30 years (see, for example, Keller & Segel 1971), with applications including cap-
illary network growth (Chaplain & Stuart 1993), developmental pattern formation
(Murray & Oster 1984), and wound healing (Sherratt & Murray 1990). In a number
of more recent models, di¬usion terms have been included for each of two or more cell
populations (Sherratt & Nowak 1992; Pettet et al . 1996; Ga¬ney et al . 1999). This
is entirely appropriate for cell populations in which the cells are widely separated;
a natural example is  broblasts in the dermal layer of the skin, which are typically
separated by about ten cell diameters. However, di¬usion is qualitatively inaccurate

Proc. R. Soc. Lond. A (2000) 456, 2365{2386

2365

c® 2000 The Royal Society



2366 J. A. Sherratt

for close-packed cell populations such as epithelia, where one cell is in direct contact
with its neighbour.

For close-packed cells, a reaction{di¬usion equation proves to be a good model
for a single population (Sherratt & Murray 1990; Chaplain & Stuart 1991; H�ofer
et al . 1995), but for interacting populations, di¬usion terms would imply that the
populations are able to mix completely, with the movement of one cell type una¬ected
by the presence of cells of the other type. The reality is exactly the opposite: cell
movement is typically halted by contact with another cell. This phenomenon is known
as `contact inhibition of migration’, and is very well documented in many types of
cells (see, for example, Abercrombie 1970; Huttenlocher et al . 1998); however, to my
knowledge, no mathematical model incorporating contact inhibition has previously
been described. In this paper, I propose such a model via a simple extension of
linear di¬usion. I illustrate the model by considering the case of two competing cell
populations, a problem motivated by the very early stages of tumour formation.
In particular I study travelling-wave solutions of the model, demonstrating unusual
wavefront behaviour.

Interacting cell populations arise in many biological situations; I take the early
growth of solid tumours as a simple example. The development of a fully malig-
nant tumour is a complex, multi-stage process with many possible developmental
sequences. However, in the vast majority of cases the initiating step is a mutation,
causing one cell in a tissue to divide more rapidly than its peers. This rapid cell
division gives rise to a small benign tumour that usually poses no health problems
in itself, but may progress towards malignancy as a result of further mutations.
Benign tumour growth itself occurs through well-known stages, with the develop-
ment of a `necrotic’ core of dead cells within a proliferating cellular rim, possibly
surrounded by a `capsule’ of dense protein  bres; these processes have been mod-
elled by a number of authors (see, for example, Ward & King 1997; Byrne & Chaplain
1997; Perumpanani et al . 1997). Preceding these stages is the simple initial competi-
tion process between tumour cells and surrounding normal tissue cells. This has been
modelled by a number of authors using both ordinary di¬erential equation (ODE)
(Wheldon 1975; Michelson & Leith 1991; Gatenby 1995, 1996) and partial di¬eren-
tial equation (PDE) (Sherratt 1993; Gatenby & Gawlinski 1996) models, showing
how competition parameters a¬ect initial tumour development. However, a detailed
study of this process requires a spatial movement term that re®ects contact inhibi-
tion between cells from the two populations. This is because the vast majority of
cancers are carcinomas, arising in the surface layers of tissues (epithelia), where cells
are closely packed.

The basis of a di¬usion model for the spatial spread of a cell population is that cells
tend to move in a direction in which they have a free edge, so that the overall cell ®ux
can reasonably be taken to be proportional to the negative gradient of cell density.
There is no quantitative basis for this movement term, but it has been applied to
a single-cell population with great success in a variety of contexts. For competing
cell populations, with densities u(r; t) and v(r; t) say, the overall cell ®ux (of both
populations) can similarly be taken as ¡ r(u + v). Of this ®ux, a fraction u=(u + v)
will be cells from the u population, so that the ®ux of cells from this population
is simply ¡ [u=(u + v)]r(u + v), with the ®ux of cells from the v population given
similarly. These are simple expressions, but, crucially, they re®ect the fact that the
movement of one population is inhibited by the presence of the other. Note that the
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di¬erence between this new ®ux term and that for linear di¬usion is
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Thus, the two terms are equivalent when the ratio v=u is constant, and also the
di¬erence tends to zero as u and v become small. Both of these properties con rm
intuitive expectations.

I will consider these new terms for cell ®ux in the context of the following simple
model for initial tumour growth:
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+ v( ® ¡ u ¡ v): (1.1 b)

Here u and v denote densities of normal and tumour cell populations respectively,
which have been rescaled so that u ² 1 in normal tissue. The term ¡ (u + v)
in the kinetics represents the decrease in the cell division rate due to crowding,
and the constant ® (greater than 1) represents the proliferative advantage of the
tumour cell population. Here and throughout the paper I restrict attention to a
one-dimensional spatial domain. The kinetics of (1.1) are exactly of the `Lotka{
Volterra’ competition type (Lotka 1925; Volterra 1926), which have been very well
studied in ecological applications (see Murray (1989) for a review). They are cer-
tainly not a quantitatively accurate representation of tumour cell kinetics, and the
importance of (1.1) is as a generic model of the underlying competition process, pro-
viding a simple context in which to investigate the implications of my new movement
term.

The remainder of this paper is organized in the following manner. In x 2, I discuss
numerical simulation of (1.1) and present linear analysis suggesting how the wave
speed depends on initial data. In x 3, I consider the shape of rapidly moving waves.
In x 4, I show that there is a minimum possible speed, and,  nally, in x 5 I discuss
the shape of waves with speeds close to this minimum.

2. Wavefront solutions

A simple illustration of contact inhibition e¬ects in (1.1) is provided by the evolution
of two initially separated populations of the two cell types in the limiting case ® =
1; in this case the two cell populations have identical properties. Mathematically,
we formulate this problem by considering an in nite spatial domain with initial
conditions

u =
1

1 + expf¡ ¹ u(x ¡ Xu)g
; v =

®

1 + expf+¹ v(x ¡ Xv)g
(2.1)

( ¹ u; ¹ v > 0); provided Xu is signi cantly greater than Xv, this gives two separated
populations. Note that step function initial conditions, which are commonly used in
cell biology models, are not permitted here, since the equations (1.1) are unde ned
when u = v = 0: thus, ¹ u and ¹ v can be arbitrarily large, but the limiting case of
both being in nite is not permitted. This restriction is not a signi cant one since
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the use of a di¬usion term for cell movement implies that the density can only be
zero instantaneously away from a boundary; however, care is required in numerical
solutions when u and v are both small.

A simulation of (1.1) with initial conditions (2.1) and with ® = 1 is illustrated
in  gure 1a. The two initially separated populations move towards one another,
with wavefronts of u and v moving in the negative and positive x-directions, respec-
tively. However, as the fronts approach one another, contact inhibition takes e¬ect
and the movement slows, until the fronts  nally come to a halt at a steady state
in which u + v ² 1, with the two cell populations immediately adjacent but only
mixed at their peripheries. This is exactly what happens when actual cell populations
move together, and is quite di¬erent from solution of the corresponding equations
with linear di¬usion as the motility term for u and v, in which case the two pop-
ulations would continue to mix, reaching equilibrium only when u ² v ² 1

2
. Note

that the steady-state pro le with u + v ² 1 depends on the details of the previous
spatiotemporal evolution, since any solution with u + v ² 1 is an equilibrium (when
® = 1). Calculation of this pro le is, thus, a challenging problem that I have not
attempted.

When ® > 1, the initial behaviour is very similar to the ® = 1 case, with fronts
of u and v moving towards one another. However, as they come together, the v
wave continues to advance, but more slowly, while the u wave changes direction
and moves in parallel with that of v ( gure 1b). This corresponds to an invasion of
the u population by v, and is exactly the behaviour seen in the very early stages
of a carcinoma: the tumour cells, which are dividing more rapidly as a result of a
mutation, develop as a dense ball of cells that replaces surrounding tissue.

The remainder of this paper is concerned with the speed and shape of these wave-
fronts in which the v population advances with the u population receding in parallel.
Numerical experimentation indicates that, with ®  xed (greater than 1), there is a
family of such solutions, with the wave speed depending on ¹ v (but independent of
¹ u). Such a dependence of wave speed on the decay rate of initial data has been
known for many years in scalar reaction{di¬usion equations such as the Fisher equa-
tion (Rothe 1978), and has been demonstrated in a number of reaction{di¬usion
systems (Freidlin 1983; Dale et al . 1997; Marchant et al . 2000). To study it in this
case, I look for solutions that are functions of the travelling-wave variable z = x ¡ ct,
with u(x; t) = U(z) and v(x; t) = V (z). It is most convenient to formulate the equa-
tions in terms of V (z) and N (z) ² U (z) + V (z) ¡ 1, which gives

N 00 + cN 0 ¡ N (1 + N ) + ( ® ¡ 1)V = 0; (2.2 a)
µ³

V

1 + N

´
N 0

¶0
+ cV 0 + V ( ® ¡ 1 ¡ N) = 0; (2.2 b)

where a prime denotes d=dz. For the wavefronts I am considering, U ! 0 and V ! ®
behind the wave, while ahead of the wave, V ! 0 and U ! 1, so that N ! 0.
Linearizing about this latter equilibrium gives

N 00 + cN 0 ¡ N + ( ® ¡ 1)V = 0; (2.3 a)

cV 0 + ( ® ¡ 1)V = 0: (2.3 b)
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Figure 1. Typical solutions of the model equations (1.1) subject to (2.1). The two cell populations
u (||) and v ({ { {) are initially separated, and move towards one another. The movement
slows as the populations come together, because of contact inhibition, and when ® = 1 (a),
the wavefronts become stationary, with u + v ² 1. However, when ® > 1, the wavefront for v
continues to advance, in parallel with a receding wave of u. This corresponds to the movement
of adjacent cell populations, and a study of this movement is the main focus of the paper. The
parameter values are ¹ u = ¹ v = 0:1, Xu = 250, Xv = 30 and (a) ® = 1, (b) ® = 2. The times
indicated apply to both (a) and (b). The equations were solved numerically by discretizing in
space to give a system of coupled ODEs, which were solved using a standard sti® di® erential
equation solver (Brown et al . 1989); I found that the most e± cient scheme is given by writing
the movement term as [(uxx +vxx )u=(u+v)]+[(ux +vx )fu=(u+v)gx ] and calculating derivatives
using central di® erence approximations.

Thus, to leading order ahead of the wave,

V = V0 exp[ ¡ z (® ¡ 1)=c]; (2.4 a)

N =
c2( ® ¡ 1)

c2 ® ¡ ( ® ¡ 1)2
exp[ ¡ z ( ® ¡ 1)=c] + N0 exp[ ¡ zfc +

p
c2 + 4g=2]; (2.4 b)

where V0 and N0 are constants.
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Figure 2. An illustration of the variation of wave speed c with initial decay rate ¹ v in solutions of
(1.1) subject to (2.1). The points show speeds calculated from numerical solutions of the PDEs,
as discussed in the legend to ¯gure 1, and the solid line is a plot of c = ( ® ¡ 1)=¹ v , as predicted
by linear analysis. The comparison is extremely good except for high values of ¹ v ; the behaviour
for such values is discussed in x x 4 and 5. The case illustrated is for ® = 2.

Based on experience with other wave selection problems, one anticipates that the
wave speed will be determined by the condition that the decay rate ahead of the v
wave will be the same as that of the initial data, that is

c = ( ® ¡ 1)=¹ v: (2.5)

This is con rmed by numerical solutions for a wide range of values of ® and ¹ v

( gure 2), except for particularly high values of ¹ v, which will be discussed later.
The form of N ahead of the wave needs more careful consideration, however. The

 rst term in (2.4 b) dominates the second for large positive z provided

( ® ¡ 1)=c > 1
2
[c +

p
c2 + 4];

and, when ® > 1, this simpli es to c > ( ® ¡ 1)=
p

® . Using (2.5), this corresponds
to ¹ v <

p
® . Thus, waves moving faster than ( ® ¡ 1)=

p
® have V and N decaying

in parallel ahead of the wave, so that U approaches 1, from below, at the same
rate as V approaches 0; this is again con rmed in numerical solutions. However,
for slower waves, V decays more rapidly than N . Straightforward calculation of the
eigenvectors of (2.3) at N = V = 0 shows that N approaches zero from above. Since
V ½ N = U + V ¡ 1, it follows that the wave shape has a qualitative change as the
speed decreases through ( ® ¡ 1)=

p
® , with U tending to 1 from above ahead of the

slower waves. The form of wavefronts for three di¬erent speeds is illustrated by the
numerical simulations in  gure 3.

3. Wave shape for high wave speeds

For waves moving at high speeds, the approximate form of the wave shape can be
determined by adopting an approach developed by Canosa (1973) for the Fisher
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Figure 3. The form of wavefront solutions for u (||) and v ({ { {), with ® = 2 and with wave
speeds (a) c = 5, (b) c = 1:25, (c) c = 0:5. As c decreases, the wave becomes steeper. In (a)
and (b), c > ( ® ¡ 1)=

p
® , so that the u wave is monotonic, but, in (c), u increases above 1 and

has a local maximum. The wave pro¯les were determined by numerical solutions of the model
equations (1.1) subject to (2.1), as described in the legend to ¯gure 1, with (a) ¹ u = ¹ v = 0:1;
(b) ¹ u = ¹ v = 0:8; (c) ¹ u = ¹ v = 2:0.

equation. This involves rescaling the travelling-wave coordinate by writing ± = z=c,
in terms of which the travelling-wave equations (2.2) are

1

c2

d2N

d ± 2
+

dN

d ±
¡ N (1 + N ) + ( ® ¡ 1)V = 0; (3.1 a)

1

c2

d

d ±

µ³
V

1 + N

´
dN

d ±

¶
+

dV

d ±
+ V ( ® ¡ 1 ¡ N ) = 0: (3.1 b)

Canosa’s (1973) approach is to look for solutions as a regular perturbation expansion
in 1=c2. This is appropriate even though the 1=c2 factors multiply the highest deriva-
tives, because the kinetic terms are zero at both boundaries (§1). Following this
approach, I obtain a leading-order approximation by neglecting the terms containing
factors of 1=c, giving two coupled  rst-order equations. Remarkably, these can be
solved exactly by observing that

d

d ±

³
V

N

´
= ( ® ¡ 1)

³
V

N

2́

¡ ®

³
V

N

´
: (3.2)
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Solving (3.2) by separation of variables gives

V

N
=

®

® ¡ 1 + A exp( ® ± )
;

where A >0 is a constant of integration. Substituting this back into (3.1) with the
(1=c2) terms neglected then gives

dV

d ±
= V

µ
V

V

N
( ± ) ¡ ® + 1

¶
:

This equation cannot be solved directly, but substituting w = ( ® ¡ 1) ± + log V gives
a separable equation for w( ± ). This leads to the solutions

V = ® [B expf( ® ¡ 1) ± g ¡ A expf® ± g + 1]¡1;

N = [ ® ¡ 1 + A expf® ± g][B expf( ® ¡ 1) ± g ¡ A expf® ± g + 1]¡1:

Since A >0, the only case giving a positive solution for N is A = 0. Thus, the ratio
V=N is constant, and the leading-order wavefront solutions of (3.1) when c is large
are

N (z) =
® ¡ 1

1 + B expfz( ® ¡ 1)=cg
and V (z) =

®

1 + B expfz( ® ¡ 1)=cg
(3.3 a)

) U(z) =
1

1 + B expf¡ z( ® ¡ 1)=cg
: (3.3 b)

Here, the constant B is arbitrary and corresponds to a translation in the wave co-
ordinate z. Comparison of this solution with numerical simulations of (1.1) subject
to (2.1) shows very good agreement provided ¹ v is signi cantly less than ( ® ¡ 1), so
that the wave speed c is signi cantly greater than 1 (illustrated in  gure 4).

Higher-order corrections to this approximate wave form can be calculated in a
similar manner, but the leading-order form is su¯ cient to give a good qualitative
understanding of the solution. In particular, it shows that both U and V=® depend
on parameters and on z only through the grouping z( ® ¡ 1)=c.

4. Minimum wave speed

When the wave speed c is large, the travelling-wave solutions of (1.1) have strong
similarities with those of standard reaction{di¬usion equations. Indeed, the leading-
order solution (3.3) obtained above would be the same if the motility terms in (1.1)
were replaced by linear di¬usion. However, as c is decreased, new features emerge.
I have already discussed the appearance of a local maximum in the U wave, which
appears as c is decreased through ( ® ¡ 1)=

p
® , due to the di¬erent decay rates of

V and N ahead of the wave. This corresponds to ¹ v , the decay rate of v in initial
conditions (2.1), being increased through

p
® . As ¹ v is increased further, the speed of

the resulting wavefronts decreases, but eventually plateaus (see  gure 2), suggesting
that there may be a minimum possible wave speed. The existence of such a minimum
speed is in itself a very familiar one in reaction{di¬usion equations, having been
established in the 1930s for the Fisher equation (Fisher 1937; Kolmogoro¬ et al .
1937), and more recently for some systems of equations (see, for example, Dunbar
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Figure 4. A comparison of the leading-order approximation (3.3) of the travelling-wave form ( )̄
with a wave calculated by numerical solution of (1.1) subject to (2.1) (||). The comparison
is extremely good provided that the wave speed c is signi¯cantly greater than 1, as in this case
(c = 10). The parameter values are ® = 3 and ¹ v = 0:2.

1984; Billingham & Needham 1991). However, in these cases the minimum speed
corresponds to a change from real to complex in the eigenvalues of the travelling-
wave ODEs at the equilibrium ahead of the wave; there is no such transition for
(2.2). I will show that, in fact, the minimum speed arises as a result of quite new
behaviour in the travelling-wave equations.

The key to understanding the minimum speed lies in the choice of travelling-wave
variables. Thus far, I have been working with V and N ² U +V ¡ 1. I now re-formulate
the equations in terms of N and Y ² V=(U + V ) ² V=(1 + N ). Substituting for V
in (2.2) and simplifying gives

N 00 + cN 0 + (1 + N )[( ® ¡ 1)Y ¡ N ] = 0; (4.1 a)

Y 0[c + N 0=(1 + N )] = ¡ ( ® ¡ 1)Y (1 ¡ Y ); (4.1 b)

recall that the prime denotes d=dz. Henceforth, I write « (z; c) ² ¡ N 0=(1 + N ) for
notational ease; « has the qualitative form illustrated in  gure 5.

Although the shape of N and, thus, the value of « m ax ² maxz « (z; c) do depend
on c, numerical evidence suggests that this dependence is relatively slight when c is
small, in keeping with the linear analysis discussed in x 2. Therefore, one anticipates
that as c is decreased, there will be a critical value at which c = « m ax, at which point
the equations (4.1) become singular. This suggests that the condition c = « m ax may
determine the minimum wave speed, and this is con rmed by plotting Y , calculated
from numerical simulations of the travelling-wave solutions, as ¹ v is increased. The
qualitative form of Y (z) is a monotonically decreasing transition from Y ( ¡ 1) = 1
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Figure 5. An illustration of the qualitative form of the expression « (z; c) ² ¡N 0 =(1 + N )
for a travelling-wave solution N(z).

to Y (+1) = 0. As ¹ v is increased, this transition becomes gradually steeper, until
is has the approximate form of a step function, exactly as one would expect from
(4.1 b) as c + « m ax approaches zero.

Having shown why there is a minimum speed for travelling waves, I now consider
its value, and in particular how this depends on the parameter ® . In the limiting case
as c tends to its minimum value, cm in say, Y (z) has the form of a step function; a
jump occurs, at z = 0 say, from Y = 1 (z < 0) to Y = 0 (z > 0). Therefore, to  nd
cm in , the equation

c = « (z = 0; c) ² ¡ N 0(z = 0)

1 + N (z = 0)
(4.2)

must be solved, with N (z) a solution of

N 00 + cN 0 = (1 + N )[N ¡ ( ® ¡ 1)Y ]; (4.3 a)

Y =

(
1; z < 0;

0; z > 0:
(4.3 b)

Here, the end conditions are

N ( ¡ 1) = ® ¡ 1; N (+1) = 0; (4.4 a)

with continuity and smoothness at z = 0:

N (z = 0¡) = N (z = 0 + ); N 0(z = 0¡) = N 0(z = 0+ ): (4.4 b)

For notational simplicity, I denote the common value of N (z = 0§ ) by N ¤ .
Solution of (4.2), (4.3), (4.4) for cm in is a di¯ cult problem, and I begin by discussing

numerical methods. The natural approach to numerical solution of (4.3) subject to
(4.4) would be to solve separately on z < 0 and z > 0, using a shooting method for
each. This is a feasible approach, but a laborious one, since it requires varying the
value of N (z = 0¡ ) = N (z = 0 + ) until the values of N 0(z = 0¡) and N 0(z = 0+ )
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given by the shooting method are the same. A more e¯ cient approach is possible
if one re-formulates the equations with N as independent variable: this is possible
since we anticipate that N monotonically decreases with z. The new equations are

dW

dN
= ¡ c +

(1 + N )[N ¡ ( ® ¡ 1)Y ]

W
; (4.5 a)

dz

dN
=

1

W
; (4.5 b)

where Y is as in (4.3 b) and W ² N 0. I solved these equations numerically as initial-
value problems, integrating with N increasing from N = "0 with Y ² 0, and with
N decreasing from ® ¡ 1 ¡ "0 with Y ² 1. Here, "0 is a small parameter whose
value can be successively decreased to give greater accuracy; the two initial values
of W are determined from the eigenvectors at the corresponding equilibria, and the
initial values of z are arbitrary. Once both initial-value problems have been solved,
a simple comparison of the solutions reveals the value of N at which W is the same
in the two solutions; this is straightforward, with N taken as dependent variable,
since there is then an evenly spaced grid of N -values in the numerical solution, and
linear interpolation between grid points is all that is required. The solution is then
obtained by translation by appropriate amounts in z in the two solutions, so that
the point of intersection is at z = 0. With an e¯ cient method of solving (4.3) subject
to (4.4), cm in can easily be found numerically by solving (4.2) using any standard
method for a nonlinear algebraic equation. A typical wave solution at c = cm in is
shown in  gure 6.

Exact analytical calculation of cm in would require an exact solution of (4.3), which
does not seem possible. However, a method of calculating an analytical approxima-
tion is suggested by a plot of the left- and right-hand sides of (4.2) against c, as
illustrated in  gure 7.

This reveals that « (z = 0; c) varies much more gradually with c than the left-
hand side c. Thus, one expects that a good approximation to cm in will be given by
« (z = 0; c = 0), which can be calculated exactly. Consider  rst (4.3 a) with Y ² 0
and c = 0,

N 00 = N (1 + N); (4.6)

which is subject to

N (+1) = 0: (4.7)

Multiplying (4.6) through by N 0 enables exact integration, and, with condition (4.7),
this gives

N 0 = ¡ N
q

1 + 2
3
N:

This can be solved by separation of variables, giving

N =
3

2

³µ
1 + A1e¡z

1 ¡ A1e¡z

¶2

¡ 1

´
; (4.8)

where A1 is a constant of integration. Similarly, one can solve (4.3 a) with Y ² 1
and c = 0, subject to N ( ¡ 1) = 0. In fact, a separate solution is not even required,
since substituting

N̂ = (N ¡ ® + 1)=® ; ẑ = ¡ z
p

® (4.9)
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Figure 6. An illustration of the travelling-wave solution at the critical minimum wave speed cm in .
The point z = 0 is illustrated by the vertical dashed line: Y (z) ² U=(U + V ) jumps from 1 to 0
at this point, with corresponding jumps in U and V . The solution for N is smooth at z = 0 but
with a discontinuity in its second derivative; « has a cusp at z = 0 with the maximum value c
(= cm in ). The solution is calculated by numerical solution of (4.3) subject to (4.4), as described
in the main text. The parameter ® is equal to 2.5; this implies cm in º 0:5863.

gives (4.6) and (4.7) to be solved for N̂ (ẑ). Thus, the solution for N (z) for z < 0 is

N = ® ¡ 1 + 3
2
®

³µ
1 + A2e+ z

p
®

1 ¡ A2e+ z
p

®

¶2

¡ 1

´
: (4.10)

The solution for N(z; c = 0) is given by (4.8) for z > 0, and by (4.10) for z < 0.
The conditions (4.4 b) at z = 0 enable calculation of the constants A1 and A2, and
« (z; c = 0) can then be found directly as ¡ N 0(z; c = 0)=[1 + N (z; c = 0)]. This gives
a  rst approximation to cm in as

cm in º « (z = 0; c = 0) =
¹

q
1 + 2

3
¹

1 + ¹
;

where ¹ = N(z = 0; c = 0) =
p

( ® 2 + ® + 1)=3 ¡ 1: (4.11)
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Figure 7. A plot of the left-hand side c ({ { {) and right-hand side « (z = 0; c) (||) of (4.2)
against c, for three di® erent values of the parameter ® . The minimum possible wave speed cm in

is given by the intersection of these lines. The values of « (z = 0; c) are given by numerical
solution of (4.3) subject to (4.4), as described in the main text.

This approximation is compared with numerically calculated values of cm in in  gure 8.
The comparison is very good at small values of ® , but becomes worse as ® is increased.

A more accurate approximation to the minimum speed can be found by replacing
the right-hand side of (4.2) by a power series approximation for « (z = 0; c) about
c = 0. The approximation (4.11) corresponds to taking just the constant term in this
power series, and I will show that it can be improved dramatically by also including
the linear term in c. Looking for a power series approximation for N (z; c) gives

N = N0 + cN1 + c2N2 + ;

where N0 is given by (4.8) when z > 0 and (4.10) when z < 0. In the region z > 0,
N1 satis es

N 00
1 + N 0

0 ¡ (1 + 2N0)N1 = 0; (4.12)

subject to N1(+1) = 0. This can be solved by treating N1 as a function of N0,
which is appropriate since N0(z) is monotonic. Then

(N 2
0 + 2

3
N 3

0 )
d2N1

dN2
0

+ (N0 + N 2
0 )

dN1

dN0
¡ (1 + 2N0)N1 = N0

q
1 + 2

3
N0;

i.e.

d

dN0

µ
(N 2

0 + 2
3
N3

0 )
dN1

dN0
¡ (N0 + N 2

0 )N1

¶
= N0

q
1 + 2

3
N0

)
dN1

dN0
= R(N0)N1 + S(N0); (4.13 a)
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Figure 8. A plot of numerically calculated values of cm in (¯), with zeroth-order (||) and
¯rst-order ({ { {) approximations, given by (4.11) and (4.17), respectively. The numerically
calculated values are given by solving (4.2) using numerical solutions of (4.3) subject to (4.4),
as described in the main text.

where

R(N0) =
1 + N0

N0(1 + 2
3
N0)

(4.13 b)

and

S(N0) = (3=5N 2
0 )[(N0 ¡ 1)(1 + 2

3
N0)1=2 + (1 + 2

3
N0)¡1]: (4.13 c)

This can be integrated further to obtain N1 explicitly, but (4.13) is su¯ cient for cal-
culation of cm in . The expression corresponding to (4.13) for z < 0 can be determined
directly: the substitutions (4.9) together with ĉ = ¡ c=

p
® convert the problem for

z < 0 to that for z > 0. This gives

dN1

dN0

=
¡ 1p

®

µ
¡ R

³
N0 ¡ ® + 1

®

´
N1p

®
+ S

³
N0 ¡ ® + 1

®

´¶
; (4.14)

for z < 0. Since N1 and N0 are both continuous and smooth at z = 0, the right-
hand sides of (4.13) and (4.14) can be set equal and solved for the common value of
N1(z = 0), giving

N1(z = 0) = ¨ ²
³

® ¡1=2S
³

¹ ¡ ® + 1

®

´
+ S( ¹ )

´¿³
® ¡1R

³
¹ ¡ ® + 1

®

´
¡ R( ¹ )

´
:

(4.15)

Here ¹ is the value of N0(z = 0), de ned in (4.11).
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Turning now to « (z; c) ² ¡ N 0(z; c)=[1 + N(z; c)], expanding as a power series in
c gives

« (z = 0; c) = « (z = 0; c = 0) + c« (z = 0; c = 0)

µ
dN1

dN0
¡

N1

1 + N0

¶
+ : (4.16)

The value of « (z = 0; c = 0) is given in (4.11). Substituting the  rst two terms of
this expansion into (4.2), the equation for cm in , gives the improved approximation

cm in º
¹

p
1 + 2 ¹ =3

1 + ¹ ¡ ¹
p

1 + 2 ¹ =3[R(¹ )̈ + S( ¹ ) ¡ ¨ =(1 + ¹ )]
; (4.17)

recall that ¹ is de ned in (4.11), R( ) and S( ) are de ned in (4.13), and ¨ is de ned
in (4.15). Strictly, (4.17) is valid as a  rst-order approximation for small cm in , i.e.
for ® close to 1. However, in practice it is extremely close to numerically calculated
values of cm in for a wide range of ® , as illustrated in  gure 8. The reason for the
approximation being so good is that « (z = 0; c) is approximately linear as a function
of c, as illustrated in  gure 7, so that higher-order terms in the expansion (4.16) are
extremely small.

5. Waveform close to the minimum speed

At the minimum speed itself, c = cm in , the form of the travelling wavefront has
been established in the above discussion: Y (z) is a step function with a jump from
Y = 1 to Y = 0 at z = 0, and N (z) has a monotonically decreasing form, with a
discontinuity in its second derivative at z = 0. The form of the N wave is illustrated
numerically in  gure 6 above, and an analytical approximation for small cm in (i.e. for
® close to 1) is given by (4.8) and (4.10). In this section, I use perturbation theory
to investigate the form of waves with speeds slightly above the minimum, with the
objective of understanding the way in which Y (z) approaches a step function as c
is decreased. Absence of an analytical form for the minimum speed wave prevents
calculation of a full matched expansion, but an approximation to Y close to the
minimum speed can be found.

I consider the travelling wave equations (4.1) for wave speed c = cm in + ° , with
° ½ 1. It is most convenient to rewrite (4.1 a) as two  rst-order equations, using the
variables N(z) and « (z) ² ¡ N 0(z)=(1 + N (z)), giving

dN

dz
= ¡ « (1 + N ); (5.1 a)

d «

dz
= « ( « ¡ cm in ¡ ° ) + ( ® ¡ 1)Y ¡ N; (5.1 b)

dY

dz
=

¡ ( ® ¡ 1)Y (1 ¡ Y )

cm in + ° ¡ «
: (5.1 c)

I have shown that Y approaches a step function as ° ! 0; as above, I take the jump
to occur at z = 0. Then (5.1) are the outer equations, valid for small ° away from
z = 0. The two parts of the outer solution will clearly be joined by a transition layer
centred at z = 0, with the rescaled wave coordinate ~z = z=~· z( ° ), where ~· z( ° ) is o(1)
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as ° ! 0. Denoting transition-layer solutions by tildes, the inner equations are, thus,

d ~N

d~z
= ¡ ~· z( ° ) ~« (1 + ~N ); (5.2 a)

d ~«

d~z
= ~· z( ° )[ ~« ( ~« ¡ cm in ¡ ° ) + ( ® ¡ 1) ~Y ¡ ~N ]; (5.2 b)

d ~Y

d~z
=

¡ ~· z( ° )( ® ¡ 1) ~Y (1 ¡ ~Y )

cm in + ° ¡ ~«
: (5.2 c)

I look for a series solution of these inner equations:

~N(~z) = ~N0(~z) + ~· N (° ) ~N1(~z) + ; (5.3 a)

~« (~z) = ~« 0(~z) + ~· « ( ° ) ~« 1(~z) + ; (5.3 b)

~Y (~z) = ~Y0(~z) + ~· Y ( ° ) ~Y1(~z) + ; (5.3 c)

where the functions ~· N , ~· « and ~· Y are o(1) as ° ! 0. Substituting these expansions
into (5.2) shows that ~N0 is constant, and this clearly must be equal to N ¤ , the leading-
order value of the outer solution on both sides of the transition layer. Similarly,
~« 0 ² cm in . This implies that ~Y0 satis es

d ~Y0

d~z
=

¡ ~· z( ° )( ® ¡ 1) ~Y0(1 ¡ ~Y0)

° ¡ ~· « ( ° ) ~« 1

:

The distinguished limit is, thus, given by ~· z( ° ) = ~· « ( ° ) = ° , in which case

d ~Y0

d~z
=

¡ ( ® ¡ 1) ~Y0(1 ¡ ~Y0)

1 ¡ ~« 1

: (5.4)

This equation must be solved together with

d ~« 1=d~z = ( ® ¡ 1) ~Y0 ¡ N ¤ ; (5.5)

which is given by substituting (5.3) into (5.2) and equating terms of order ° . Since
we expect ~Y0(~z) to be monotonic, we can treat ~« 1 as a function of ~Y0, and dividing
(5.5) by (5.4) gives a separable ODE, with solution

~« 1 = 1 ¡ K
~Y ¸

0 (1 ¡ ~Y0)(1¡ ¸ )
: (5.6)

Here K is a constant of integration, and ¸ = N ¤ =(® ¡ 1). This is a key parameter
grouping; numerical calculation of the leading-order outer solution, as described in
x 4, enables calculation of N ¤ , and this shows that ¸ decreases from 1

2
as ® increases

from 1 ( gure 9a).

Substituting (5.6) back into (5.4) shows that ~Y0 is de ned implicitly by the formula

~z =
K

( ® ¡ 1) ¸ (1 ¡ ¸ )

µ
2̧ ¡ 1 +

1 ¡ ~Y0 ¡ ¸

~Y ¸
0 (1 ¡ ~Y0)1¡ ¸

¶
: (5.7)

Derivation of this formula is discussed in more detail in the appendix; there is a con-
stant of integration that corresponds to an order- ° translation of the travelling wave,
which I have chosen to give ~Y0(~z = 0) = 1

2
.
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Figure 9. (a) A plot of numerically calculated values of ¸ = N ¤=( ® ¡ 1), given by solving (4.2)
using numerical solutions of (4.3) subject to (4.4), as described in x 4 of the main text. Solutions
for large values of ® suggest that ¸ ! 0 as ® ! 1 . (b) A comparison between the approximation
((5.7), with ~z = z=° ) for Y (z) (°) and a numerically calculated wave form (||), found via
numerical solution of the model PDEs (1.1). The comparison is good and improves even further
as ° = c ¡ cm in is reduced. The parameters in this case are ® = 2 and ¹ v = 2, giving a wave
speed c = 2, while cm in º 0:4163. The constant K is taken to be 1.

The condition K > 0 must hold in order that ~Y0( ¡ 1) = 1 and ~Y0(+1) = 0. The
value of K is determined by matching this inner solution with higher-order terms
in the outer solution, and, thus, K cannot be determined analytically without an
exact solution for the leading-order solutions for N and « . Comparison between
(5.7) and numerically calculated waves indicates that K º 1: one such comparison
is illustrated in  gure 9b. The key implication of the calculation is the form of Y
for c close to cm in : because of the simple form of the leading-order outer solution,
(5.7) is a leading-order approximation to the solution for Y (with ~z = z=° ). Note, in
particular, that this approximation approaches 0 and 1 (as z ! +1 and z ! ¡ 1,
respectively) algebraically, but at di¬erent rates for the two limits.

6. Discussion

In this paper, I have presented a simple way of incorporating contact inhibition of
cell migration into a mathematical model for interacting cell populations. I have
considered this in the particular context of two competing populations, one of which
has a proliferative advantage over the other; this is motivated by the very early stages
of solid tumour growth. The model is a very generic one, but accurately captures
the basic process of a moving interface between the two cell populations without
widespread mixing. I have presented a detailed study of these moving interfaces,
which indicates that there are solutions for wave speeds above a critical minimum
value. I have shown that the minimum speed arises via quite new behaviour in the
travelling-wave equations, with the proportion of cells of each type approaching a
step function as the wave speed decreases towards the minimum. Exploiting this
structure, I have used singular perturbation theory to investigate the wave shape for
speeds close to the minimum.
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The key results in this paper concern the speed of travelling waves, and, in par-
ticular, the value of the minimum speed cm in , which is generated by the biolog-
ically realistic case of highly localized initial cell populations. A natural point of
comparison is provided by the speeds of travelling-wave solutions of the equations
with the same kinetics as (1.1), but with linear di¬usion for both cell populations,
namely

@u

@t
=

@2u

@x2
+ u(1 ¡ u ¡ v); (6.1 a)

@v

@t
=

@2v

@x2
+ v(® ¡ u ¡ v): (6.1 b)

Numerical solutions of (6.1) on an in nite spatial domain with initial conditions
(2.1) and with ® > 1 evolve to travelling-wave solutions with the same qualitative
form as illustrated for (1.1) in  gure 1b: an advancing wave of v in parallel with a
receding wave of u. Linearizing (6.1), and drawing analogy with the Fisher equation,
enables the value of the wave speed to be predicted as

c d i¬ =

(
¹ + ( ® ¡ 1)=¹ ; ¹ 6

p
® ¡ 1;

2
p

® ¡ 1; ¹ >
p

® ¡ 1;
(6.2)

this is con rmed by numerical measurement of wave speed. For small values of ¹ ,
c d i¬ is greater than the wave speed c that I have found for (1.1), by the amount ¹ :
as expected, the inclusion of contact inhibition of migration slows down the moving
interface between the cell populations. Moreover, as ¹ is decreased through

p
® ¡ 1,

c d i¬ becomes constant at the minimum wave speed c d i¬
m in = 2

p
® ¡ 1, while c continues

to decrease to cm in ( gure 10a). My calculations in x 4 show that c d i¬
m in is greater

than cm in for all ® > 1 ( gure 10b). The approximation (4.17) for cm in derived in
x 4 enables a quantitative comparison, but this is algebraically rather complex. It is
more instructive to consider limiting behaviour: straightforward expansion of (4.17)
shows that

cm in ¹ 1
2
( ® ¡ 1); as ® ! 1 + ;

cm in ¹

2

6664
21=23¡3=45

3 ¡
«

3¡1=410S( ¡ 1 + 1=
p

3) + 2
p

6

2
p

2R( ¡ 1 + 1=
p

3) ¡ 3
p

6

¼

3

7775
p

® º 0:825
p

® ; as ® ! 1:

Thus, the ratio cd i¬
m in =cm in decreases from in nity as ® increases from 1 ( gure 10c),

approaching a limiting value of about 2.4 (approximately 2=0:825) as ® ! 1. Thus,
my analysis shows that the use of simple linear di¬usion for competing cell popula-
tions gives an overestimate of the speed of interfaces between the populations, by a
factor that is at least 2.4, and is very much larger when the competitive advantage
is small.

There is a long history of work on wavefronts in competition models that are
generalizations of (6.1), with both species di¬using linearly but with a more general
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Figure 10. A comparison of wave speeds in the contact inhibition model (1.1) (||) and the
model (6.1) with linearly di® using cell populations ({ { {). (a) A plot of wave speeds c and cd i¬

as a function of initial decay rate ¹ v . For each ¹ v , the waves generated in the model (6.1) with
linear di® usion move faster than those in (1.1): as expected, contact inhibition of migration slows
down the movement of wavefronts. The di® erence is exactly ¹ v for ¹ v <

p
® ¡ 1, but increases

for larger ¹ v , since c continues to decrease once cd i¬ has reached its minimum value. The value
of cd i¬ is calculated using (6.2); for (1.1), c is given by (2.5), with the minimum wave speed
found by solving (4.2) using numerical solutions of (4.3) subject to (4.4), as described in x 4 of
the main text. The cases shown are for ® = 3. (b) A plot of the minimum wave speeds cm in and
cd i¬

m in = 2
p

® ¡ 1 as a function of ® . The minimum speed for (1.1) is less than that for (6.1) for
all ® > 1. The value of cm in is found by solving (4.2) using numerical solutions of (4.3) subject
to (4.4), as described in x 4 of the main text. (c) A plot of the ratio cdi¬

m in =cm in as a function of ® .

version of the Lotka{Volterra competition kinetics. The equations concerned are

@u

@t
=

@2u

@x2
+ u(1 ¡ u ¡ a1v); (6.3 a)

@v

@t
=

@2v

@x2
+ v(a2 ¡ a3u ¡ v): (6.3 b)

The  rst study of wavefronts in (6.3) was that of Tang & Fife (1980), who studied
waves with u = v = 0 ahead of the front, and u and v both non-zero behind; the
latter type of equilibrium exists provided a1a3 6= 1. This was extended to an arbitrary
number of interacting populations by Ahmad & Lazer (1991) and to more general
kinetics by van Vuuren (1995). Again in the case a1a3 6= 1, Gardner (1982) and
Conley & Gardner (1984) proved the existence of waves connecting the equilibria
(1; 0) and (0; a2), with subsequent extensions by Mimura & Fife (1986) and Kan-on
(1995). This is quite di¬erent from the case considered in the present paper, because
these results only apply when the two equilibria are both locally stable in the kinetic
ODEs; an important challenge for future work is the investigation of such waves when
the nonlinear motility terms from (1.1) are used in (6.3) rather than linear di¬usion.
Waves analogous to those I have studied occur for (6.3) when a2 > max(a3; 1=a1); this
condition includes (6.1), and ensures that (1; 0) is locally unstable with (0; a2) locally
stable. Such waves were  rst studied numerically, with analytical solution in a special
case, by Okubo et al . (1989). Existence of waves was proved by Kan-on (1997), with
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extension to the case of di¬erent di¬usion coe¯ cients considered by Hosono (1998).
The work presented in the present paper raises many challenges for the extension of
these various results to the new movement term re®ecting contact inhibition.

Appendix A.

In this short appendix, I give some further details of the derivation of formula (5.7)
for ~Y0. Substitution of (5.6) into (5.4) gives a separable  rst-order ODE for ~Y0(~z),
which implies that

( ® ¡ 1)~z

K
= H( ~Y0);

where

H(s) =

Z y = 1=2

y = s

dy

y1+ ¸ (1 ¡ y)2¡ ¸
:

The upper limit of integration is arbitrary, corresponding to an O( ° ) translation in the
travelling wave; as discussed in the main text, I choose 1

2
in order to give ~Y0(0) = 1

2
.

The integral de ning H( ) can be evaluated exactly by making the substitution y =
sin2 ³ , which gives

H(s) = 2

Z ³ = º =4

³ = arcs in
p

s

d ³

sin1 + 2 ¸ ³ cos3¡ 2̧ ³
:

Integrating by parts then gives

H(s) =

µ
¡ 1

¸ sin2̧ ³ cos2(1¡ ¸ ) ³

¶³ = º =4

³ = arcs in
p

s

+
2

¸

Z ³ = º =4

³ = arcs in
p

s

sec2 ³ tan1¡2 ¸ ³ d ³

=

µ
¡ 1

¸ sin2̧ ³ cos2(1¡ ¸ ) ³
+

tan2(1¡ ¸ ) ³

¸ (1 ¡ ¸ )

¶³ = º =4

³ = arcs in
p

s

=
1

¸ (1 ¡ ¸ )

µ
2 ¸ ¡ 1 +

1 ¡ s ¡ ¸

ş (1 ¡ s)1¡ ¸

¶
:

The formula (5.7) follows immediately from this.
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