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a b s t r a c t

When one considers the spatial aspects of a cyclic predator–prey interaction,
ecological events such as invasions can generate periodic travelling waves (PTWs)—
sometimes known as wavetrains. In certain instances PTWs may destabilise into
spatio-temporal irregularity due to convective type instabilities, which permit a
fixed width band of PTWs to develop behind the propagating invasion front. In
this paper, we detail how one can locate this transition when one has unequal
predator and prey dispersal rates. We do this by using absolute stability theory
combined with a recent derivation of the amplitude of PTWs behind invasion. This
work is applicable to a wide range of reaction–diffusion type predator–prey models,
but in this paper we apply it to a specific set of equations (the Leslie–May model).
We show that the width of PTW band increases/decreases when the ratio of prey
and predator dispersal rates is large/small.

© 2019 Published by Elsevier Ltd.

1. Introduction

Ecological invasion has become an increasingly common occurrence due to a rise in human activity over
the last century; directly because of increased globalisation across commercial industries that lead to the
accidental introduction and spread of foreign species, and indirectly through processes such as climate change
which drives species into non-native environments [1]. Invasive species threaten native wildlife through
predation, outcompeting for resources and spreading disease which ultimately affects ecosystem biodiversity
[2]. It is therefore important for the management and control of invasive species to understand not only how
invasive populations establish and spread through a new habitat, but also the behaviour of the system in
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the wake of invasion. One possibility is that an invasive predator–prey interaction is cyclic in nature, which
permits the generation of interesting spatial phenomena including PTWs [3–5], where peaks in population
density slowly migrate across the habitat. Another type of phenomena observed behind invasion in cyclic
systems is spatio-temporal irregularity, which sometimes occurs immediately behind invasion, and sometimes
after an initial seemingly stable band of PTWs [6–12]. When PTWs are observed before destabilisation, the
band of waves grows before eventually attaining a constant width which we refer to as the band width. Our
aim in this paper is to investigate how predator and prey dispersal rates affect the band width of PTWs.

We consider two-component reaction–diffusion models describing predator and prey population densities
in space x and time t. The equations for predators p(x, t) and prey h(x, t) are

∂p

∂t
= f(p, h) + ∂2p

∂x2 ,
∂h

∂t
= g(p, h) + δ

∂2h

∂x2 , (1)

where δ > 0 is the ratio of prey and predator dispersal coefficients, and f , g are functions describing the
predator–prey interaction. We assume that (1) has at least two homogeneous steady states—an unstable
prey-only steady state, and a coexistence steady state. On a one-dimensional finite domain, an invasion of
predators therefore corresponds to initially having the unstable prey-only steady state everywhere, except
for a small perturbation at one boundary. This induces an invasion front that spreads across the domain at
a speed dependent upon model parameters. When, additionally, the coexistence steady state is unstable due
to a standard supercritical Hopf bifurcation corresponding to a stable limit cycle, a family of PTW solutions
of (1) exist; invasion then selects one of these which can be observed behind the invasion front [13].

A useful property of (1) is that its normal form valid close to a supercritical Hopf bifurcation can be
written as the complex Ginzburg–Landau equation (CGLE),

∂W

∂t
= W − (1 + iα) |W |2 W + (1 + iβ)∂2W

∂x2 , (2)

where W is a complex function of x and t, and α, β are real parameters. Note that (2) is equivalent to the well
known λ-ω equations [14] when β = 0. α and β can be calculated in terms of the model parameters of (1),
and the real and imaginary parts of W correspond to weighted sums of predator and prey densities. (2) has
a one-parameter family of PTW solutions given by W = A exp (i

√
1 − A2x + iωt) where A =

√
1 − Q2 > 0

and ω = (β − α)Q2 + α. Therefore, we only require the amplitude of the wave in order to obtain the full
solution.

A previous study [15] has detailed how one can locate the transition between regular and irregular spatio-
temporal oscillations for the λ-ω (normal form) equations, which allowed the authors to draw conclusions
about predator–prey models with equal dispersal rates ((1) with δ = 1). This was possible because of a
previously derived equation for the amplitude in terms of parameters which can be found in [16]. A similar
study [17] then allowed one to locate this transition point in (2), however, a key shortcoming of that work
was that results were not applied to (1). This is because the analogous equation for the amplitude was
only derived recently in [18]: when initial conditions are such that a “pulled front” moving with velocity
v∗ = 2

√
1 + β2 develops (this includes invasion initial conditions, see [19] for details) the amplitude can be

written in terms of parameters as A =
[
2

(√
(1 + α2)(1 + β2) − (1 + αβ)

)
/(α − β)

]1/2
[18].

Therefore, subject to normal form rescalings, we can approximate the small amplitude PTW solutions
generated by invasion in (1) using (2), with increasing accuracy as the Hopf bifurcation is approached. In
Fig. 1, numerical simulations of (2) are shown as density plots in space and time; the previously discussed
prey only steady state now corresponds to W = 0 and similarly a small perturbation at the left boundary
causes a front to propagate across the domain. A change in δ affects the normal form of (1) via the coefficient
β; Fig. 1 shows how the propagation speed of the front affects the amplitude of PTWs and therefore the band
width observed, as β is varied. In Section 2 we will show how one can calculate the band width of PTWs in
the CGLE, and in Section 3 we will fill the gaps of previous studies by determining how predator and prey
dispersal affects band width.
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Fig. 1. A band of periodic travelling waves in the complex Ginzburg–Landau equation develops, eventually attaining a fixed band
width. We show density plots of r =

√
Re(W )2 + Im(W )2 for α = 3 and β given in the panels. Simulations show different front

propagation speed, PTW amplitude and band width. Initially, W = 0 everywhere except for a small perturbation made at the left-hand
boundary. Eq. (2) was solved using a semi-implicit finite difference scheme with a grid spacing of 0.2 and a time step of 0.005, on a
domain with zero flux boundary conditions at both ends.

2. Band width of PTWs in the CGLE

The method described in this section is not novel and so we provide a brief description only, referring
the reader to previous work [15,17,20,21]. The first step in calculating the band width is to consider the
absolute stability of PTWs in a moving frame of reference; that is, we consider whether small perturbations
to the PTW grow or decay when viewed at a fixed point moving with velocity V . If the wave is absolutely
unstable in a frame of reference V ≥ v∗, perturbations can keep pace with the invasion front so that PTWs
are not observed at all. Therefore we assume the wave is absolutely unstable in a frame of reference V < v∗

so perturbations cannot catch the invasion front, allowing for a regular band of PTWs before destabilising
modes dominate the solution leading to spatio-temporal irregularity.

To calculate the band width we first must define its edges; the right-hand edge is just the invasion front,
however the left-hand edge is a little more ambiguous—we define it to be the point at which perturbations
become amplified by a factor F . We denote λmax(V ) to be the maximum growth rate of perturbations
in the frame of reference moving with velocity V , and with corresponding wavenumber kmax(V ). If we
consider a point on the front (x∗, t∗), perturbations spread out from this point in space and time according
to x = x∗ + (t − t∗)V . Linear modes grow like eRe[λmax(V )]t so that amplification by a factor F occurs
at tcrit(V ) = t∗ + log(F)/ Re [λmax(V )] at the location xcrit(V ) = x∗ + V log(F)/ Re [λmax(V )]. The band
width is then the minimum distance between the point (x∗, t∗) and the curve (xcrit(V ), tcrit(V )) which can
be shown [15] to occur at V = Vband given by solving

(v∗ − Vband) Im [kmax(Vband)] = Re [λmax(Vband)] . (3)
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The band width itself is given by

L(α, β) = − log(F)/ Im [kmax(Vband)] , (4)

see [15]. Notice that log(F) is parameter independent. For this reason we define the quantity W =
1/ Im [kmax(Vband)] which we refer to as the band width coefficient.

The key quantity for the band width calculation is λmax(V ) and so we now detail how one can obtain it
using the theory of absolute stability. First one needs to find the linear dispersion relation, D(λ, k; V ) = 0,
by linearising (2) about the exact PTW solution, where α and β are given by a model specific normal form
reduction. Substitution of exponential ansatz in the frame of reference x − V t then yields the expression
relating spatial and temporal eigenvalues. D(λ, k; V ) is a fourth order polynomial in k, and for a given λ we
label its four roots k1, . . . , k4 according to the condition Im(k1) ≤ Im(k2) ≤ Im(k3) ≤ Im(k4). In our case,
the “absolute spectrum” is the set of λ such that Im(k2) = Im(k3), and λmax(V ) is the λ in the absolute
spectrum with maximum real part. “Branch points” are the six values of λ such that ki = ki + 1, and they
are used as starting points for numerical continuation to obtain the full “generalised absolute spectrum” [22].
For λmax(V ) however, one need only consider branch points in the absolute spectrum (k2 = k3)—it can be
assumed that the λ in the absolute spectrum with maximum real part coincides with a branch point, vastly
reducing the computation. One simply obtains all branch points (solutions of D(λ, k; V ) = Dk(λ, k; V ) = 0)
along with corresponding ki; retaining those λ with max Re(λ) for which k2 = k3. It has been proved that
the most unstable point in the absolute spectrum is a branch point in the case of the λ-ω equations [23],
however, we are not aware of a proof for the CGLE case, and indeed numerical evidence [22] suggests this is
not true for all parameters. Moreover, these cases would not be relevant in this paper since they correspond
to “remnant instabilities” which are not significant when studying bands of PTWs [24].

3. Implications for the predator–prey model

We performed numerical simulations for various β in order to vary W and confirm its linear relationship
with the observed band width which we show in Fig. 2(a). This allows one to calculate log(F) which we
do using a simple linear regression; this only needs applying once and indeed one can reuse our calculated
value when changing parameters in (1)—in this paper we obtain log(F) = 29.77. We tested our predictions
of W by solving (1) using a semi-implicit finite difference scheme and computing the band width by viewing
the solution as r =

√
Re(W )2 + Im(W )2; we defined the band by the condition |∂r/∂x| < 1 × 10−3. We

estimated the derivative numerically after applying a Savitzky–Golay smoothing algorithm over a moving
window of 9 grid points. The band width obtained by using this threshold is slightly smaller than that
observed by visual inspection, and is simply due to the threshold one chooses, which affects the calculated
end points of the band of PTWs. This has implications for the best-fit line shown in Fig. 2(a) in which we
observe a non-zero intercept in the regression line. This can be attributed to the excluded regions on either
side of our numerically calculated band width.

We apply our results to the following specific functional forms

f(p, h) = cp
(

1 − p

h

)
, g(p, h) = h(1 − h) − aph

b + h
, (5)

which makes (1) the Leslie–May model [25,26]. The methodology described in this paper is however
applicable to any model of the form (1) that undergoes a standard supercritical Hopf bifurcation as a
parameter is varied. Since the parameter δ is our primary focus we refer the reader to, for example,
[27, Chapter 3.4] for a full description of the non-dimensional parameters: a > 0, b > 0, c > 0. Taking
(5) in (1) yields the prey-only steady state (p, h) = (0, 1), and two coexistence steady states given by

p± = 1
2

(
1 − a − b ±

√
((1 − a − b)2 + 4b)

)
, h± = p±. (6)
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Fig. 2. Comparison of the band width coefficient W with numerical simulation of (2), with α = 3. The points and error bars are the
mean and standard deviation of a sample of 500 numerically computed band width estimations at distinct time points spaced 0.2 time
units apart. In (a) we plot W against the numerically computed band width and perform a simple linear regression. The line of best
fit has slope log F = 29.77, intercept −0.36, and has a correlation coefficient of 0.9946. In (b) the same data points are rescaled using
the linear regression constants and the line is the predicted band width coefficient calculated numerically using the method described
in the main text.

Fig. 3. Convectively unstable periodic travelling waves generated by an invasion in a cyclic predator–prey interaction. The solution is
plotted at equally spaced time intervals in the range 3099.5 ≤ t ≤ 3200, with successive plots layered above and behind one another.
This visualisation reveals an invasion front moving towards the right boundary, behind which a band of PTWs moves towards the
left, eventually destabilising as a result of a convective instability. Eq. (1) with (5) was solved using a semi-implicit finite difference
scheme with a grid spacing of 0.2 and a time step of 0.005, on a domain with zero flux boundary conditions at both ends. Parameters
are δ = 0.8, a = 0.77, b = 0.08, c = 0.0517. Note that the band of PTWs in this figure is still growing and has not yet reached its
fixed band width.

An invasion of predators into the unstable steady state is shown in Fig. 3; similarly to the CGLE one observes
a band of PTWs behind an invasion front, and spatio-temporal irregularity thereafter.

The first step in determining the band width of PTWs in a predator–prey model is to calculate α and
β in terms of the model parameters. In this paper we are concerned with the effect that predator and
prey dispersal rates have on the band width via the parameter δ. For models of the form (1) α is always
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Fig. 4. Our predicted band width as a function of the ratio of prey and predator dispersal rates δ. In (a) we plot the number of
wavelengths observed in the PTW band, and in (b) we plot the wavelength of the PTWs in the band. Parameters in the original
model are a = 0.72, b = 0.06 and we set c = ccrit − 0.05.

independent of δ. We take c to be a control parameter: by fixing a = 0.72, b = 0.06 we obtain the Hopf
bifurcation point c = ccrit ≈ 0.158 which gives the normal form coefficient α = 1.441. By fixing these
parameters β is now solely determined by δ. We show how δ affects band width by plotting the number
of wavelengths observed in the band in Fig. 4(a), along with the associated wavelength in Fig. 4(b); this
is given by 2π/(1 − A2) subject to normal form rescalings. Note that δ < 1 corresponds to a system in
which predators disperse at a higher rate than their prey, and vice-versa for δ > 1. We find that a higher
predator dispersal rate shortens the band width by reducing both the wavelength of PTWs and the number
of oscillations observed in the band. One therefore concludes that an increased predator dispersal rate has a
destabilising effect on the regular oscillations behind an invasion front. In contrast an increased prey dispersal
rate increases the band width observed. For larger δ one obtains an absolutely stable solution where irregular
behaviour is not observed, whereas for smaller δ one obtains an absolutely unstable solution where no PTWs
are observed (not shown in Fig. 4). Therefore our results are in accordance with what one would expect from
absolute stability theory—PTWs that are close to being absolutely stable will have a longer band width,
whereas PTWs close to being absolutely unstable will have a shorter band width.

4. Discussion

We considered the PTWs generated by an invasion in a cyclic predator–prey system. For certain parameter
values, the PTWs are convectively unstable, which means a fixed width band of PTWs is observed before
irregular oscillations. We combine theory developed in [15,17] with a recent equation for the amplitude of
PTWs [18] to determine how predator and prey dispersal affects the band width of PTWs. By applying the
methodology to the Leslie–May model, we find a monotonically increasing relationship between the ratio of
prey to predator dispersal rates and the band width—see Fig. 4. A large predator (or small prey) dispersal
rate will therefore have a destabilising effect on spatio-temporal oscillations and a shorter band width will
be observed. Similarly a large prey (or small predator) dispersal rate will lead to a larger band width. We
emphasise that the approximation described in this paper requires proximity to a standard supercritical
Hopf bifurcation point, and therefore is only valid for small amplitude PTWs.

Though we have drawn conclusions based on the Leslie–May model, Fig. 2(b) suggests that a monotonic
relationship between the dispersal rate and band width may not always be the case. A different model and
parameters will generate different normal form coefficients, and consequently there may be instances, for
example, where an increase/decrease in band width will be observed regardless of the direction in which
δ varies. One may also note that for our chosen model we obtain very long band widths—much longer
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than any realistic habitat for all δ considered. This suggests that for practical purposes one need only
consider two cases, namely where the PTWs are absolutely stable (uninterrupted PTWs) or absolutely
unstable (spatio-temporal irregularity observed immediately behind invasion). Of course, consideration of a
different model may reveal shorter band widths that have more significance, however, previous work [15] that
applies the methodology described in this paper to the Rosenzweig–MacArthur model with equal dispersal
coefficients [28] reaches a similar conclusion.
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