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Mosaic tissues are composed of two or more genetically distinct cell types. They occur natu-
rally, and are also a useful experimental method for exploring tissue growth and maintenance.
By marking the different cell types, one can study the patterns formed by proliferation,
renewal and migration. Here, we present mathematical modelling suggesting that small
changes in the type of interaction that cells have with their local cellular environment can
lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation
of each cell type may depend linearly or nonlinearly on the local proportion of cells of that
type, and these two possibilities produce very different patterns. We study two variations
of a cellular automaton model based on simple rules for renewal. We then propose an integro-
differential equation model, and again consider two different forms of cellular interaction.
The results of the continuous and cellular automata models are qualitatively the same,
and we observe that changes in local environment interaction affect the dynamics for
both. Furthermore, we demonstrate that the models reproduce some of the patterns seen
in actual mosaic tissues. In particular, our results suggest that the differing patterns
seen in organ parenchymas may be driven purely by the process of cell replacement under
different interaction scenarios.

Keywords: chimera; chimaera; Blaschko lines; cellular automata;
organ parenchyma; voter model
1. INTRODUCTION

Proliferation is a fundamental cellular process, forming
the basis of renewal in all higher organisms. It has an
important role in many situations, including embryogen-
esis and tissue maintenance, although the extent to
which it is a driver for such multi-cellular processes is
not known. Cellular proliferation is modulated by cell sig-
nalling. This may be contact-dependent, requiring cells
to physically touch each other, or it may involve longer
range processes (Webb & Owen 2004; Graham &
van Ooyen 2006). Once a cell has received a proliferation
signal, it produces a daughter cell of its own type.

The question of how the decision to proliferate is
made has appeared in relation to multiple biological
problems. One such, which we will concern ourselves
with here, is that of mosaicism. Mosaic tissues are com-
posed of two or more genetically distinct cell types, and
the mosaic patterns produced by this mix of cells are
witnessed in many scenarios. For example, certain
human diseases involving mutations early in embryo-
genesis can exhibit macroscopic patterns in skin along
the so-called Blaschko lines, which are thought to
orrespondence ( jmb7@hw.ac.uk).
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indicate the limits between different proliferating cell
clones (Happle 2006). Mosaic patterns also arise in all
females due to X-chromosome inactivation: females
carry two X-chromosomes, one of which is inactivated
early in embryogenesis to prevent overexpression of
X-chromosome genes. This inactivation process is
known as Lyonization (Lyon 1961), and as the
inactivation is passed on to daughter cells, it leads to
females being a mix of two different cell types, with
either the paternal or maternal X-chromosome active.
This inactivation may also be related to Blaschko
lines becoming visible in some pathological conditions
in females, again following boundaries between the
two cell types (Happle 2006).

Experimentally, mosaicism can be explored through
the use of chimaeras. Chimaeric animals are individuals
that have four or more parents. They are created by the
fusion of distinguishable embryos, or by transgenic
techniques (incorporating certain cell markers into
one of the embryonic cells). Experimentalists have
used chimaeras to consider the fate of cell clones, the
spread and effect of certain mutations, and the cellular
composition of different organs in parenchyma growth
(see Ng & Iannaccone 1992; West 1998 for more
details).
This journal is q 2010 The Royal Society
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A better understanding of exactly how mosaic pat-
terns arise would provide an important contribution
to the problems outlined above. As chimaera exper-
iments in particular have been so successful in the
exploration of mosaics, we discuss them in detail here,
with particular reference to their relevance for the
growth and maintenance of organ parenchyma (i.e.
the tissue that is essential to organ function). Although
the patterns formed in chimaeras during the develop-
ment of organ parenchymas can only be viewed after
their creation, they do provide a tool against which
hypotheses for growth and maintenance can be tested.
In situ analysis of chimaeras has revealed different com-
plex patterns in different organs. In the rodent liver, for
example, cell lines appear to mix randomly, whereas the
adrenal cortex produces radial stripes of cell lineages. It
has been suggested that mosaics observed in the
liver could be caused by cells proliferating randomly
(Khokha et al. 1994; Iannaccone et al. 2002) while in
the adrenal cortex, the placement of daughter cells may
be biased centripetally (Iannaccone & Weinberg 1987;
Landini & Iannaccone 2000; Iannaccone et al. 2002).

The suggestion that two very different organ par-
enchyma mosaics could both be caused by differences
in proliferation (modulated, perhaps, by cellular con-
tact, Landini & Iannaccone 2000), opens up the
possibility that all organ parenchyma growth might
be guided by cell proliferation and renewal alone, as
opposed to other factors such as cell migration
(Morley et al. 1996). Until experimental techniques
can be improved, a theoretical approach such as math-
ematical modelling provides a valuable method of
testing different hypotheses. Before we consider our
own model, we discuss the models seen in the current
literature that consider chimaera experiments, and
also those that look at more general issues concerning
the regulation of cell renewal by the local environment.

Few models have been produced to specifically
describe the chimaera experiments above; those that
have are mainly cellular automata (CA). A population
of cells is arranged on a grid with rules imposed to
govern the movement, growth and death of each cell
according to both the position of neighbouring cells
and the age of the cell itself. These models reproduce
various chimaeric patterns (Landini & Iannaccone
2000), but only explicitly consider the proliferation
hypothesis, not the cell migration/proliferation hypoth-
esis. A CA model for an experiment involving chick and
quail cells in the intestine, very similar to the chimaeras
already discussed, is explored in Simpson et al. (2007a).
This paper considers both cell migration and prolifer-
ation, and the results of the CA are successfully
matched to that of experimental data; it is also noted
that the dynamics produced by the CA match those
of the Fisher partial differential equation (see Murray
1989, vol. I, ch. 11), demonstrating a successful multi-
scale modelling process. In Simpson et al. (2006,
2007b), a general continuous mathematical model of
cell invasion is created and validated with experimental
data. Proliferation is shown to be the key mechanism in
driving the invasion process.

In this paper we take both a discrete and a continu-
ous approach. It is possible to link discrete and
J. R. Soc. Interface (2010)
continuous models formally as is done, for example, in
the liver growth model of Green et al. (submitted),
but we do not attempt that here as there is no relevant
experimental data available that would call for such a
link. Instead we take a more phenomenological
approach. Following on from the successful discrete
models of Khokha et al. (1994) and Landini &
Iannaccone (2000), and the experimental work dis-
cussed above (particularly the observations made by
both Simpson et al. (2006) and Landini & Iannaccone
(2000) regarding the importance of cell proliferation),
we assume cell proliferation, or more precisely, cell
renewal to be the driving force for the dynamics.
Through modelling, we can exclude all other factors
from the system, such as mechanical effects, cell
ageing, migration, etc., thereby testing whether cell
renewal on its own is able to create the empirically
observed variety of mosaics. We explore two different
replacement mechanisms, both of which incorporate
the effect of neighbouring cells on cell renewal.
Although our model is designed for the investigation
of organ parenchymas, it is also applicable to a range
of other cell replacement problems.

Section 2 outlines the conceptual framework behind
our theoretical models, and §2.1 considers the discrete
CA model for a cell renewal problem based on chimaera
experiments. We then begin §2.2 by describing the deri-
vation of the continuous model, which has two slightly
different versions, and which is the main focus of this
paper. We consider the behaviour of the model for
cells in two space dimensions in §3, and demonstrate
the ability of the model to form organ parenchyma
mosaics as witnessed in both the adrenal cortex
and the liver, as well as showing some more general
results. In §4 we discuss our findings, and go on to
discuss another biological application for the model:
that of Blaschko lines. We end by discussing potential
directions for future work.

The key finding of this work is that, by changing the
way in which the local cellular environment regulates
cell renewal in our models, we can radically alter the
patterns produced. In cell renewal, proliferation of
each cell type may depend linearly or nonlinearly on
the local proportion of cells of that type, and these
two possibilities produce very different patterns. This
observation offers possible answers to the question of
why different organ parenchymas produce different
mosaics, as observed in chimaera experiments and dis-
cussed in this section. Our results suggest that these
various patterns may be created by different cell repla-
cement scenarios mediated by different reactions to the
local cellular environment.
2. MODELLING CHIMAERA
EXPERIMENTS

Chimaera experiments are used to explore tissue
dynamics by observing patterns generated by subpopu-
lations of cells. These subpopulations are effectively
identical apart from a marker that enables them to
be distinguished.

http://rsif.royalsocietypublishing.org/
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We outline two conceptual models, both of which are
based on biological hypotheses of cell renewal. Of
course, various other conceptual models could also be
suggested, but as the mechanism that regulates cell
renewal in various organs has not been fully elucidated,
we choose two different but probable mechanisms here.
First, we suggest that a mix of two differently marked,
but otherwise identical cell types die and are reborn
according to a ‘voting’ principle: a cell dies randomly,
and is replaced by a cell of whichever type is in the
majority in its immediate neighbourhood. If there is
an even mix of neighbouring cell types, replacement is
allocated randomly. We call this the majority concep-
tual model, and it is akin to the idea that
proliferation is biased towards the cell type which is in
the majority locally. Although we are not aware of
specific data supporting this hypothesis in cell renewal,
such community effects are well documented in the
regulation of other cell behaviours (Standley et al.
2001), and certainly would be a probable candidate
for renewal in cells that communicate through local
mechanisms such as juxtacrine signalling.

A second scenario dictates that a cell is replaced by
the same type as a cell selected randomly from those
in its immediate neighbourhood. This is the single-cell
conceptual model, and represents basic cell proliferation
whereby empty space is filled via the division of a cell in
its immediate neighbourhood.

We model these concepts in two dimensions, thereby
considering a monolayer of cells. For both of these scen-
arios, we assume that the population of cells stays
constant, i.e. that death and birth are instantaneous.
This means that we are modelling a process of tissue
homoeostasis, as opposed to tissue growth. We further
assume that there is no empty space, which allows us
to think of this model as a one population model: a
cell is either of one type or the other. Furthermore,
since the two populations are only differentiated by a
marker but are otherwise the same, we assume that
both birth and death rates in the two populations are
the same. Both the majority and the single-cell concep-
tual models provide a simplified representation of a
synthetic chimaera, and we simulate them as such to
investigate the emerging patterns.
2.1. The cellular automata approach

Individual-based models are very well established and
come in many different formats (see Anderson et al.
2007 for a review). For our purposes it is sufficient
to use a very simple CA model, even though more
sophisticated forms are available. CA have been applied
to many biological applications as their discrete form
lends itself naturally to the modelling of biological cells.
We set up two CA ‘voter’ models according to the con-
ceptual models outlined above (see Liggett 1985, ch. 5
for a more general description of voter models). The pro-
cesses for the two models are outlined in figure 1.

While the algorithms in figure 1 describe asynchro-
nous random choice updating (Schönfisch & de Roos
1999), we have also implemented a synchronous updat-
ing method, meaning that all grid squares across the
lattice are updated simultaneously, with new values
J. R. Soc. Interface (2010)
calculated according to their neighbours at the previous
time-step. No qualitative difference in results from the
two updating algorithms is observed, beyond that of
time scale. The simulations illustrated here all employ
asynchronous updating.

Bearing in mind our biological application to chi-
maera experiments, we explore initial conditions of
two cell types evenly mixed across the grid for each of
the conceptual models. For the majority conceptual
model the end result is either domination by a single
cell type across the grid (figure 2a–d), or a split
domain in the form of one large block of each cell
type (figure 2e–h). This result is seen both for our
choice of neighbourhood (an eight-cell ‘Moore’ neigh-
bourhood), and in a more preliminary simulation
study using a four-neighbour ‘von-Neumann’ neigh-
bourhood, which involves just cells that share a
complete edge with the empty site. The significance
of the von Neumann neighbourhood is that it is the
predominant formalism in the extensive literature on
the so-called threshold voter models, which are other-
wise similar to our majority conceptual model. In the
threshold-2 voter model, cells switch type at a given
rate if at least two (out of four) neighbours are of the
opposite type (Cox & Durrett 1991). While this is not
quite the same as our majority model, both models do
have the possibility of switching only when half of the
neighbours are of opposite type. Cox & Durrett
(1991) conjecture that such a model will evolve to all
of either one cell type or the other dominating across
the domain, depending on which cell type has the
greater initial density, with a density of precisely 1

2
being the critical value at which the switch between
these two scenarios occurs. This is consistent with our
observation that with initial conditions of two cell
types mixed approximately evenly across the grid, we
see either the steady-state solution of all one species,
all the other, or split between the two.

For the single-cell conceptual model we do not
observe the system evolving to a single cell type, even
when the simulations are run on a long time scale.
Rather, cell types agglomerate in a constantly changing
pattern (figure 2i– l ), forming solid groups. We see
this over long time scales (we investigated up to t ¼
108, and still saw this spatially unstable movement).
Again, preliminary investigations show no qualitative
difference between simulations using a von Neumann
neighbourhood and those carried out on a Moore
neighbourhood, making the literature on voter models
relevant. The literature states that for models similar
to this, clustering is the expected result, i.e. cell types
group into larger and larger blocks, until the solution
runs to a single species steady state as t!1 with prob-
ability 1 (Cox & Durrett 1991; see also Cox & Griffeath
1986; Dornic et al. 2001). We do not see this end
state; rather, our simulations show (in figure 2i– l ) the
initial clustering process where the two cell types form
larger solid blocks as time increases. The much longer
time scale over which a single species emerges is not
biologically relevant.

These results show that the different types of con-
tact-mediated renewal produce very different patterns.
To understand the origin of these distinct pattern

http://rsif.royalsocietypublishing.org/


pick a cell; delete the cell
(a)

(b)

count number of cells of type A in immediate
neighbourhood

are there type A cells in more than 50% of
the neighbouring grid squares?

yes

square

put a type A cell
in the square

randomly allocate
cell typeyes

no

no

is there exactly 50% of type A cells?

put a type B cell in the

update time

pick a cell; delete the cell

of the first
randomly pick another cell in the neighbourhood

put a type A cell
in the squareyes

no

put a type B cell in the square

is this second cell type A?

update time

Figure 1. The updating process for the asynchronously updated cellular automata. (a) Description of the process for the CA based
on the majority conceptual model, while (b) describes that of the CA based on the single-cell conceptual model.
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outcomes, we develop a continuous framework that is
more amenable to mathematical analysis.
2.2. Development of a continuous model

To model our problem continuously, we must decide
how to represent the local environment of cells that
influence cell renewal. We first use an integral term I
to calculate the proportion of one cell type in the
local environment, and then apply various functions f
to this integral to explore different renewal scenarios.
Such a representation of cell environment via an inte-
gral term has been used previously in contexts
including cell sorting (Armstrong et al. 2006), develop-
ment (Armstrong et al. 2009; Green et al. submitted)
J. R. Soc. Interface (2010)
and cancer (Gerisch & Chaplain 2008; Sherratt et al.
2009; Painter et al. in press). Since we again wish to
model a monolayer of cells, the integral I is in two
dimensions, and is taken over a region dictated by a sen-
sing radius R, representing the capacity of a cell to
directly sense its environment via, for example, filopo-
dial contact. Increasing R allows us to consider
different sizes of the neighbourhood that influences
cell renewal, and therefore allows us to consider different
types of cell communication. For example, a small R can
represent contact-dependent communication such as
juxtacrine signalling (Owen et al. 1999; Webb & Owen
2004), whilst a larger R may be chosen to explore a
longer range communication such as a locally diffusing
signalling molecule (Monk 1997).

http://rsif.royalsocietypublishing.org/
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Figure 2. Solution of the cellular automata (CA) as described above, at times t ¼ 0, 107, 108 and 109. Here, we use mixed initial
conditions by randomly assigning to each grid square the value of 0 or 1. In (a–d) left to right, we consider the majority con-
ceptual model, and see cells quickly forming large agglomerations, before they either die out completely or dominate the grid.
Out of 1000 runs, we see quick domination by a single cell type across the entire domain in about 30% of cases, while the remain-
ing 70% end with both species present as seen in (e–h). In (i– l ), a solution to the single-cell conceptual model is shown,
demonstrating persistence of both cell lines over time. For (a–d) and (e–h), cells are updated according to the process described
in figure 1a, while the CA in (i– l ) is updated according to the process described in figure 1b. All CAs are carried out on a grid of
size 256 � 256, and use an eight-neighbour Moore neighbourhood. On the boundary and at the corners of the domain, only cells
in the domain are considered, and an average is taken over that reduced number of cells in the majority model, whilst in the
single-cell model a cell that picks a neighbour outside the domain does not change state.
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Since we are concerned with modelling chimaera
experiments, we have a closed system where the birth
of cells simply replaces those cells lost to death, i.e.
there is no empty space. We further assume that the
replacement rates of the two cell lines are the same, as
expected in mosaic tissues. This enables the model to
be formulated as a single equation for the proportion
of cells that are of one of the two types. We refer to
the two cell types as A and B, with aðx; tÞ being the pro-
portion of cells of type A; thus a fraction 1� aðx; tÞ of
the cells are of type B.

Our complete model is therefore:

@a
@t
¼ að f ðIaÞ � aÞ; ð2:1Þ

where Ia is the integral (1/area)
Ð

0
R Ð

0
2p aðx þ rhÞr du

dr. Other cells within the domain of integration in Ia

are located relative to aðx; tÞ by reference to both the
distance r along the sensing radius R, and
h ¼ ðcosu; sinuÞ. The constant a is the cell replacement
rate. In terms of the CA model, a is related to the time
J. R. Soc. Interface (2010)
step since it regulates the rate at which the cell popu-
lation changes through time. A more accurate
relationship could be obtained if a more formal link
between the two models was attempted, but as we are
primarily interested in the long-term dynamics of the
model, and not its rate of change, we do not attempt
to derive such a link here. The integral is normalized
over the area, which is pR2 away from the boundaries
of the domain. We assume a finite sheet of cells, and
hence on the boundary the integral is truncated, i.e.
cells that lie outside the domain are not included in
our calculations, neither in the integral itself, nor in
the calculation of area over which the integral is
normalized.

We now consider two different scenarios that explore
different local environment dependencies, and that
match our CA simulations and conceptual models.

—Locally biased model
(i) Renewal is biased towards the cell type in the

local majority.

http://rsif.royalsocietypublishing.org/
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Figure 3. Schematic of renewal function in the continuous
model. (a) A smooth continuous approximation to a step
function, symmetric about 1

2, representing the locally biased
model. (b) Linear f, representing the locally unbiased model.

Table 1. A summary table of stability of the steady states of
equation (2.1).

model type steady state stability

0 stable
locally biased 1

2 unstable
1 stable

locally unbiased as [ [0,1] neutral
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(ii) This is equivalent to the majority conceptual
model and corresponding CA simulation.

(iii) We choose f as illustrated in figure 3a: a cell will
be replaced with a type biased towards those in
the majority around it, in a scenario that
mimics that of the community effect witnessed
in cell differentiation (see Standley et al. 2001).

—Locally unbiased model
(i) Renewal is non-biased.
(ii) This is equivalent to the single-cell conceptual

model and CA simulation.
(iii) We choose f as illustrated in figure 3b: a daughter

cell will be of a certain type with a probability
equal to the proportion of that cell type present,
corresponding to basic cell proliferation.

Note that a must lie between 0 and 1 since it is a pro-
portion, and moreover f(0) ¼ 0 and f(1) ¼ 1 since both
a ¼ 0 and 1 must be steady states.

2.3. Linear stability analysis of homogeneous
steady states

In order to explore the long-term behaviour we can
expect from the model, we carry out some analysis,
looking at the location and stability of steady states.
Significant steady states of the locally biased model,
found by setting @a/@t ¼ 0 in equation (2.1), are
given by a ¼ 0, 1

2 and 1. We then perturb the steady
states homogeneously through space to explore
their stability: we put a ¼ as þ ã(t), where as is our
steady state and ã is a small homogeneous perturbation.
Then

@~a
@t
¼ a f ðIasþ~aÞ � ðas þ ~aÞð Þ: ð2:2Þ

At as ¼ 0 and as ¼ 1, f 0(Ias
) , 0, while at as ¼

1
2,

f 0(Ias
) . 0. Therefore a ¼ 0 and 1 are stable, while a ¼

1
2 is unstable. For the locally biased model, we therefore
expect only one scenario: depending on the initial pro-
portion of A, we expect that the system will always
evolve to either all A or all B.

In the same manner, we explore the locally unbiased
model. Here there is a continuum of steady states at a ¼
as, with any as [ [0,1] possible. The steady states are
J. R. Soc. Interface (2010)
neutrally stable. This means we expect the system to
remain at whatever proportion of A and B it begins
with, which is consistent with the simulations in
figure 2i– l.

This analysis of the two variations of the model (see
table 1 for a summary) suggests that a cell’s reaction to
its local environment can significantly alter the patterns
we can expect to see. With the locally biased version of
the model we expect locally to see all cells having a
single type, either A or B, whereas in the locally
unbiased model we expect to see a persistence of both
cell lines. This is consistent with the proliferation
hypothesis for the development of organ parenchymas,
which suggested that proliferation was the driver
behind the creation of differing mosaic patterns (see §1).
3. NUMERICAL SIMULATIONS OF THE
CONTINUUM MODELS

Whilst the linear analysis provides some insight into the
expected model behaviour, a numerical study is
required for further understanding. Our numerical
code discretizes the circular domain of the integral,
and then sums the integral over each of the grid squares
within the circle. Although some of the area of the circle
is lost at the boundaries, the calculation is fast and,
with a fine lattice, it is reasonably accurate; note that
simulations with a reduced lattice give the same
qualitative behaviour. More sophisticated numerical
schemes for integrodifferential equations using tech-
niques such as fast Fourier transforms to evaluate the
integral are possible: see in particular Gerisch &
Chaplain (2008) and Gerisch (2010). To discretize
time, we used ROWMAP (Weiner et al. 1997), a method
that is particularly suited to solving stiff ODE initial
value problems, and that automatically controls and
adjusts time-step size.

3.1. The two-dimensional model results

We begin by investigating initial conditions correspond-
ing to a homogeneous, equal mix of cell types A and B
across the grid, so that we set a ¼ 0.5+ small noise (see
figure 4). This is a biologically realistic scenario for a
group of cells at the start of a chimaera experiment.
These initial conditions also allow comparisons with
our CA simulations. Note that in preliminary investi-
gations, we have found that varying the amplitude of
noise present in the initial conditions makes no qualitat-
ive difference to the results. We carry out all
simulations on a two-dimensional grid with boundary
conditions equivalent to the biological scenario of a

http://rsif.royalsocietypublishing.org/
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Figure 4. The homogeneous mixed initial conditions used for
the two-dimensional model. The two cells are evenly mixed
across the domain. The domain is a square with sides of
length 10 dimensionless space units.

1Note that such a test was repeated with the majority conceptual CA,
and led to the same results (not shown).

Cell renewal in mosaic tissues J. M. Bloomfield et al. 1531

 on September 29, 2010rsif.royalsocietypublishing.orgDownloaded from 
chimaera experiment: we imagine a sheet of cells with
no cells present outside the boundary.

For the locally biased model, we find that the sol-
ution usually goes to all A or all B across the entire
domain, as expected from our linear analysis (see
§2.3). However, sometimes the long-term solution
involves a division of the domain into two parts, one
solely of type A, and the other solely of type B
(figure 5). This occurred in a total of six out of 20
runs. Note that these results are qualitatively the
same as those seen in the CA model, but not quantitat-
ively so (see §2.1 and figure 2). However, increasing the
gradient of f, moving it closer towards a step-function,
causes an increase in the number of times the long-
term solution evolves to a domain of one part A and
one part B. Intuitively this is not surprising, as in
moving f closer to a step function we move closer to
the discrete CA scenario in which 70 per cent of our
simulations ended with both cell populations present.
For the locally unbiased model, we see the two cell
populations A and B merge into a single homogeneous
state (figure 6). This suggests that biologically, the
two cell lines will persist over time alongside one
another (corresponding to b ¼ 1 2 a with 0 , a , 1 in
equation (2.1)). This result is also similar to our CA
simulations for the single-cell contact scenario (see
§2.1 and figure 2i– l ), although the continuous model
loses the fine-grained spatial dynamics of the discrete
model (not shown).

Biologically, solutions of the type shown in figure 5
are reminiscent of the growth patterns of both the adre-
nal cortex, which involve large blocks of a single cell
type alongside one another, and the liver, which
involves random patterning. For certain domain sizes
our simulations of the locally biased model show
repeated stripes, as is seen in the adrenal cortex (see
figure 7; note that in this figure, we deliberately use a
long, thin domain to encourage stripe formation).
These stripes are stable to spatial perturbations,
suggesting that something similar to locally biased pro-
liferation could be the driver for the dynamics seen in
this organ, although there is no concrete evidence on
whether or not this is the case. Moreover, the similarity
between our discrete simulations and the patterns
observed in vivo, along with the continuous model
J. R. Soc. Interface (2010)
results also showing cell line persistence, suggests that
the growth of liver parenchyma may be driven by the
cell renewal process as described in the locally unbiased
model, although again there is no empirical evidence to
confirm this suggestion. In §4, we suggest possible
future experiments to test this prediction.

Overall, the result of the locally unbiased model in
comparison to that of the locally biased model shows
that by merely changing the influence of the local
environment on the renewal term, two very different
results are observed. This suggests that the way cells
react to and communicate with their local environment
has a very significant role in the dynamics of
homoeostasis.

3.2. Extending the two-dimensional results

We now consider three further sets of initial conditions,
in order to gain insight into the behaviours discussed
above. In §3.1, the locally biased model sometimes
resulted in a split domain. In order to investigate this
phenomenon further, we repeat our experiments, this
time starting with split conditions similar to those
seen in figure 5l (see figure 8a). With such initial con-
ditions, the interface between the two species does not
move over long times, suggesting that we are indeed
at a steady state (not shown). Furthermore, we repeat
our experiments with a curved interface (see figure 8b)
in order to discover whether a non-flat interface could
cause movement due to mean curvature. We see a flat-
tening of the interface (see figure 9), but no further
movement. This coincides with the previous result,
and leads us to conclude that a coexistence steady
state in the locally biased model will always display a
flat interface between the two species. Finally, we inves-
tigate ‘island’ initial conditions (see figure 8c), in order
to explore the dynamics of a localized group of cells.
Again, we see movement driven by mean curvature,
i.e. movement is fastest where curvature is greatest.
This leads to the ‘island’ rapidly shrinking until it dis-
appears (see figure 10), explaining both why we
sometimes see the dominance of a single species in the
locally biased model, and why we do not see spotted
patterns, as each small group of cells is engulfed
by the larger local population (see figure 5c,g).1

While further investigation of curved boundaries
and their movement is not the focus of the present
paper, it is a natural area for future work, building
on the literature of the movement of ‘islands’ in
the two-dimensional Ginzburg–Landau equation, a
generic balanced, bistable partial differential equation
(Rougemont 2000).
4. DISCUSSION

The results of our mathematical models are consistent
with biological experiments, and suggest that the way
a cell reacts to its local environment has a significant
part to play in cellular patterning in mosaics. Our key
finding is that a small change in the reaction to the
local cellular environment can produce a very different

http://rsif.royalsocietypublishing.org/
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function, while f ¼ I in (i– l ). The dimensionless parameter values are R ¼ 1.0, a ¼ 1.0. The domain is of size 10 dimensionless
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outcome for the overall composition of the tissue. In cell
renewal, proliferation of each cell type may depend lin-
early or nonlinearly on the local proportion of cells of
that type, and these two possibilities produce very
different patterns. Moreover, by looking at the results
of chimaera experiments that explored rat livers and
adrenal cortices, we have found that the proliferation
hypothesis previously discussed in Simpson et al.
(2006) and Landini & Iannaccone (2000; see §1),
could indeed offer an accurate description of the mech-
anisms that drive organ parenchyma maintenance, with
the different patterns seen being caused by different
reactions to cellular contact. If the hypothesis is correct,
we predict that cells in the liver renew according to the
linear locally unbiased mechanism, and cells in the
adrenal cortex renew according to the non-linear
Locally Biased mechanism. This is something that
could be tested with the use of fluorescent markers:
by marking and following mosaic cells from cell lines
of various organs in vitro and taking regular images of
J. R. Soc. Interface (2010)
them, one could discover whether cells are renewing
according to the locally biased or locally unbiased
mechanisms, or according to a different mechanism
altogether.

In §1, we discussed the phenomenon of X-chromosome
inactivation mosaicism in females, and the hypothesis
that the appearance of Blaschko lines in mammals
may be related to the patterned placement of activated
and inactivated X-chromosomes in the skin (Happle
2006). In the majority of females, cells with one or
other X-inactivated chromosome appear mixed evenly
across the skin in a fine mosaic (Asplund et al. 2001),
as is suggested by the locally unbiased model. This
model is an effective represention of the proliferation
of a single daughter cell from one mother cell, as
occurs in normal cell proliferation. This suggests that
the patterns created by lesions that occur along Blas-
chko lines in females could be governed by an
interruption of normal proliferation processes. This
could cause the different cell lines to appear in large
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blocks alongside each other with merging of the two cell
lines across their boundary, as is seen in the locally
biased model (see figures 5, 7 and 9). Again, exper-
iments could be done with fluorescent markers to see
whether this is the case. However, the issue of what
could make such a change occur in the normal prolifer-
ation process remains to be explored.

Future theoretical work may involve analysing het-
erogeneous steady states to explore the structure and
scale of patterns. This would enable us to investigate
more fully the spatial aspects of, for example, the
stripe patterns of adrenal cortex chimaeras. We could
also investigate more fully different proliferation func-
tions f to represent other possible cell contact
scenarios, in order to explore the different patterns
seen in various organs in chimaera experiments.
Extending the model to three dimensions would allow
much better comparisons with experimental work, as
currently most of the quantitative results gathered
from chimaeras is in the form of two-dimensional sec-
tions from three-dimensional tissues. Considering the
corresponding model on a growing domain would also
allow more precise comparisons. In a similar vein, one
could attempt a continuous model that is more closely
derived from a discrete model. The parameters in a dis-
crete model can in some cases be reliably estimated from
microscopic data, and thus could then be used to esti-
mate parameters in the macroscopic model. One
possible method of deriving a continuous model would
be to consider the probabilities of a cell in the CA
becoming type A, say, over a large number of realiz-
ations, and to use the variance as a basis for the
function f in the continuous model. We have not
attempted such a derivation as we do not have the pre-
cise biological data that would be required to make the
link between the model types of real value. However,
this step would be useful in the creation of a three-
dimensional model for which there are good microscopic
data available.

Our model could also be extended to explore scen-
arios that are outside the closed system necessitated
by chimaera experiments. As it stands, the continuum
model could be used to study the role of community
effects in cell differentiation, and we plan to apply the
model to this cellular process in the near future. A vari-
ation of the model may also be used to explore more
general cell proliferation: this would require a factor of
J. R. Soc. Interface (2010)
a being included in the proliferation term of equation
(2.1). Such an amended model would explicitly relate
the total population of one cell type to the proliferation
rate of that cell type, and would allow us to consider
growing cell populations. However, for the particular
application we have considered, our rather different
renewal term is appropriate, and the resulting model
has highlighted the importance of correct formulation
in exploring the tissue dynamics arising from cellular
renewal.
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