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a b s t r a c t 

Landscape-scale vegetation stripes (tiger bush) observed on the gentle slopes of semi-arid regions are 

useful indicators of future ecosystem degradation and catastrophic shifts towards desert. Mathematical 

models like the Klausmeier model—a set of coupled partial differential equations describing vegetation 

and water densities in space and time—are central to understanding their formation and development. 

One assumption made for mathematical simplicity is the local dispersal of seeds via a diffusion term. In 

fact, a large amount of work focuses on fitting dispersal ‘kernels’, probability density functions for seed 

dispersal distance, to empirical data of different species and modes of dispersal. In this paper, we address 

this discrepancy by analysing an extended Klausmeier model that includes long-distance seed dispersal 

via a non-local convolution term in place of diffusion, and assessing its effect on the resilience of striped 

patterns. Many authors report a slow uphill migration of stripes; but others report no detectable migra- 

tion speed. We show that long-distance seed dispersal permits the formation of patterns with a very 

slow (possibly undetectable) migration speed, and even stationary patterns which could explain the in- 

consistencies in the empirical data. In general, we show that the resilience of patterns to reduced rainfall 

may vary significantly depending on the rate of seed dispersal and the width of the dispersal kernel, and 

compare a selection of ecologically relevant kernels to examine the variation in pattern resilience. 

Crown Copyright © 2018 Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Ecological background 

The first scientific documentation of banded vegetation (or

tiger bush”) was in Somalia in the 1950s ( Macfadyen, 1950 ). Reg-

lar bands of vegetation alternating with near bare desert were

bserved to run parallel to the contours of gentle slopes ( 0 . 2 −
% incline ( Valentin et al., 1999 )). Over the years, it has be-

ome clear that banded vegetation is a global phenomenon with

ecorded observations in the African Sahel ( Müller, 2013; Thiery

t al., 1995 ), the Mulga Lands in East Australia ( Dunkerley and

rown, 2002; Moreno-de las Heras et al., 2012; Tongway and Lud-

ig, 1990 ), the States of Nevada ( Pelletier et al., 2012 ) and Texas

 Penny et al., 2013 ) in the United States, the Sonoran Desert in

orthern Mexico/southern United States ( Aguiar and Sala, 1999 ),

he Negev in Israel ( von Hardenberg et al., 2001 ) and Ladakh in
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ndia ( Yizhaq et al., 2014 ). The common theme is a semi-arid cli-

ate where the heat and lack of rainfall creates a hostile envi-

onment in which plants must compete for water—the limiting

actor for vegetation growth. When rainfall does occur, it is of-

en torrential and runs off the bare, crusted ground downhill to-

ards the vegetation where roots allow for increased infiltration;

romoting plant growth on the uphill edge and plant loss on the

ownhill edge. Sometimes called the “water redistribution hypoth-

sis” ( Thompson et al., 2011 ), the process generates stripes (typi-

ally 20 − 200 m in width ( Valentin et al., 1999 )) that slowly mi-

rate uphill at reported speeds in the region of 0.2m to 1.5m per

ear ( Hemming, 1965; Montana, 1992; Valentin et al., 1999; Wor-

all, 1959 ). 

Banded vegetation patterns are not just a fascinating example

f landscape scale self-organisation; they are an important stage

n the process of desertification in response to climate change. Evi-

ence of expanding deserts is clear, with recent work ( Thomas and

igam, 2018 ) showing a substantial advancement of the Sahara

esert over the last century. A common school of thought is that

esertification is a transition of uniform steady states; from a veg-

tation rich state to a barren “zero” steady state where vegeta-

ion is scarce. In this regard, mathematical modelling has been in-

trumental in identifying the intermediate (heterogeneous) states

n between, and for devising early warning signals that aid the

https://doi.org/10.1016/j.jtbi.2018.10.002
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Fig. 1. An illustration of desertification in one space dimension. For simplicity, rainfall slowly decreases at a constant rate from A = 3 . 5 to A = 0 . At the beginning of the 

simulation uniform vegetation is sustainable but as rainfall is decreased, a pattern emerges at around t = 750 . Patterns then transition with longer wavelengths observed for 

lower levels of rainfall. A single island of vegetation develops near t = 30 0 0 which vanishes suddenly into bare desert. Notice the slowing down of uphill migration before 

each pattern transition—a useful warning signal of an imminent regime shift in practice. The numerical simulation approximates the non-local Klausmeier model (4) when 

seeds disperse according to the Laplace kernel (6) with a = 1 . Other model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . 
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management of expanding deserts ( Corrado et al., 2014; Kéfi et al.,

2007; Rietkerk et al., 2004 ). For instance, the gradual changes in

spatial characteristics of bands can indicate an imminent regime

shift ( Kéfi et al., 2014 )—reduced rainfall leads to narrowing bands

and widening gaps between them. Certain changes could be an in-

dication that the current configuration is reaching a tipping point,

whereupon a switch to a new pattern of vegetation will begin; a

significant increase in rainfall is then needed to restore the previ-

ous state. This process can repeat itself for a predictable sequence

of patterns ending with a bare desert state, as we demonstrate in

Fig. 1 in one space dimension. Recent work has focused on the

colonisation of bare desert by vegetation ( Sherratt, 2016b ), though

in this paper we assume a starting point of uniform vegetation. 

Experimental work on vegetation patterns is difficult due to

their large spatial scale and slow evolution which occurs over

decades. Moreover, banded patterns have never been recreated un-

der laboratory conditions. Mathematical models are an inexpen-

sive tool for investigating the affects of environmental change,

with models that focus on the water redistribution hypothesis

( Gilad et al., 20 04; 20 07; von Hardenberg et al., 2001; Rietkerk

et al., 2002 ) being popular for analysis. This paper is based on the

Klausmeier model ( Klausmeier, 1999 ) which when suitably non-

dimensionalised is the reaction-advection-diffusion system 

∂u 

∂t 
= 

plant growth ︷︸︸︷ 
u 

2 w −
plant loss ︷︸︸︷ 

Bu + 

local 
plant dispersal ︷︸︸︷ 

∂ 2 u 

∂x 2 
, (1a)

∂w 

∂t 
= A ︸︷︷︸ 

rainfall 

− w ︸︷︷︸ 
evaporation 

− u 

2 w ︸︷︷︸ 
water uptake 

by plants 

+ v 
∂w 

∂x ︸ ︷︷ ︸ 
water flow 

downhill 

+ d 
∂ 2 w 

∂x 2 ︸ ︷︷ ︸ 
water 

diffusion 

, 

(1b)

where the plant density u ( x, t ) and surface water density w ( x, t )

are functions of space x and time t . The one-dimensional domain

is perpendicular to the contours of the slope, which we assume to

be of constant gradient. A large amount of empirical evidence sug-

gests that water infiltration in semi-arid regions is positively cor-

related with plant coverage due to the presence of root networks.

This process forms a positive feedback loop—more vegetation leads

to increased infiltration of water, which stimulates further growth

of vegetation. This justifies the non-linearity in (1) which is one

of the main drivers for pattern formation. Of course, on its own

this would lead to unbounded growth and spread of vegetation,

however, surface water is limited and acts as an inhibitor over

long range via advection and diffusion terms. These actions are
esponsible for pattern formation in (1). The original Klausmeier

odel did not include water diffusion but this has now become a

ommon addition since it allows the formation of patterns on flat

round as reported by some authors ( Dunkerley and Brown, 2002 ).

he parameters A > 0, B > 0, v > 0, d > 0 are rates that represent the

xtent of rainfall, plant loss due to natural death and herbivory, the

radient of the slope, and water diffusion, respectively. We refer to

1) throughout the text as the “local Klausmeier model”. 

.2. Modelling non-local seed dispersal 

Recent modelling studies have focused on better understand-

ng the role of long-range dispersal in ecological pattern forma-

ion ( Cannas et al., 2006; Eigentler and Sherratt, 2018; Pueyo et al.,

008 ), for instance, it was recently shown that movement of mus-

els via a Lévy walk creates patterns that increase ecological re-

ilience ( de Jager et al., 2011 ). Almost all model analysis for pat-

erned vegetation assumes local dispersal of plants via a diffusion

erm, which is rarely an accurate representation of a particular

lant species, but a convenient mathematical simplification. Diffu-

ion is widely believed to be inadequate for modelling plant dis-

ersal due to frequent long range dispersal events. The distance

 seed can travel from its source is influenced by external factors

uch as wind, as well as species specific characteristics, e.g. height

f plant, seed weight—some plant species can even disperse seeds

allistically ( Bullock et al., 2017 ). Secondary dispersal via animal or

ater transport can also affect the distance a seed can travel from

ts source ( Neubert et al., 1995 ). 

This long range reproductive behaviour can be modelled using

 “dispersal kernel”, which is a probability density function, φ( x, t ),

escribing the distribution of distances travelled by seeds originat-

ng from a single parent. As before, we let u ( x, t ) describe the plant

ensity at location x at time t . Suppose individual plants (seeds)

isperse instantaneously from their current location x to a new lo-

ation y at rate C > 0. We can describe this process via convolution

f φ and u and formulate the non-local analogue of the classical

iffusion equation: 

∂u 

∂t 
(x, t) = C ( I(x, t) − u (x, t) ) , (2)

where I(x, t) = (φ ∗ u )(x, t) = 

∫ ∞ 

−∞ 

φ(x − y ) u (y, t) dy. (3)

ne can derive (2) in a stochastic setting as a point jump or kanga-

oo process—see for example, Othmer et al. (1988) . The probability

ensity function φ( x ) has the property 
∫ ∞ 

−∞ 

φ(x ) dx = 1 , and since

2) has no births or deaths, we expect the total plant population
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o be conserved across the domain: the second term in (2) , −Cu,

nsures ∂ 
∂t 

∫ ∞ 

−∞ 

u (x, t) d x = 0 . 

This gives us a non-local description of seed dispersal and so

e now define the non-local Klausmeier model, 

∂u 

∂t 
= 

plant growth ︷︸︸︷ 
u 

2 w −
plant loss ︷︸︸︷ 

Bu + 

non-local 
plant dispersal ︷ ︸︸ ︷ 

C(I − u ) , (4a) 

∂w 

∂t 
= A ︸︷︷︸ 

rainfall 

− w ︸︷︷︸ 
evaporation 

− u 

2 w ︸︷︷︸ 
water uptake 

by plants 

+ v 
∂w 

∂x ︸ ︷︷ ︸ 
water flow 

downhill 

+ d 
∂ 2 w 

∂x 2 ︸ ︷︷ ︸ 
water 

diffusion 

, 

(4b) 

y replacing the diffusion term in (1) with the non-local convo-

ution term in (2) . In this paper, our primary concern is the rain-

all parameter, A , and so we fix B = 0 . 45 , v = 182 . 5 , d = 1 through-

ut the paper unless otherwise stated. Also of interest is the effect

hat seed dispersal has on pattern formation via variation of pa-

ameters a and C . We shall see that varying C appropriately with

 allows the local and non-local Klausmeier models to be easily

ompared for special dispersal kernels. All parameter choices are

n accordance with recent work ( Eigentler and Sherratt, 2018 ) de-

iving analytic results on pattern existence in (4). 

.3. Pattern existence 

We begin by examining the stability of the homogeneous steady

tates—those relevant for pattern formation are linearly stable to

omogeneous perturbations and unstable to heterogeneous pertur-

ations. The non-local Klausmeier model has either one or three

omogeneous steady states: a bare desert state (0, A ) that is al-

ays linearly stable, and two coexistence steady states 

(u ±, w ±) = 

(
A ± √ 

A 

2 − 4 B 

2 

2 B 

, 
A ∓ √ 

A 

2 − 4 B 

2 

2 

)
, (5) 

hat exist only when A ≥ 2 B , i.e. when the rate of rainfall is suffi-

ient to support the ecosystem. The steady state (u −, w −) is always

nstable, while (u + , w + ) is locally stable to homogeneous pertur-

ations when B < 2. It is therefore the (in)stability of (u + , w + ) that

s of primary interest when studying pattern formation. Note that

hen B > 2, oscillatory dynamics can occur that are not observed

n practice. Here, we assume B < 2 to analyse Turing-like patterns

hat are generated in response to (u + , w + ) becoming unstable.

pecifically, pattern solutions of (4) (and (1)) develop in response

o a “Turing-Hopf” bifurcation which, unlike the classic (station-

ry) Turing pattern, gives rise to a constant uphill migration of the

attern—a standard feature of models with directed transport. 

To investigate how rainfall influences pattern formation, we

ake A to be a control parameter. Suppose the rainfall is sufficient

o support a uniform covering of vegetation, i.e. (u + , w + ) is sta-

le to heterogeneous (and homogeneous) perturbations. Suppose

lso that climate change causes the rainfall in our model ecosys-

em to gradually decline. At some critical value of A ≥ 2 B , (u + , w + )
ecomes unstable to heterogeneous perturbations despite remain-

ng stable to homogeneous perturbations. This critical rainfall rate,

 TH , is a Turing-Hopf bifurcation. In general for both (1) and (4)

n analytic expression for A TH in terms of model parameter alone

annot be derived, however, leading order expressions for large v

steep slopes) have been calculated. In the local model a result

f this type can be found for d = 0 in Sherratt (2013a) , while re-

ent work yields an expression for the non-local Klausmeier model

or the case when φ is the Laplacian kernel ( Eigentler and Sher-

att, 2018 ). These calculations rely on expansions of the “disper-

ion relation” which associates spatially heterogeneous perturba-

ions with their respective growth rates. The difficulty with the
on-local case is that one obtains the Fourier transform of the dis-

ersal kernel within the dispersion relation. The Fourier transform

f the Laplace kernel is simple enough algebraically to permit fur-

her analysis, but this is not the case for the vast majority of eco-

ogically relevant kernels. 

The existence of patterns for A < 2 B , i.e. when a uniform cover-

ng of vegetation is no longer sustainable, reflects the increased re-

ilience of pattern forming vegetation. The minimum rainfall sup-

orting patterned vegetation, A min , cannot be calculated analyti-

ally, though a leading order expression for large v and d = 0 in

he local model can been found in Sherratt (2013b) . In this paper

e calculate the boundaries of pattern existence numerically, and

ur results for A TH are in agreement with the leading order expres-

ions in Eigentler and Sherratt (2018) . 

.4. Aims 

In this paper we are concerned with existing striped patterns

nd their resilience to ecological change. Previous work with re-

pect to pattern stability and resilience has focused on the local

lausmeier model and is well understood thanks to the numeri-

al continuation methods developed in Rademacher et al. (2007) .

he basis of this method is to be able to reduce the model to a

et of ordinary differential equations. In general, the complication

hen considering non-local seed dispersal is that the convolution

ntegral makes (4) non-reducible in this sense, and obtaining re-

ults similar to the local case for general φ is still an open prob-

em. That being said, kernels with certain properties are reducible

nd this is the focus of Section 2 , where we analyse (4) when φ is

he Laplace kernel—an ecologically relevant kernel ( Bullock et al.,

017; Clobert, 2012 ). In this special case we can gain insight into

he effects that long range seed dispersal has on the resilience of

atterns. 

Although rigorous results for general φ are beyond the scope

f this paper, we attempt to compare kernels in Section 3 by dis-

retising the non-local Klausmeier model in space. The size of the

esulting system of ordinary differential equations would be too

arge for accurate results to be computationally feasible using sim-

lar methods to those employed in Section 2 . To facilitate compu-

ation, we use a fixed coarse spatial grid for our discretisation, and

nalyse the resulting system for various φ. The assumption is that

he error associated with the discretisation should be roughly the

ame regardless of the specified kernel, making the qualitative re-

ults comparable. We will show that our results in this section are

urprisingly accurate by running the computations for the known

iffusion and Laplace cases. 

. Laplace kernel 

.1. Local equations for a non-local model 

There are numerous studies on the analysis of pattern so-

utions of the local Klausmeier model, with the method of

ademacher et al. (2007) being a powerful tool to test pattern sta-

ility. A prerequisite for this method is a local PDE model which

ne can reduce to a set of first order ordinary differential equa-

ions. This means that analysis of the non-local Klausmeier model

alls for a different approach when considering the convolution in-

egral in its full generality. That being said, dispersal kernels with

pecial properties allow the non-local problem (4) to be recast as

 set of local equations, facilitating the use of existing methods. 

The Laplace kernel, often presented as the equivalent negative

xponential kernel in the ecology literature ( Clobert, 2012 ), is given

y 

φ(x ) = 

a 
exp (−a | x | ) , a > 0 , (6) 
2 
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and has frequently been used to fit empirical data on seed dis-

persal ( Bullock et al., 2017 ). For this choice of kernel we can re-

duce (4) to a local PDE model, following work by other authors

( Avitabile and Schmidt, 2015; Laing et al., 2002; Merchant and Na-

gata, 2015; Sherratt, 2016a ). First, note that the Fourier transform

of φ is ˆ φ(ξ ) = a 2 / (a 2 + ξ 2 ) . Taking the Fourier transform of the

second derivative of I ( x, t ) and then rearranging gives, 

̂ ∂ 2 I 

∂x 2 
(ξ , t) = −ξ 2 ̂ (φ ∗ u ) (ξ , t) 

= − a 2 ξ 2 

a 2 + ξ 2 
ˆ u (ξ , t) 

= a 2 
(

a 2 

a 2 + ξ 2 
− 1 

)
ˆ u (ξ , t) 

and now taking the inverse Fourier transform of this equation

yields, 

∂ 2 I 

∂x 2 
(x, t) = a 2 (I(x, t) − u (x, t)) . 

The convolution integral (3) with φ( x ) given by (6) can therefore

be represented instead by the addition of a third equation so that

we can write (4) as the local PDE model: 

∂u 

∂t 
= u 

2 w − Bu + C(I − u ) , (7a)

∂w 

∂t 
= A − w − u 

2 w + v 
∂w 

∂x 
+ d 

∂ 2 w 

∂x 2 
, (7b)

0 = a 2 (u − I) + 

∂ 2 I 

∂x 2 
. (7c)

Solutions of (7) are in direct correspondence with the solutions

of (4). 

In the interest of model comparison with (1), we can set C =
a 2 = 2 /σ (a ) 2 , where σ is the standard deviation of the Laplace

kernel. This ensures that in the limit a → ∞ , the non-local Klaus-

meier model with φ given by (6) will converge to the local Klaus-

meier model. This is because C φ approaches a δ function as a be-

comes large, i.e. seed dispersal becomes progressively more locally

concentrated. This assumption requires the restriction a > 

√ 

B to

ensure the existence of a maximum rainfall level for pattern for-

mation. 

2.2. Methods 

The key to understanding desertification is the transitioning

through a sequence of distinct patterns due to instabilities brought

about by low rainfall rates, and in this section we show how one

can create a map of stability using numerical continuation and bi-

furcation analysis. This enables us to assess the differences in the

critical rainfall thresholds in the presence of non-local dispersal.

The study of pattern solutions of (7) is made significantly easier

with a coordinate transformation to a moving frame of reference

z = x − ct, so that travelling waves u (x, t) = U(z) , w (x, t) = W (z) ,

I(x, t) = J(z) are solutions of 

0 = U 

2 W − BU + a 2 (J − U) + cU 

′ (8a)

0 = A − W − U 

2 W + (c + v ) W 

′ + dW 

′′ (8b)

0 = a 2 (U − J) + J ′′ . (8c)

Here, prime denotes differentiation with respect to z , and c is

the wave speed of the pattern. Using the numerical continuation
oftware package AUTO 07p Doedel et al. (2007) one can vary a

odel parameter, c say, and detect Hopf bifurcations in (8)—the

irth of periodic patterns. In Fig. 2 we show some solution pro-

les along a branch emanating from a detected Hopf bifurcation.

ote that the reduction of (7) to (8) greatly simplifies analysis, but

n doing so introduces an extra parameter c so that, instead of a

attern forming interval A ∈ (A min , A T H ) described in Section 1.3 ,

e must consider a pattern forming region in the A –c parameter

lane. 

Though we are able to numerically generate patterns of differ-

nt wave speeds using (8), they may or may not be stable as solu-

ions of (7). To test the stability of patterns consider the perturbed

ravelling waves 

u (ξ , t) = U(ξ ) + ū (ξ , t) exp (λt) , 

w (ξ , t) = W (ξ ) + w̄ (ξ , t) exp (λt) , (9)

I(ξ , t) = J(ξ ) + ̄I (ξ , t) exp (λt) . 

ubstitution of (9) into (7) and linearising about the travelling

ave solution yields the eigenvalue problem: 

λū = (2 UW − b) ̄u + U 

2 w̄ + a 2 ( ̄I − ū ) + c ̄u 

′ , (10a)

λū = −2 UW ū − (1 + U 

2 ) ̄w + a 2 ( ̄I − ū ) 

+ (c + v ) ̄u 

′ + d ̄u 

′′ , (10b)

0 = a 2 ( ̄u − Ī ) + ̄I ′′ (10c)

Here, λ and the associated eigenvectors ū , w̄ , Ī are com-

lex valued. The values of λ that satisfy (10) determine whether

mall disturbances will grow or decay, and is known as the spec-

rum. It is common practice to visualise spectra in the com-

lex plane as we do in Fig. 2 for different travelling wave so-

utions of (8). We use the method of Rademacher to plot the

pectra associated with (10)—for details we refer the reader to

ademacher et al. (2007) and Sherratt (2012) . Note that the

ethod involves discretising the eigenvalue problem in order to

nd approximate initial values of λ from which a numerical con-

inuation can be started. For this, a minor complication is that (10)

s a ‘generalised’ eigenvalue problem since (8c) has no time deriva-

ive. This is easily dealt with using a simple reformulation to the

ordinary’ case ( Sherratt, 2012 ). 

All spectra of travelling waves go through the origin in the com-

lex λ plane (reflecting the neutral stability of the wave to trans-

ation) and so we must omit λ = 0 in the following definition of

tability: if Re (λ) < 0 for all λ 
 = 0 the solution is linearly stable; if

here exists a λ with Re (λ) > 0 the solution is unstable. Figs. 2 (b,d)

how stable solutions of (7), whereas Figs. 2 (a,c) show unstable so-

utions. The transition in Figs. 2 (a–d) is obtained by decreasing A ;

his affects the shape and stability of solutions. Consider the so-

ution in Fig. 2 (b). Increasing the rainfall will eventually result in

he solution in Fig. 2 (a) which is unstable as a result of an ‘Eck-

aus’ (or ‘sideband’) instability—a change of curvature at the origin

f the spectrum. This is a standard and well documented feature

f the Klausmeier model and is the key to explaining the transi-

ion of vegetation patterns. A banded pattern that becomes unsta-

le via Eckhaus instability switches to a pattern of longer/shorter

avelength. Decreasing the rainfall eventually gives the solution

n Fig. 2 (c) which is unstable due to a ‘Hopf’ type instability. This

as interesting implications on the future of an unstable pattern—

or instance, instead of a transition to a different wavelength pat-

ern as with an Eckhaus instability, the wavelength is preserved

nd temporal oscillations can be observed ( Dagbovie and Sher-

att, 2014 ). We address the ecological significance of this in the

ollowing section. 
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Fig. 2. Travelling wave solution profiles of (8) as rainfall is decreased, along with the rightmost part of their spectra. Solutions all have a wavelength of 40 and are depicted 

in Fig. 3 (c) as green points along the constant wavelength contour. In (a) c = 1 . 7 and the pattern is unstable due to an Eckhaus instability. In (b) c = 1 and the pattern is 

stable. In (c) c = 0 . 1 and the pattern becomes unstable again but this time due to a Hopf-type instability. In (d) c = 0 . 01 and the pattern becomes stable again. Our results 

suggest that as c approaches its minimum value along the contour, u approaches a δ function. Other model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . 

 

i  

t  

a  

s  

s  

a  

t

2

 

d  

a  

K  

s  

m  

n  

r  

d  

b

 

t  

(  

o  

i  

t  

b  

l  

s  

c  

p  

F  

m  

i  

t  

t  

t  

t  
Using the ideas described so far we are able to map out ex-

stence and stability boundaries for banded vegetation patterns in

he A –c parameter plane in Fig. 3 . We calculate stability bound-

ries via continuation of marginally stable solutions in parameter

pace. For an Eckhaus instability boundary, this involves finding a

olution with zero curvature at λ = 0 in the spectrum. In contrast,

 Hopf instability boundary is calculated via continuation of solu-

ions with a double root for Re (λ) = 0 away from the origin. 

.3. Results 

We have discussed the methods employed in this section for

etermining the existence and stability of solutions. We now ex-

mine the ecological implications of Fig. 3 . Results for the local

lausmeier model in Fig. 3 (a) are not novel, but we include them

o a comparison may be made with results for the non-local Klaus-

eier model in Figs. 3 (b) and (c). As mentioned, when C = a 2 the

on-local model approaches the local in the large a limit. We have

epeated our numerical analysis for large a and obtain results in-
istinguishable from Fig. 3 (a), validating the predicted convergent

ehaviour. 

In Figs. 3 (b,c) we map out pattern existence and stability in

he A –c parameter plane for moderate values of a . Previous work

 Eigentler and Sherratt, 2018 ) has focused only on the existence

f patterns, concluding that the tendency for pattern formation

ncreases as a decreases (with C = a 2 ). The Turing-Hopf bifurca-

ion locus, from which patterns of constant wavelength emanate,

ounds the right-hand side of the pattern forming region; with a

ocus of homoclinic orbits bounding the left. Patterns can either be

table or unstable and we divide the pattern forming region ac-

ordingly. Suppose one has a stable pattern; as one varies A the

attern evolves following a contour of constant wavelength (see

ig. 1 for an illustration of this in a numerical simulation of the

odel). The pattern can become unstable as a result of either an

ncrease, or a decrease in rainfall. In this paper, we refer to a pat-

ern becoming unstable due to increased rainfall as a ‘transition

owards uniform vegetation’, and decreased rainfall as a ‘transi-

ion towards desert’. Our numerical analysis in Fig. 3 shows that

he parameter region for stable patterns grows as a decreases. Ad-
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Fig. 3. Existence and stability of striped vegetation patterns for (a) the local Klaus- 

meier model, (b), (c) the non-local Klausmeier model with Laplace kernel and 

C = a 2 . Thick black curve: Turing-Hopf locus. Thick grey curve: locus of homoclinic 

solutions. Thin grey curves: contours of constant wavelength. Blue curve: Eckhaus 

instability boundary. Red curve: Hopf instability boundary. Green curve: locus of 

folds. Yellow/grey regions indicate stable/unstable solutions. Green points represent 

solutions in Fig. 2 . Other model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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itionally, one can see that a transition towards desert occurs at

ower rainfall levels along the wavelength contours. Interestingly, a

ransition towards uniform vegetation remains largely unchanged

elative to the Turing-Hopf bifurcation locus. This reflects the in-

reased resilience of patterns at low rainfall when a is small, and a

reference of the system to transition towards uniform vegetation

s soon as the rainfall is sufficient to permit it. 

For very long range dispersal (still with C = a 2 ), the mechanism

f destabilisation can change completely from an Eckhaus instabil-

ty to a Hopf instability, though only in the region relevant to a

ransition towards desert. The ecological implications of this can

e observed in numerical simulation of (4). Fig. 4 shows time sim-

lations of two initially unstable striped patterns for different a

nd otherwise identical parameter values. The first is unstable be-

ause of an Eckhaus instability and quickly transitions to a longer

avelength pattern corresponding to a shift towards the desert

tate. This behaviour is a key component of the original Klausmeier

odel and is well established in the literature. The second is un-

table because of a Hopf-type instability and as time evolves, the

eaks of vegetation begin to oscillate in time. The wavelength of

he pattern is preserved and a modest increase in rainfall allows a

table pattern to emerge. Intuitively, this seems a valid ecological

trategy: if the amount of rainfall cannot sustain the pattern, peaks

f vegetation alternate their density to compensate for the lack of

ater in the overarching ecosystem. This ensures its structure is

ot lost so that when rainfall is increased, a stable pattern of the

ame (shorter) wavelength may persist. 

In Fig. 5 we show a similar time simulation of a pattern be-

oming unstable, again due to a Hopf type instability, though with

lightly different parameters. In this case we have an initially sta-

le pattern that migrates uphill at a constant speed. As the rainfall

s reduced the pattern begins to slow as expected close to desta-

ilisation, and becomes unstable at approximately A = 0 . 5 . This re-

ults in high density, stationary peaks of vegetation that remain

t the same wavelength as the initial stable pattern. This is an

nusual prediction for a model with directed transport. The most

mportant feature for both of these observations—oscillating peaks

nd stationary patterns—is the ability of the ecosystem to endure

he same arid conditions that would normally lead to catastrophe,

ccording to the local Klausmeier model. 

Finally in this section we comment that we are not aware of

ny ecological evidence for choosing C = a 2 = 2 /σ (a ) 2 —we did so

imply because of the associated convergence properties of (4) in

he large a limit that allow for model comparison. Therefore, for

ompleteness we performed our calculations for varying a with a

xed value of C , and vice versa. The Eckhaus stability boundary

s particularly informative because it not only bounds the right

and side of the stable pattern forming region, but it must nec-

ssarily pass through the maximum A supporting pattern forma-

ion, and so for brevity we compare Eckhaus curves for various

ombinations of a and C in Fig. 6 . We discuss the separate cases:

or fixed C , increasing the width of the dispersal kernel limits the

ange of stable patterns, with uniform vegetation being sustainable

t much lower levels of rainfall. When patterned vegetation is ob-

erved for small a it is likely to have a faster migration speed, in

ontrast to large a values; for which vegetation is likely to have

 low migration speed. For a fixed kernel width, a decreased dis-

ersal rate will yield greater pattern forming tendencies, and in

ome cases the Eckhaus boundary may be replaced by a stability

oundary of Hopf-type, changing the behaviour of unstable solu-

ions as previously discussed. A comprehensive statistical assess-

ent ( Bullock et al., 2017 ) of various ecological datasets suggests a

ange of C and a combinations that may occur for different plant

pecies and dispersal modes. Although the relationship C = a 2 can-

ot in general be assumed, the parameter choices in Fig. 3 (c) along

ith subsequent conclusions are still relevant. 
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Fig. 4. Resilience of patterns in the non-local Klausmeier model. The figure shows time simulations of two initially unstable patterns for different a . When a = 1 the initial 

pattern of wavelength 20 quickly destabilises to form a pattern of wavelength 40; this is because of an Eckhaus instability. When a = 0 . 75 temporal oscillations due to a 

Hopf instability are visible but the wavelength of the pattern remains the same and a small increase in rainfall regenerates a stable pattern with the same initial wavelength. 

Other model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . 

Fig. 5. Stationary patterns in the non-local Klausmeier model. Initially we have a 

stable pattern. As the rainfall is reduced the pattern becomes unstable due to a 

Hopf type instability. This causes the pattern to halt its migration up the slope and 

stationary, high density peaks are observed. As rainfall increases back to its initial 

value, the initial stable pattern returns, highlighting the increased resilience of the 

system. This simulation was done with a = 0 . 75 and d = 100 . 
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. A comparison of kernels 

.1. Methods 

The analysis of the non-local Klausmeier model for general seed

ispersal kernels is very difficult and we are not aware of any

ethods that allow the insight and accuracy gained in Section 2 ,

hough efficient numerical simulations of integro-differential equa-

ion models are still possible (when the non-local term is a con-

olution) via use of fast Fourier transforms (FFTs)—see, for in-

tance, Coombes et al. (2012) and Rankin et al. (2014) . One ap-

roach used in the past has been to discretise the system in space

n order to obtain a large system of ordinary differential equations

 Sherratt and Lord, 2007 ). The immediate drawback of this is the

ncreased computational expense of any numerical analysis, and in

articular, testing the stability along solution branches is time con-

uming. The computation is, however, feasible on a coarse spatial
rid at the expense of numerical accuracy. Therefore, the results

n this section are qualitative and are intended for the purposes of

omparison. In 2007, the local Klausmeier model was analysed in

he same way ( Sherratt and Lord, 2007 ), with the computation be-

ng implemented with a grid spacing of �x = 2 . With an increase

n computational power since then, we are able to use �x = 1 , and

ith a more complicated set of equations. As technology advances

t will become possible to employ this method with a finer grid

pacing to obtain more accurate results. 

The spatial discretisation of the non-local Klausmeier model

ives the following system of ODEs: 

∂u i 

∂t 
= u 

2 
i w i − Bu i + C(I i − u i ) , (11a) 

∂w i 

∂t 
= A − w i − u 

2 
i w i + v 

w i +1 − w i 

�x 

+ d 
w i +1 − 2 w i + 2 w i −1 

�x 2 
(11b) 

or i = (1 , . . . , N) and where I i is an approximation of the infinite

ntegral. We consider periodic boundary conditions u 0 (t) = u N (t) ,

 N+1 (t) = u 1 (t ) , w 0 (t ) = w N (t ) , w N+1 (t ) = w 1 (t) for simplicity. If

ne truncates the integral to be evaluated on the interval [ −L, L ] ,

e can work on the same grid as (11) and define M points for the

ntegral approximation as y j = −L + ( j − 1)�x with j = (1 , . . . , M)

nd M = 2 L/ �x + 1 . The set of points y j is then a subset of x i and

e can use, for example, the trapezoidal rule to obtain the follow-

ng approximation: 

I i (t) = 

�x 

2 

M ∑ 

j=1 

(
φ(y j−1 ) u (x i − y j−1 , t) 

+ φ(y j ) u (x i − y j , t) 
)
. (12) 

ome kernels we studied required Simpson’s rule for a more ac-

urate approximation. L must be carefully chosen—not too large so

s to needlessly increase computational cost, and not too small so

hat one obtains a poor approximation of the infinite integral. For

nstance, if the width of the kernel in question is small in compar-

son with the length of the spatial domain, one can take M to be

ignificantly less than N , reducing the computation time. 

Our approach to balance accuracy and efficiency was as follows:

e chose a dispersal kernel and calculated an accurate ‘true’ evalu-

tion of 
∫ L 
−L φ(x ) dx to verify that the truncation is sufficiently close
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Fig. 6. The variation in the Eckhaus stability boundary for (a) varying kernel width 

with fixed dispersal rate; (b) varying dispersal rate with fixed kernel width. The 

range of stable striped patterns grows as the Eckhaus boundary moves to the right. 

In (a) the Eckhaus boundary recedes to the left as the width of the kernel increases. 

In (b) the Eckhaus boundary grows to the right as the seed dispersal rate increases. 

All curves terminate at a point on the locus of homoclinic orbits (not shown) to the 

left of the plot, except for the curves in (b) with C = 0 . 7 and C = 0 . 5 which turn 

around and move towards the right. Here, a Hopf instability (not shown) becomes 

the primary destabilisation mechanism similarly to that shown in Fig. 3 (c). Other 

model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . 
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to 1, keeping L as small as possible. We then calculated the nu-

merical approximation on our coarse grid spacing and compared

it with the true result. Clearly one can choose a kernel which is

not well approximated with such a course grid spacing, though

the kernels and parameters we used were ‘nice’ enough for this

method. Assuming a well approximated kernel is obtained, one can

begin the analysis of (11) which we do, again, by numerical con-

tinuation with AUTO 07p ( Doedel et al., 2007 ). 

Our analysis begins with the stable homogeneous steady state

of uniform vegetation. For the spatially discretised system of equa-

tions, as one decreases the rainfall parameter the homogeneous
teady state becomes unstable, and one detects a number of Hopf

ifurcations corresponding to a selection of specific pattern modes

hich depend on the size of the spatial domain—in this paper we

ake the domain size to be 60, and with a grid spacing of �x = 1

his gives us 120 equations to analyse. One then numerically con-

inues periodic solutions from each detected Hopf bifurcation al-

owing AUTO to test stability as the rainfall parameter varies along

he solution branch. 

We study (4) for three ecologically relevant kernels, along with

he diffusion case (1), for which this analysis was applied for d =
 in Sherratt and Lord (2007) . Together with the Laplace kernel

6) we consider a Gaussian kernel 

φ(x ) = 

a g √ 

π
e −a 2 g x 

2 

, a g > 0 , (13)

nd a power law kernel 

φ(x ) = 

(b − 1) a p 

2(1 + a p | x | ) b , a p > 0 , b > 3 . (14)

he standard deviations for the Laplace, Gaussian and power

aw kernels are σ (a ) = 

√ 

2 /a, σ (a g ) = 1 / ( 
√ 

2 a g ) and σ (a p ) =
( 
√ 

b 2 − 5 b + 6 a p ) , respectively. Since the power law kernel is a

wo-parameter kernel we fixed b = 10 . For comparison we take

 = 1 and choose kernel parameters such that σ = 

√ 

2 in each case,

o that a = 1 , a g = 0 . 5 and a p ≈ 0.134. AUTO will not distinguish

etween an Eckhaus or a Hopf type instability so we choose C

ot too small so as not to generate a Hopf-type instability (see

ig. 6 (b)). To be clear, we are now comparing between the shape

f the kernel, as opposed to its width as in Section 2 . 

.2. Results 

The functional form of the dispersal kernel has a minimal in-

uence on the formation and evolution of striped patterns as seen

n Fig. 7 , and more significant differences are observed when one

aries the width of the kernel and the rate of dispersal. Conse-

uently, the conclusions set out in Section 2 become more impor-

ant; now being relevant to a wider variety of plant species that

isperse seeds according to a range of dispersal kernels. We do

owever discuss the small variations that occur when one changes

. 

We overlay the known results for diffusion and Laplace kernel

ases in Figs. 7 (a,b), allowing one to gauge the accuracy of the dis-

ussed spatial approximation. We retain surprising levels of accu-

acy despite the coarseness of the spatial grid, especially when φ
s the Laplace kernel. Note that the maximum rainfall for pattern

ormation (the intersection of Eckhaus and Hopf-locus curves) is

nly relevant for periodic boundary conditions when the domain

ize is divisible by the pattern wavelength—a quasi-periodic solu-

ion would be unstable as a solution of the underlying model and

atterns would not be observed. Qualitatively, the existence and

tability of patterns is the same regardless of the shape of the dis-

ersal kernel, assuming a fixed kernel width. The main difference

s the existence of additional pattern modes when one considers

on-local dispersal as opposed to local dispersal, though these are

ostly unstable and therefore irrelevant in applications. There is

lso a difference in this respect when one changes the shape of the

ernel, with the least pattern modes being observed for a Gaussian

ernel, and the most for a power law kernel. 

Because the differences are slight, it is more convenient to view

he threshold existence and stability values as a function of the

attern wavelength, as we show in Fig. 8 for the relevant stable

atterns only. We find that the power law and Laplace kernels in

articular increase the pattern forming tendencies as well as re-

ilience. For the Laplace, Gaussian and diffusion cases the onset of

attern formation generates a mode 4 pattern but for the power
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Fig. 7. Existence and stability results for various dispersal kernels using (11) are plotted in orange with solid/dashed curves representing stable/unstable solutions. Known 

results for the Hopf locus (black) and Eckhaus stability boundary (blue) obtained using the methods in Section 2.2 are superimposed in (a) and (b). The standard deviation 

and dispersal rates in (b)–(d) were kept constant: σ 2 = 2 , C = 1 . Other model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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aw kernel, a mode 5 pattern becomes relevant at onset. In ecolog-

cal terms, plants that disperse their seeds according to a power

aw distribution are more likely to form shorter wavelength pat-

erns with increased resilience. The unfortunate downside of the

ncreased resilience observed in the Laplace and power law cases

s the additional rainfall needed for ecosystem restoration. For in-

tance, consider the mode 1 pattern corresponding to an oasis on

he periodic domain of length 60. It is true that the Laplace and

ower law distributions allow the pattern to persist at lower rain-

all levels than the Gaussian and diffusion cases. However, upon in-

reasing the rainfall the system is more easily restored in the Gaus-

ian and diffusion cases meaning a trade off exists, with a price to

ay for increased resilience. 

. Discussion 

Striped patterns are strongly influenced by non-local seed dis-

ersal. Our findings in Section 2 reveal that non-local dispersal can

ncrease the resilience of striped vegetation in two ways: the first
y permitting stable patterns at levels of rainfall that would oth-

rwise be unsustainable if seeds dispersed locally. The second is

ore interesting; patterns undergo the usual slowing down when

ainfall approaches critically low levels, but in certain instances

atterns that become ‘unsustainable’ do not lead to a sudden shift

f the ecosystem towards desert, as previous theory suggests. In-

tead the model predicts alternative coping strategies such as fluc-

uations of vegetation peak densities in time (see Fig. 4 ) and even

tationary patterns (see Fig. 5 ). In both cases a small increase

n rainfall regenerates the previous stable pattern, which demon-

trates the increased resilience of the vegetation as a consequence

f long-distance seed dispersal. 

A key finding of our work is the existence of slow mov-

ng and stationary patterns as a result of non-local dispersal.

here is much evidence to support the uphill migration of vege-

ation stripes, both mathematical ( Sherratt, 2013a ) and empirical

 Deblauwe et al., 2012; Sherratt, 2013a ). However, contradictory

eld observations also exist that suggest patterns can be station-
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Fig. 8. A comparison of the relevant stable patterns according to their wavelength 

for a range of dispersal kernels. Parameters are C = 1 , σ 2 = 2 with other model 

parameters given in the main body of the text. Solid/dashed lines represent sta- 

ble/unstable patterns. Other model parameters are fixed: B = 0 . 45 , v = 182 . 5 , d = 1 . 
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ary on slopes ( White, 1969; Worrall, 1959 ) with the local Klaus-

meier model being inconsistent with such evidence. Other theo-

retical models have been proposed that do permit stationary so-

lutions ( Saco et al., 2007; Thompson and Katul, 2009 )—they in-

clude the transport of seeds via run-off water in the downhill

direction. It has also been posited that stationary patterns could

be explained by compacted, weathered bands of soil that make

colonisation difficult ( Dunkerley and Brown, 2002 ). The original

Klausmeier model was deemed to be in order-of-magnitude agree-

ment with field observations ( Klausmeier, 1999 ) and gave predic-

tions of migration speeds in the range 0 . 4 − 1 . 9 m year −1 . With

the addition of non-local dispersal, patterns may be permitted at

c < 0.2 in some cases (see Fig. 6 (a)) corresponding to speeds of

< 0 . 1 m year −1 —the movement of vegetation would be practically

undetectable over the time span of the available data. Although (4)

is not intended to be quantitatively accurate, we believe the model

provides a good explanation for why patterns may be observed as

stationary in practice. 

The motivation for studying the affects of dispersal kernel

shape was the wide extent of factors affecting dispersal distance

(e.g. vegetation species, habitat, dispersal mode). Certainly a single

kernel cannot be fitted to every dataset across all plant species. In

particular, a main feature of many ecologically relevant dispersal

kernels are their ‘fat’ tails—these are often called ‘leptokurtic’ ker-

nels. The power law kernel can be viewed as fat tailed due to its

algebraic decay away from the mean, contrary to the exponential

decay of the ‘thin’ tailed Gaussian and Laplace kernels. In general,

however, we find that existence and stability are very similar re-

gardless of kernel which suggests that kernel width and seed dis-
ersal rate are more relevant in the study of patterned vegetation,

nd the kernel shape can be neglected for qualitative studies. This

trengthens our results that assume Laplace distributed seed dis-

ersal in Section 2 . 

A direction for further studies could be the (possible) existence

f stable stationary patterns in the non-local Klausmeier model as

uggested by Fig. 3 (c). For the local model the homoclinic orbit lo-

us terminates at the Hopf bifurcation locus, though despite our

fforts we were unable to determine whether this non-occurrence

n Figs. 3 (b–c) was a numerical issue or a genuine feature of the

odel; wavelength contours do appear to terminate very close to

 zero migration speed. One can observe similar behaviour for the

patially discretised system in Fig. 7 . We were unable to verify the

ehaviour in time simulations of the model due to the sharpness

f the vegetation peaks which lead to a poor approximation in

ur numerical scheme—a more sophisticated algorithm is required

ere, e.g. dynamically varying mesh. Furthermore, an interesting

irection would be to try and estimate the kernel parameters and

ispersal rate in a specific instance of banded vegetation as a case

tudy. In particular, one could estimate the parameters for vege-

ation that has been shown to exhibit uphill migration, and vege-

ation shown to be stationary. Feeding these parameters into the

odel could help verify our theory as to why some patterns move,

nd some do not. 
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