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Abstract
An aerial view of an intertidal mussel bed often reveals large scale striped patterns
aligned perpendicular to the direction of the tide; dense bands ofmussels alternate peri-
odically with near bare sediment. Experimental work led to the formulation of a set
of coupled partial differential equations modelling a mussel–algae interaction, which
proved pivotal in explaining the phenomenon. The key class of model solutions to con-
sider are one-dimensional periodic travelling waves (wavetrains) that encapsulate the
abundance of peak and trough mussel densities observed in practice. These solutions
may, or may not, be stable to small perturbations, and previous work has focused on
determining the ecologically relevant (stable) wavetrain solutions in terms of model
parameters. The aim of this paper is to extend this analysis to two space dimensions
by considering the full stripe pattern solution in order to study the effect of transverse
two-dimensional perturbations—a more true to life problem. Using numerical con-
tinuation techniques, we find that some striped patterns that were previously deemed
stable via the consideration of the associated wavetrain solution, are in fact unstable
to transverse two-dimensional perturbations; and numerical simulation of the model
shows that they break up to form regular spotted patterns. In particular, we show that
break up of stripes into spots is a consequence of low tidal flow rates. Our consider-
ation of random algal movement via a dispersal term allows us to show that a higher
algal dispersal rate facilitates the formation of stripes at lower flow rates, but also
encourages their break up into spots. We identify a novel hysteresis effect in mussel
beds that is a consequence of transverse perturbations.
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1 Introduction

Blue mussels (Mytilus edulis) are often known as the common mussel because of
their persistence in abundance across various intertidal regions. They usually play
important roles in biodiverse ecosystems as major food sources for aquatic and terres-
trial animals, and also form the foundations of many shallow water, benthic habitats.
One important role is the circulation of nutrients via filter feeding—water is siphoned
over the gills where suspended biomass, such as algae, enters the digestive system.
The excrements provide nutrients for other marine animals, and bi-products (pseud-
ofaeces) become a form of enriched sediment, thought to increase species diversity
(Dame et al. 1991). A comprehensive overview of the blue mussel has been collated
in an online archive (Tyler-Walters 2008) by The Marine Biological Association. The
ecological and agricultural significance of the blue mussel has prompted numerous
empirical (Christensen et al. 2015; Dobretsov 1999; Capelle et al. 2014; Okamura
1986; Hughes and Griffiths 1988; Guiñez and Castilla 1999), as well as mathematical
(van de Koppel et al. 2005; Liu et al. 2012; Sherratt 2016; Cangelosi et al. 2015;
Ghazaryan and Manukian 2015; Holzer and Popović 2017), studies on mussel aggre-
gation. Though sessile for the majority of their lives, individuals are able to reposition
themselves—they anchor onto substrate by extending new byssus threads, which are
shortened so that the main body of the mussel is dragged into position. Young mussels
are particularly mobile, often settling away from older mussels to limit competition for
food (Newell 1989), and, collectively, forming large beds on soft sediment by adher-
ing to one another and ocean debris. Their local movement creates the opportunity for
self organisation into large scale patterns. In this paper, we focus on periodic striped
patterns in soft sediment mussel beds, observed in both the DutchWadden Sea (van de
Koppel et al. 2005) and theMenai Strait (UK) (Gascoigne et al. 2005).We demonstrate
how mussels can reorganise themselves from striped formations into spotted, patchy
formations when the bed is subject to ecological change, providing insight into the
origin of patterns such as that shown in Fig. 1, which is an aerial photograph taken
over the Wadden Sea.

In this paper, we study amathematical model based on the “reduced losses” hypoth-
esis for striped mussel beds, which was proposed by van de Koppel et al. (2005).
Mussels adopt a “strength in numbers” approach by forming dense aggregations to
reduce their dislodgement by waves, and defend against predation. Soft-sediment beds
are heavily influenced by the algal concentration in the benthic boundary layer, and
this is the limiting factor for mussel growth (Dolmer 2000; Øie et al. 2002). Therefore,
tidal currents play a significant role in pattern formation: the algal supply is simultane-
ously depleted and transported with the tide, inducing a long range inhibition between
mussels. This, coupled with a short range activation to reduce losses, is the origin of
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Large scale patterns in mussel beds: stripes or spots? 817

Fig. 1 An image of large scale
patterning in a mussel bed in the
Dutch Wadden Sea. The image
was taken from a topological
map featured on BAG viewer, an
interactive map powered by
Kadaster, and is reproduced
under the licence CC-BY
Kadaster (https://
creativecommons.org/licenses/
by/4.0/legalcode)

periodic striped patterns, whereby a balance is struck between cooperation and com-
petition between individual mussels. Before proceeding, we comment that there is an
alternative “sediment accumulation” hypothesis for stripe formation in mussel beds,
proposed by Liu et al. (2012).

We analyse an extended version of the original reduced losses model van de Kop-
pel et al. (2005)—the non-dimensionalised equations for algal and mussel densities,
a(x, y, t) and m(x, y, t), respectively, are given by

∂a

∂t
=

transfer to/from
upper water layer

︷ ︸︸ ︷

α(1 − a) −
consumption
by mussels

︷︸︸︷

am
︸ ︷︷ ︸

=: f (a,m)

+

tidal
advection
︷︸︸︷

β
∂a

∂x
+

algal
dispersal
︷︸︸︷

νΔa (1a)

∂m

∂t
=

birth
︷︸︸︷

δam −

dislodgement
by waves
︷ ︸︸ ︷

μm

1 + m
︸ ︷︷ ︸

=: g(a,m)

+
mussel
dispersal
︷︸︸︷

Δm . (1b)

The parameters in these equations depend on a number of dimensional parameters (see
van de Koppel’s paper 2005 for details) but convenient interpretations are as follows:
α > 0 is the renewal rate of algae; β is the tidal flow rate; δ > 0 is the scaled potential
growth rate of mussels; μ > 0 is the maximal mussel mortality rate. In this paper we
analyse (1) in both one space dimension (x, t) and two space dimensions (x, y, t).
The x-coordinate is parallel to the direction of advection, with the y-coordinate acting
perpendicular—in the direction of the shore. We take β to be constant on the basis
that the influx of algae with the incoming tide is the dominant effect; it would be more
realistic to allow for oscillations in β, but doing so is significantly more complicated
mathematically (Sherratt and Mackenzie 2016). However, we do take β as a control
parameter in our prospective numerical analysis, which is therefore relevant for slowly
varying β. We allow β to have either sign reflecting the bi-directional nature of tidal
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flow, so that sign changes in β correspond to the tide changing direction at either high
or low tide. Note however that (1) is unchanged by changes in the signs of β and x .
The parameter ν � 1 is a ratio of algal and mussel dispersal rates. In the original
reduced losses model (van de Koppel et al. 2005) algal movement is solely described
by an advection term that mimics tidal flow and the transport of algae along with
it. Cangelosi et al. (2015) extended the model by assuming a random movement of
algae represented by a diffusive term, but their subsequent work focused on the special
case where β = 0. Equation (1) is the extended version of the reduced losses model,
including both transport and dispersal terms.

We can study pattern formation by considering pattern solutions of (1). Mathemat-
ically, we do this by changing coordinate system to a frame of reference that moves
in the direction of the pattern. This allows (1) to be reduced to a set of ordinary dif-
ferential equations that are more easily analysed. In the real world, mussel beds are
subject to disturbances, which we can model by adding small perturbations to our
solutions. We are interested in determining which striped patterns are stable to these
small disturbances, since they will persist in the disorderly and changeable setting of
real mussel beds. For simplicity, we can categorise perturbations as either 1D—acting
in the direction of water flow, or, 2D—acting, additionally, in a direction parallel to
the shoreline. Previous work (Wang et al. 2009; Sherratt 2013a) has focused on the
effects of 1D disturbances and the determination of ecologically relevant patterns by
means of analysing (1), though we are unaware of any advances that consider sta-
bility to both 1D and 2D perturbations—a more accurate representation of the real
world problem. Specifically, we study how the flow rate and algal dispersal rate affect
stability. We pose the question; of those striped patterns that are stable to 1D distur-
bances, which are stable to 2D disturbances, and what is the fate of the 2D unstable
patterns? We use numerical continuation techniques to determine those 1D striped
patterns that will persist in their 2D setting, and verify that regular spotted patterns
arise from those that are 2D unstable; we do this through numerical simulation of
(1). In all numerical simulations we solve (1) on a unit square with periodic bound-
aries; utilising a spectral method (we used the fft2 and ifft2 routines from the
Python library, NumPy) to remove the stiffness associated with diffusion terms, and
an exponential time-differencing Runge-Kutta scheme which is described in Cox and
Matthews (2002). Our work builds on a study of the stability of banded vegetation
patterns observed in semi-arid desert regions by Siero et al. (2015).

In Sect. 2 we discuss the necessary conditions for the formation of striped patterns
from a homogeneous steady state of (1). The remainder of the paper focuses on the
stability of existing striped patterns and in Sect. 3 we detail a numerical methodology
for testing 2D stability of striped mussel beds. In particular we produce a graphical
representation of the rationale behind the process which we implement in Sect. 4 to
obtain results about how tidal flow affects stability. In particular we identify a new type
of hysteresis in the model that is a consequence of transverse 2D perturbations and
we confirm this in numerical simulations of (1). The meaning of the term ‘hysteresis’
varies among authors; we use it to mean that the model solution has a dependency on
its history, i.e. a change in state of the system due to a parameter decrease (increase)
is non-reversible with a subsequent parameter increase (decrease) back to its initial
value. In Sect. 5 we discuss the ecological implications of our findings.
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Large scale patterns in mussel beds: stripes or spots? 819

2 Onset of striped patterns in the extended reduced losses model

Equations (1) have two homogeneous steady states; an algae only steady state,
(a,m) = (1, 0); and a co-existence steady state,

(as,ms) =
(

μ − δα

δ(1 − α)
,
α(δ − μ)

μ − δα

)

, (2)

which we require to be positive. For the ecologically relevant parameters used in our
study (1,0) is a saddle point, and therefore not of interest when considering the pattern
forming tendencies of the model—we focus on (2). Mathematically, pattern solutions
of (1) arise through a Turing–Hopf bifurcation (Turing bifurcation when β = 0). For
this, we require (2) to be stable against homogeneous perturbations, and unstable to
heterogeneous perturbations. A simple sufficient condition for (2) to be positive and
stable to homogeneous perturbations is

4 > δ > μ > δα (3)

(see Sherratt and Mackenzie (2016) for a detailed explanation).
At this point, we mention that we are able to neglect 2D perturbations when

determining the onset of pattern formation. Siero et al. (2015) proved, for a gen-
eral class of systems that includes (1), that primary destabilisation of (2) occurs for
perturbations that are constant in the y-direction. Consequently, these perturbations
grow quickest and, with our assumption of a supercritical Turing–Hopf bifurcation,
form a striped pattern perpendicular to the direction of advection. Hence, we take
Δ = ∂2/∂x2, since the onset of patterns in 1D is identical to the onset of patterns
in 2D. We perform a Turing analysis by linearising (1) about (2), and substitut-
ing (a − as,m − ms) = exp(ikx)(ã, m̃), which yields an equation of the form,
(∂/∂t)(ã, m̃)T = M(ã, m̃)T , where

M =
(−α − ms + iβk − νk2 −as

δms δas − μ/(1 + ms) − μms/(1 + ms)
2 − k2

)

, (4)

and k is the wavenumber of perturbations in the x-direction. Non-trivial solutions
require det(M − λI ) = 0, and this gives the decay rate of perturbations, λ, as a
function of the various model parameters and k. In previous studies, it was shown that
the onset of pattern formation occurs at a critical flow rate. In the extended model
this is the case for low values of algal dispersal as seen in Fig. 2a, however for larger
values pattern formation is independent of flow rate, and patterns exists for all β, as
seen in Fig. 2b.

Thus, we can determine the origin of striped patterns in terms of parameters. For
the remainder of this paper, we aim to study how they are affected by tidal flow and
algal dispersal, and so we fix the parameters α, δ and μ; specifically

α = 0.6667, δ = 0.15, μ = 0.1333. (5)
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(a) (b)

Fig. 2 Pattern formation in (1) with (5) for two values of algal dispersal rate, ν. We calculate the dispersion
relation given by the determinant of (4) and plot the maximum real part of the eigenvalues, λ, as a function
of wavenumber, k. We show plots for different tidal flow rates, β = 0, 10, 20, in both panels, with the arrow
denoting increasing β. In (a), a critical β exists that marks the onset of pattern formation, before which, no
patterns will be observed; in (b), pattern formation is independent of β and occurs for all values. Note that
due to symmetry, onset of patterns for β < 0 is equivalent

These parameters were calculated by Wang et al. (2009), based on estimates of their
constituent ecological quantities, and satisfy condition (3), giving a co-existence state
that is stable to homogeneous perturbations. Striped patterns may then be generated
but they may not be stable; in the subsequent sections we aim to show how β and ν

affect their stability.

3 Methodology

Through a Turing–Hopf instability of the homogeneous steady state, we explained
the origin of striped patterns in Sect. 2. Such solutions may or may not be stable in
their own right, and consequently we now focus on the stability of the heterogeneous
striped pattern solution. The flow rate, β, is likely to be the most variable parameter
of (1), as it reflects the periodic advancing and receding of the ocean. Accordingly,
we make β our primary concern by selecting it as a control parameter, with the aim of
establishing how stability changes when β is varied. We can assess how the dispersal
rate of algae affects stability by repeating the methodology described in this section
for different values of ν.

In this section, we first review 1D stability by taking a = a(x, t), m = m(x, t)
and Δ = ∂2/∂x2 in (1). We shall see how the results can be used as a starting point
for our main calculation of 2D stability in Sect. 3.2. For simplicity, we transform to a
moving frame of reference ξ = x − ct , where c is the speed of the migrating pattern.
Travelling waves, a(x, t) = A(ξ) and m(x, t) = M(ξ), of (1) are then solutions of

0 = ν
d2A

dξ2
+ (c + β)

dA

dξ
+ f (A, M) (6a)

0 = d2M

dξ2
+ c

dM

dξ
+ g(A, M). (6b)

Note this rescaling yields an advection-diffusion equation, with advection terms now
featuring in both component equations of (6). By assuming a travelling wave solution
form, we can automatically impose the boundary condition A(L) = A(0), M(L) =
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M(0), where L is the wavelength. Therefore, without loss of generality, we take our
domain length to include one period of the solution by letting 0 < ξ < L . Travelling
wave solutions now depend not only on β, but also on c. For each fixed value of β, a
family of limit-cycle solutions (i.e. periodic patterns) exist beyond a critical value of c.

3.1 1D stability: the spectrum

In one space dimension, striped pattern solutions of (1) are periodic travelling waves
and the associated stability problem is equivalent to that of the travellingwave solutions
of (6). In general, to assess the (linear) stability of a solution, onemust first apply small,
spatio-temporal perturbations. In our moving frame of reference solutions of (6) are
time-independent solutions of

∂ â

∂t
= ν

∂2â

∂ξ2
+ (c + β)

∂ â

∂ξ
+ f (â, m̂) (7a)

∂m̂

∂t
= ∂2m̂

∂ξ2
+ c

∂m̂

∂ξ
+ g(â, m̂), (7b)

where â = â(ξ, t), m̂ = m̂(ξ, t). For small ā(ξ) and m̄(ξ), substitution of the perturbed
travelling wave solutions

â(ξ, t) = A(ξ) + ā(ξ) eλt , m̂(ξ, t) = M(ξ) + m̄(ξ) eλt , (8)

into (7), applying (6) and subsequently linearising about A(ξ), M(ξ) gives the eigen-
function equations,

λā = ν
∂2ā

∂ξ2
+ (c + β)

∂ ā

∂ξ
+ ā

∂ f

∂a
(A, M) + m̄

∂ f

∂m
(A, M), (9a)

λm̄ = ∂2m̄

∂ξ2
+ c

∂m̄

∂ξ
+ ā

∂g

∂a
(A, M) + m̄

∂g

∂m
(A, M), (9b)

whereλ is an eigenvalue and ā, m̄ are eigenfunction components; these are all complex-
valued. The notation ∂ f

∂a (A, M) (for example) is the derivative of f with respect to
a, evaluated at the travelling wave solution A(ξ ), M(ξ). Whilst the travelling wave
solution of (7)must be periodic by definition, the eigenfunction need not be. That being
said, although we pose the problem on 0 < ξ < L , our results must hold on an infinite
domain. One can derive appropriate boundary conditions for ā, m̄ using Floquet theory
(Deconinck and Kutz 2006; Rademacher et al. 2007; Fiedler 2002)—for some real
valued constant γ ,

ā(L) = ā(0) eiγ , m̄(L) = m̄(0) eiγ . (10)

This ensures that the complex amplitude of the eigenfunction is the same at both ends
of the domain, preventing unbounded growth when applied to the infinite domain case.
A phase shift is, however, permissible via the imaginary exponent—because of the
coupling in (9) the phase shift must be identical across all real and imaginary parts of
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(a) (b) (c)

Fig. 3 Spectra of the travelling wave solutions of (6) with ν = 300. In (a), β = 10 and the spectrum
is contained in the left of the complex λ plane indicating that the solution is stable. In (c), β = 50
which corresponds to an unstable solution since there exist perturbations with positive growth rate. In (b),
β = 16.22 and the solution is marginally stable. The transition (a)–(c) is an illustration of an Eckhaus
instability, where destabilisation occurs via a change of curvature at the origin. One can trace out contours
of zero curvature in parameter space as in Fig. 5 to mark the boundary between 1D stable and unstable
solutions

the eigenfunction components. This means that for a given travelling wave solution
defined on 0 < ξ < L , a perturbation can be characterised by γ , and we can assess
whether it grows or decays by studying the associated λ. It now becomes clear that
numerical continuation is a powerful way of testing stability since one can track the
values of λ by using γ as a continuation variable.

Stability can be determined by calculating the spectrum; for general spatio-temporal
solutions, this will contain both the discrete “point spectrum” and the continuous
“essential spectrum”, but in the specific case of travelling wave solutions, the point
spectrum is empty (see Chapter 3.4.2 in Fiedler 2002). Therefore, the spectrum is just
the essential spectrum given by the set of λ values such that (9) with (10) has a non-
trivial solution. We plot some spectra of travelling wave solutions in Fig. 3. For all, we
observe that the spectrum passes through the origin, which is the case for all travelling
wave solutions and reflects the neutral stability of waves to translation. Therefore, we
assert that a solution is (spectrally) stable if Re(λ) < 0 for all λ except λ = 0 (all
perturbations will decay over time), and unstable if λ values exist with Re(λ) > 0
(a range of perturbations will grow over time). Points in the complex λ plane that
satisfy max(Re(λ)) = 0 (excluding the origin) indicate a marginally stable solution.
In Fig. 3a, we have a stable solution, meaning that the corresponding solution of the
original PDE model will persist. In many cases, destabilisation is a result of a change
of curvature at the origin, and so it is sufficient to examine the spectrum close to the
origin. This type of destabilisationmechanism is known as an “Eckhaus” or “sideband”
instability and is illustrated in Fig. 3. Wemention that in general instability can also be
of “Hopf” type, meaning that destabilisation occurs away from the origin; however,
numerical work suggests that for (1) we need only consider the Eckhaus case.

3.2 2D stability: the envelope of the spectrum

Tomotivate this section, we give a brief analogy. Consider learning to ride a bicycle, in
particular, the stability of the cyclist. One might start by using stabilisers—this is now
a 1D problem and all the cyclist has to worry about is falling forwards or backwards.
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Hopefully, the cyclist is 1D stable, and can eventually remove their stabilisers, opening
them up to a whole new set of perturbations acting in a perpendicular direction to the
motion of the bicycle. This is the full 2D problem and though the cyclist may be stable
to 1D perturbations, they could be unstable to 2D perturbations, causing them to fall
sideways. In this section, we describe the basic framework necessary for 2D stability
by using a simple 2D analogue of (9). We then describe how this new equation can be
analysed numerically, using (9) as a starting point.

We begin by taking a = a(x, y, t), m = m(x, y, t), and Δ = ∂2/∂x2 + ∂2/∂ y2

in (1). Since striped patterns are constant in the y-direction, they are solutions of (6)
with a trivial redefinition A(ξ, y), M(ξ, y). In contrast, to determine stability we must
assume the solution is non-constant in the y-direction due to the addition of small
perturbations. Therefore, in the same vein as Sect. 3.1, striped pattern solutions are
t-independent, y-independent solutions of

∂ â

∂t
= ν

(

∂2â

∂ξ2
+ ∂2â

∂ y2

)

+ (c + β)
∂ â

∂ξ
+ f (â, m̂), (11a)

∂m̂

∂t
= ∂2m̂

∂ξ2
+ ∂2m̂

∂ y2
+ c

∂m̂

∂ξ
+ g(â, m̂), (11b)

where â = â(ξ, y, t), m̂ = m̂(ξ, y, t). Like the periodic travelling waves considered
in Sect. 3.1, striped patterns are periodic in the x-direction and perturbations must be
representedby ageneral eigenfunction equation.However, because of the homogeneity
in the y-direction, one can decompose the eigenvector (see Sect. 2), and represent
corresponding perturbations using the wavenumber, �. Thus we perturb the striped
pattern solution as

â(ξ, y, t) = A(ξ, y) + ā(ξ) ei�y+λt , m̂(ξ, y, t) = M(ξ, y) + m̄(ξ) ei�y+λt , (12)

for small ā(ξ), m̄(ξ). The linear eigenvalue problem is obtained by substituting (12)
into (11) and linearising about the striped pattern solution, giving,

λā = ν

(

∂2ā

∂ξ2
− �2ā

)

+ (c + β)
∂ ā

∂ξ
+ ā

∂ f

∂a
(A, M) + m̄

∂ f

∂m
(A, M), (13a)

λm̄ = ∂2m̄

∂ξ2
− �2m̄ + c

∂m̄

∂ξ
+ ā

∂g

∂a
(A, M) + m̄

∂g

∂m
(A, M). (13b)

This is simply a generalisation of (9): when � = 0, perturbations are constant in the
y-direction, and the problem is equivalent to the 1D case already considered in (9).
These inherently 1D perturbations now work in tandem with a heterogeneity in the
transverse direction when � �= 0, with certain pairings having a possible positive
growth rate, leading to destabilisation of the solution. The aim now is to determine
which combination of 1D and 2D perturbations has the maximum Re(λ)—if this
maximum is negative, we can conclude that the solution is stable in both 1D and 2D,
otherwise the solution is either 1D stable and 2D unstable, or, unstable in both 1D and
2D. We now outline a numerical algorithm that can be used to test stability.
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Outline of numerical computation

To begin with, we rewrite the equations described in previous sections for numerical
continuation—all our continuations are implemented using AUTO 07p (Doedel et al.
2007), for which equations must be in the form u′ = H(u). We are not aware of any
publications detailing this calculation, though related work is described by Siero et al.
(2015). We can easily write (6) and (13) as first order systems, respectively:

dA

dξ
= B,

dM

dξ
= N

dB

dξ
= −1

ν
((c + β)B + f (A, M)) ,

dN

dξ
= − (cN + g(A, M)) ,

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

(14)

dā

dξ
= b̄,

dm̄

dξ
= n̄,

db̄

dξ
= 1

ν

(

λā + �2ā − (c + β)b̄ − ā
∂ f

∂a
(A, M) − m̄

∂ f

∂m
(A, M)

)

,

dn̄

dξ
= λm̄ + �2m̄ − cn̄ − ā

∂g

∂a
(A, M) − m̄

∂g

∂m
(A, M),

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(15)

with boundary conditions calculated from (10). Note that AUTO 07p does not allow
for the continuation of complex variables, meaning that (15) corresponds to eight
equations when one takes the constituent real and imaginary parts.

Parameters can be numerically continued, but the method first requires an initial
solution from which to start the computation. To find one, we note that for γ = 0
(9) can be discretised in ξ and written as a matrix eigenvalue problem. Standard
numerical techniques can then be implemented to obtain a discrete set of approximated
eigenvalues. For stability, we are only interested in the eigenvalues that have the
largest Re(λ). Sorting the numerically computed eigenvalues with respect to Re(λ)

and choosing the largest 10 (say), together with their corresponding eigenvectors,
gives us a set of starting points for continuation. The blue points in Fig. 4a are our
initial eigenvalues with γ = 0, and using the method of Rademacher et al. (2007),
continuation of each of these points in 0 < γ < 2π allows us to “fill in the gaps”, and
trace out the full spectrum.

The reason one must perform a continuation from each initial λ is that the spec-
trum is often not made up of one continuous curve; instead, it consists of several
branches. In fact, isolated islands of spectrum are common (see Fig. 4a), especially
near the critical region for the determination of stability. Consequently, we are assum-
ing the following: for every disconnected subset of spectrum, there exists at least one
eigenvalue with γ = 0 contained within it. In principle, this assumption might not
hold, however, we are not aware of any examples where this is not the case and in
simpler systems the existence of such islands has been disproved (Rademacher et al.
2007).
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(a) (b)

(c)

Fig. 4 Panels show the numerical continuation methodology for testing stability in two space dimensions
using (14)–(16). In (a), we plot the spectrum of a 1D stable solution (� = 0) in grey, and mark the points
where γ = 0 (blue circles) and γ = π (red circles). In (b), we increase the � parameter (coloured curves)
from zero to include transverse 2D perturbations, and search for turning points with Re(λl ) = 0—saving the
solution with maxRe(λ). In (c), we trace out contours of maxima by imposing the condition, Re(λl ) = 0,
and continuing in γ . This contour is the envelope (black curve) of the 1D spectrum and represents the most
unstable combinations of 1D and 2D perturbations. Because the original 1D spectrum in (a) is contained
in the left half of the complex plane, but a section of the envelope overlaps into the right, we conclude that
the solution is 1D stable, 2D unstable. The inset in (c) is a blow up of the region Re(λ) ∈ [0.0009, 0.0015],
Im(λ) ∈ [− 0.00003, 0.00003]. The red and blue crosses represent the twomain destabilisationmechanisms
and correspond to the marginal stability curves of the same colours in Fig. 5 (colour figure online)

We can now calculate the spectrum for any fixed �, and the starting point for 2D
stability is the spectrum that determines 1D stability, for which � = 0. Suppose we
have a 1D stable solution; one could generate spectra for different fixed values of � until
one finds a perturbation that destabilises the solution. It can then be concluded that this
specific pattern is 1D stable, 2D unstable. Aside from this being a long and tedious
process, a conclusion cannot be drawn about 2D stability unless one can determine
such a value of �. Instead, we must be able to calculate the most unstable point of the
spectrum, over all values of �. We implement this idea by letting ā, m̄, b̄, n̄ and λ be
dependent on both γ and �. Then we can consider the quantity λl := ∂λ/∂� through
a third set of equations:
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dāl
dξ

= b̄l ,
dm̄l

dξ
= n̄l ,

db̄l
dξ

= 1

ν

(

λl ā + λāl + 2�ā + �2āl − (c + β)b̄l

− āl
∂ f
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∂ f

∂m
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)

,
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⎪
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(16)

that are obtained by differentiating (15) with respect to �—subscripts denote par-
tial differentiation. Together with (14) and (15), and noting again that (16) contains
complex quantities, this gives us a set of twenty real equations in total to be used
in the continuation. The required boundary conditions for (16) can be obtained by
differentiating (10) with respect to �.

We begin by picking a starting point on the 1D spectrum corresponding to a specific
1D perturbation. These points are represented in Fig. 4a as coloured circles. From a
practical point of view, a fundamental function of AUTO 07p is the ability to detect
and save user defined restart information from which a subsequent continuation can
be done. We perform continuations in the � parameter for fixed γ , and look for turning
points by detecting solutions with Re(λ�) = 0. Of the turning points, the value of λ

with the largest real part must be saved as a new starting point for the next stage in
the algorithm. Of course, for cases where there is more than one maximum, care must
be taken to select the largest. This is a particular issue in the neighbourhood of the
origin.

A visual representation of these � continuations can be seen in Fig. 4b as coloured
curves, the end points of which represent the most unstable point for each fixed γ .
If no maximum is detected, one must assume the maximum occurs at � = 0. Once
a maximum is determined, we can fix Re(λ�) = 0, and trace out the envelope of
the spectrum with a continuation in γ , which is illustrated in Fig. 4c. If the envelope
overlaps into the right hand half of the λ complex plane, this implies that a range
of perturbations with a transverse heterogeneity are the source of instability. This
is the case in Fig. 4c and we can conclude that the solution is 1D stable and 2D
unstable. If the envelope is contained within the left half of the λ complex plane, we
have stability against both 1D and 2D perturbations, meaning the striped pattern will
persist.

4 Results and simulation

The envelope of the spectrum (see Sect. 3) allows one to calculate the most unstable
2D perturbation for any given striped pattern, from which one can infer stability.
For each fixed β a range of stable solutions may exist that can be characterised by
their wavenumber. Previous work (Rademacher et al. 2007; Sherratt 2012, 2013b)
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(a) (b)

(c) (d)

Fig. 5 Stability of existing striped patterns in young mussel beds. Striped pattern solutions of (1) are
represented in terms of their tidal flow rate, β, and their wavenumber, k, as a pair in (β, k) parameter space
for different algal dispersal rates, ν. The thin black curves are Turing–Hopf bifurcation loci that bound the
pattern forming region (union of all coloured sub-regions). The thick black line is the Eckhaus curve that
separates 1D stable patterns (union of green and dark grey sub-regions) from 1D unstable patterns (light
grey sub-region). Patterns unstable in 1D are also unstable in 2D. The red/blue curves form the basis of this
paper, and partition the 1D stable region into 2D stable (green) and 2D unstable (dark grey) sub-regions.
Striped patterns in the dark grey region destabilise and form spotted patterns (colour figure online)

has detailed how one can map out marginal stability boundaries associated with 1D
solutions in parameter space. In this section we explore how the flow rate affects the
2D stability of striped patterns by mapping stable solutions in the (β, k) parameter
plane, where k is the wavenumber of the initial striped pattern. To determine the 2D
stable patterns we first must consider the set of 1D stable patterns, and so in Fig. 5 we
trace out the Eckhaus marginal stability curve that separates 1D stable and unstable
patterns. We now must partition the 1D stable region into 2D stable and unstable
regions.

123



828 J. J. R. Bennett, J. A. Sherratt

The calculation of the 1D (Eckhaus) boundary is dependent on the fact that all
spectra of travelling waves pass through the origin of the complex λ plane. In contrast,
for 2D stability we consider the envelope where this is not necessarily the case (see
Fig. 4c). Suppose we calculate the envelope for a particular stripe pattern solution—
thiswill tell us the stability of that solution for a particular fixedβ. Iterating this process
with a gradual change in β will slowly alter the shape and position of the envelope until
we obtain a solution that ismarginally stable to 2D perturbations, i.e. max(Re(λ)) = 0.
This solution marks the boundary between stable and unstable striped patterns and we
observe that it occurs at λ = 0, exactly. To be clear, unlike 1D Eckhaus stability where
one observes a change in curvature at the origin of the spectrum (see Fig. 3), we find
that 2D instability occurs via a translation of the envelope through the origin. More
concretely, we find that marginal stability always seems to occur for points on the
envelope where either γ = 0 or γ = π , which has previously been reported (for a
different model) by Siero et al. (2015), and in particular the points on the 1D spectrum
fromwhich they originate are: λ = 0 (γ = 0), or the value of λ �= 0 obtained after one
continuation of γ ∈ [0, π ] from λ = 0. The consideration of the corresponding points
on the envelope alone, whichwe illustrate in Fig. 4cwith coloured crosses, allows us to
simplify our calculation considerably. Computationally, we deal with these two points
separately. Once we have found the most unstable 2D perturbation for our chosen
fixed β, we impose the condition Re(λ�) = 0 and vary β (allowing � to vary) until
we find a critical value where λ = 0. Finally, continuation in both β and k with the
additional constraints that λ = 0 and λ� = 0 traces out marginal stability boundaries
as seen in Fig. 5. We trace out the boundaries for both the γ = 0 and γ = π cases
which separates the 1D stable region into 2D stable and 2D unstable sub-regions.

Through numerical simulation of (1) we find that perturbed 1D stable, 2D unstable
stripe solutions breakup to form regular spotted patterns. The striped solution is peri-
odic and stable in the x direction, and homogeneous but unstable in the y direction,
with the instability (similar to onset discussed in Sect. 2) inducing an additional peri-
odicity in the y direction. The two γ –destabilisation mechanisms initiate two distinct
types of break up of stripes. For γ = 0 ‘square’ break-up occurs meaning that spots
align in both the x and y directions. For γ = π ‘rhombic’ break-up occurs which
generates a spotted pattern where columns of spots are out of phase in the x direction;
this is visible in Figs. 6c and 7b, h and n, for example. Tracing out the γ -curves reveals
that for our chosen parameter set the primary break up mechanism is almost always
the γ = π curve (giving rhombic patterns); this is the curve that (almost always)
bounds the 2D unstable region in Fig. 5. This is confirmed in numerical simulations
of (1), which also reveals that rhombic break up is the dominant mechanism if both
destabilisation criteria are met. For very large wavelength stripes the curves briefly
intersect in Fig. 5b and c, and the γ = 0 destabilisation mechanism becomes relevant,
presenting the opportunity for square break up; however the relevant region for spotted
patterns is insignificantly small and corresponds to very weakly unstable solutions.
Numerical simulations in this region do generate faint square 2D patterns, but full
break up never occurs so that spots are not seen in practice.

In Fig. 5 we find that the 2D unstable region is always present at comparatively
low flow rates, implying that stripe break up into spots may be a significant process
in mussel beds when considering the oscillatory nature of the tide. A realistic rate
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(a) (b) (c) (d) (e)

Fig. 6 Onset of pattern formation in 2D for ν = 100 corresponding to Fig. 5a. We solved (1) on the unit
square with periodic boundary conditions. Initially we have the stable homogeneous steady state given
by (2) which is perturbed with small amplitude random noise (a) that we subject to increasing flow rates
by varying β at a constant rate of 10−5. A Turing–Hopf bifurcation exists at β ≈ 5.93, beyond which
a striped pattern is generated perpendicular to the direction of advection (b) with k = 0.0877. Note that
immediately after onset the pattern is 2D stable but for an insignificantly small range of small amplitude
patterns—approximately β ∈ (5.93, 6.18). As β increases the solution becomes unstable to transverse 2D
perturbations and a rhombic spotted pattern is generated (c, d), though full break up does not occur. A striped
pattern of the same wavenumber reforms with larger amplitude (e). Note thatms is the homogeneous steady
state defined in (2) which is unchanged as β is varied

of algal dispersal is difficult to determine, in part due to its obvious simplification of
algal movement. Cangelosi et al. (2015) argue the rough estimate ν = 300, though
there is no concrete evidence to support this. In this regard, we assess the effect that
algal dispersal has on stability by considering a few different values of ν. When algal
dispersal is low and a critical flow rate for pattern formation must be achieved (see
Fig. 5a), patterns are 2D stable immediately after onset, but this region is too small to
be relevant in real mussel beds. When the algal dispersal rate is increased patterns are
generated for all flow rates, however the 2D unstable region becomes larger. Increasing
ν makes striped pattern formation more likely, but also increases the critical tidal flow
rate for which the patterns will be resilient to transverse disturbances, making spotted
patterns relevant for a wider range of flow rates. We conclude from Fig. 5 that spotted
patterns are a consequence of low tidal flow rates, and the persistence of striped
patterns requires higher rates of flow than previously expected. We highlight a key
point: although the 2D stability boundaries in Fig. 5 can be used to determine when
stripes become spots, they do not apply to the converse situation—i.e. a spotted pattern
that is subject to an increased rate of flow may persist into the 2D stable stripe region.

Figure 6 shows a numerical simulation for a relatively low rate of algal dispersal,
and pattern formation does not occur until a critical flow rate is reached. Suppose the
mussel bed is initially at its homogeneous steady state given by (2), and the flow rate
begins to increase from β = 0 as in Fig. 6. For flow rates below a critical value β = β0
the steady state is stable, but for β > β0 stripes begin to form. Immediately after onset
we find that striped patterns are 2D stable, though as mentioned for a very limited
range of β values. Increasing β further still, stripes become unstable to transverse 2D
perturbations giving rise to spotted patterns, before the flow becomes strong enough
for spots to reform into stripes.
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We investigated history dependence in mussel beds by using Fig. 5b to inform
our numerical simulations. Figure 7 shows the results of a simulation in which we
slowly oscillated β between maximum and minimum flow rates at a constant rate,
which reveals that a number of distinct striped patterns can exist for the same β. This
hysteresis effect is novel due to the fact that transitions are purely a result of transverse
instabilities and are consequently unreported in the literature. If one considered a 1D
treatment of the problem resulting in the Eckhaus curve alone, onewould conclude that
the transformation from one striped pattern to another would be a consequence of high
flow rates. In contrast, our results provide a more relevant destabilisation mechanism
when considering the transition between flood and ebb currents during a period of
tidal oscillation. Figure 7 also demonstrates that spotted patterns themselves are not
necessarily stable; the spotted pattern in Fig. 7b breaks up, and a new spotted pattern
emerges in Fig. 7e.

5 Ecological implications and discussion

We have analysed an extended reduced losses model (1) for striped mussel beds that
was originally posited in two space dimensions (van de Koppel et al. 2005). Nonethe-
less, much of the mathematical analysis has focused on the one dimensional case;
assuming results can be applied trivially in 2D. The one dimensional solutions are
periodic travelling waves which we extend in two space dimensions as stripe patterns,
and analyse using numerical continuation techniques and simulation. Specifically we
have examined how the tidal flow rate affects the resilience of stripes, and we sum-
marise the ecological implications as follows.

(i) Our main result is that large scale spotted patterns in mussel beds are a con-
sequence of low tidal flow rates. Once a striped pattern has formed, a critical
minimum flow rate must be attained for ecological resilience, otherwise, the
striped pattern is an effective transitional phase in the formation of spotted pat-
terns. An ecologist interested in determining resilient striped patterns should note
that β must be stronger than previously thought in this regard. If not, stripes will
break up and a patchy appearance of the mussel bed may be observed in practice,
as seen in Fig. 1. The authors in Siero et al. (2015) determined that striped vegeta-
tion patterns in semi-deserts were more resilient on steeper slopes (an equivalent
advection coefficient to β is used to increase the flow rate of water down the
slope); in this regard our results are in correspondence.

(ii) A higher rate of algal dispersal in the lower water layer permits the generation of
periodic stripe patterns at lower flow rates, though additionally it encourages their
break up. Although the model we consider incorporates a simple approximation
of true algal movement, we can still hypothesise what physical attributes of the
system might influence ν. The random movement of algae is determined by
complex mixing processes in the ocean caused by turbulence—primarily on the
millimetre scale. Physical properties of the ecosystem that might influence these
processes in intertidal regions include: temperature, roughness of the seabed and
wave action (Dower et al. 1997).
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(a)

(c)

(d)

(e)

(f)
(g)

(h)

(i)

(j)

(k)

(l)
(m)

(n)

(o)

(p)

(b)

Fig. 7 2D hysteresis effects in mussel beds caused by changing tidal currents for ν = 300. We solved (1)
on the unit square with periodic boundary conditions. Panels are snapshots of a single numerical simulation
of (1), where β varies at a constant rate of 10−4 back and forth between β = ± 40. The relevant stability
diagram can be seen in Fig. 5b. Initially, we have a pattern with wavenumber k = 0.04 repeated fivefold
(a). As the flow weakens, a spotted pattern emerges (b), breaks up (c), (d) and forms a new regular spotted
pattern (e). As the direction of flow changes and strengthens, a striped pattern begins to reform with defects
(f) that subsequently disappear leaving a pattern with k = 0.064 (g). As β is varied from −40 to 40 we
see spots (h) that become distorted into droplet shapes (i) and destabilise (j), (k) into a different spotted
pattern (l). This pattern reforms into a striped pattern with k = 0.088 (m). Repeating the process using the
solution in (m) as a starting point generates spotted patterns like those in (n), (o), but the reformed striped
pattern (p) is identical to that in (m). Note that in the absence of history dependence one would expect the
same patterns for ±β due to symmetry in (1). Therefore, the red boxed panels demonstrate three distinct
striped patterns for, essentially, the same flow rate
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(iii) We have identified a new type of hysteresis affect in mussel beds that is a result
of small disturbances perpendicular to the direction of tidal flow. Building on
previous work (Sherratt 2013b), our consideration of transverse 2D perturbations
of stripes has revealed new destabilisation mechanisms which cause their break
up. With guidance from the stability map in Fig. 5 we simulated (1) numerically
for slowly varying β in two space dimensions and find that transitions between
distinct striped patterns occur as a consequence of the 2D instability. Each striped
pattern is dependent upon the previous state of the system.

The factors mentioned in (ii) that influence the dispersal of algae occur concurrently
to generate eddies that affect the mixing of algae in a complicated way, the variation
of which is crudely reflected in (1) with a change in algal dispersal rate. Due to the
obvious model simplification ν is very difficult to estimate, therefore we performed
our calculations for a range of values. An interesting direction for further work in this
regard would be to incorporate a more realistic model for the random movement of
algae, not only in the x and y directions, but also between water layers. Experimental
work could also aid in the determination of a more informed choice of ν that could
be used in our calculations. Nevertheless, an extension of the original reduced losses
model to include a simplistic random movement term for algae is a more accurate
representation of the real world problem, and the consideration of a range of dispersal
rates leads us to the conclusion set out in (ii).

The most changeable parameter in (1) is the tidal flow rate, though our analysis has
focused on the casewhereβ is constant;making our resultsmost relevantwhenβ varies
slowly. In reality, the flow rate in intertidal regions oscillates much faster and in a more
sinusoidal fashion. Furthermore, a unidirectional flow causes a constant collective
pattern migration in the opposite direction, though there is no evidence to support this.
An oscillatory, bidirectional flow ensures that no net migration occurs (Sherratt 2016).
Simulations of (1) for a sinusoidal flow rate with maximum amplitude βmax reveals
that stripes may withstand brief intervals of low flow rate. This is dependent on βmax

which, assuming a constant period of oscillation, affects the rate of change of β and
the duration that stripes are subject to the low, destabilising flow rates. Figure 8 shows
how βmax affects the long term evolution of stripes when subject to tidal oscillation,
and demonstrates how Fig. 5 can be used to roughly gauge the outcome. Note that
apart from β this simulation is identical to that in Fig. 7 and we find that the same
wavelength pattern is generated in Fig. 8a as seen in Fig. 7l. For more rigorous results,
further work could focus on performing our analysis on (1) with β = β(t). Despite
this shortcoming in our analysis, we believe that (iii) will still be significant in real
mussel beds because of slower tidal variations throughout the year. Of course, there
is a regular oscillation of the tidal flow rate during a day, but there are also biweekly
spring and neap tides known for their more extreme tide highs and lows that result in
larger and smaller βmax respectively Lalander et al. (2013); to an extent that depends
on the geographical context, for instance basin geometry. Additionally, the relative
position of the Earth and Moon in their collective elliptic orbit of the Sun gives rise to
both abnormally strong perigean and weak apogean currents that occur three or four
times annually (Cartwright 1999). This means that a striped pattern that is resilient to
an oscillatory flowwith a particular βmax may be susceptible to break up later on in the
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(a) (b) (c)

Fig. 8 The effects of oscillating tidal flow are shown through simulation of (1) with β = βmax cos(2π t/T )

for three different values of βmax . Parameters and domain size are identical to that in Fig. 8 with the
exception of β, and we use Fig. 5b to inform our choices of βmax . We assume a semi-diurnal tide where
two tidal oscillations occur per day, which corresponds to the nondimensionalised time period: T = 2000.
Panels are the solutions after 100 tide oscillations (50days) with the addition of random noise every few
time steps. In all cases a pattern with wavenumber k = 0.088 (identical to that observed in Fig. 7m) emerges
quickly. After this: (a) stripes persist despite short intervals of low flow rate, (b) stripes break up to form a
spotted pattern which maintains its structure during subsequent oscillations, (c) stripes break up to form a
spotted pattern with defects that persist. We solved (1) on the unit square with periodic boundary conditions

year because of a change in βmax . Onemight therefore expect to see a larger proportion
of striped mussel beds around the time of a perigean spring tide, and spotted/patchy
mussel beds around the time of an apogean neap tide. This slow variation in βmax

presents the opportunity for break up and reformation of stripes and the possibility of
observing the history dependence that we have reported.

In general, testing theoretical predictions aboutmussel beds is certainlymore plausi-
ble than formany other ecological systems, e.g. spotted patterns in coral reefs (de Paoli
et al. 2017), rows of trees in the ribbon forest (Bekker et al. 2009), banded vegetation
in semi-arid desert regions (Klausmeier 1999). This is because pattern generation in
young mussel beds is relatively fast and small-scale in comparison with the previous
examples. Mussel patterns actually occur on multiple spatial scales (Liu et al. 2014)
and previous experiments on small-scale mussel patterns have been possible under lab
conditions (Van de Koppel et al. 2008). Though harder to implement at the ecosys-
tem scale, recent work (de Paoli et al. 2017) has included the seeding of mussel beds
into various initial formations of large and small scale patterns in order to observe
how mussel numbers are affected over time—this enabled the authors to validate the
theoretical prediction that self–organisation increases the resistance of mussel beds
to disturbances. We believe a similar field experiment could be implemented to test
(i)—the key feature of this would be to control and measure maximum flow rate. We
point out that spotted patterns will be unlikely to form at very low flow rates since the
replenishment of algae would be minimal in reality, leading to the breakdown of the
model and, hence, of our predictions.
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Fig. 1.
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