
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2017 Society for Industrial and Applied Mathematics
Vol. 77, No. 6, pp. 2136–2155

PERIODIC TRAVELING WAVES GENERATED BY INVASION IN
CYCLIC PREDATOR–PREY SYSTEMS: THE EFFECT OF

UNEQUAL DISPERSAL∗

JAMIE J. R. BENNETT† AND JONATHAN A. SHERRATT†

Abstract. Periodic traveling waves (wavetrains) have been an invaluable tool in the understand-
ing of spatiotemporal oscillations observed in ecological data sets. Various mechanisms are known
to trigger this behavior, but here we focus on invasion, resulting in a predator–prey-type interaction.
Previous work has focused on the normal form reduction of PDE models to the well-understood λ-ω
equations near a Hopf bifurcation, though this is valid only when assuming an equal rate of dispersion
for both predators and prey—an unrealistic assumption for many ecosystems. By relaxing this con-
straint, we obtain the complex Ginzburg–Landau normal form equation, which has a one-parameter
family of periodic traveling wave solutions, parametrized by the amplitude. We derive a formula
for the wave amplitude selected by invasion before investigating the stability of the solutions. This
gives us a complete description of small-amplitude periodic traveling waves in the governing model
ecosystem.
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lations, wavetrain, diffusion, Hopf bifurcation, stability
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1. Introduction. It is well known that populations can cycle under certain eco-
logical conditions, meaning there are temporal oscillations in abundance. Mathemati-
cal modeling has provided insight into the mechanisms that drive cyclic behavior [41],
though the spatial nature of the process is less well understood. In some cases, cyclic
populations oscillate uniformly across their habitat, but spatiotemporal patterning
is also well documented [1, 17, 40] and has been known to severely disrupt some
ecosystems. As an example, North America has an ongoing problem with spatially
heterogeneous cyclic mountain pine beetle outbreaks that spread through and destroy
vast areas of woodland. In the Rocky Mountain region of British Columbia alone,
approximately 17 million acres of forest were infested by mountain pine beetles in
2004 compared to 0.4 million in 1999 [45], with impacts ranging from fire hazards to
changes in the carbon cycle [12].

One important type of spatiotemporal patterning is periodic traveling waves
(PTWs); peaks in population density move across the domain with constant shape
and speed. In field data, such a pattern might manifest itself via peak and trough
population densities being observed simultaneously at different locations—the two lo-
cations would appear to oscillate out of phase. Spatiotemporal data is difficult and
costly to obtain, but there are a number of data sets that provide evidence of peri-
odic traveling wave phenomena [17, 26, 38]. For instance, data has been collected on
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larch budmoth populations demonstrating that waves in budmoth population density
propagate across the Swiss Alps at an estimated speed of 210 km per year toward the
northeast [4]. To be clear, these waves are not a result of individuals migrating across
the landscape at 210 km per year but are a consequence of the governing cyclic nature
of the budmoth’s overall population, coupled with an intrinsic spatial dependence of
the individuals. The same phenomenon is observed in oscillatory chemical reactions
such as the BelousovZhabotinsky reaction [9].

The mathematical theory of PTWs has been instrumental in the understanding of
waves observed in cyclic populations. A PTW is defined mathematically as a periodic
function of both (one-dimensional) space and time. We model our populations using a
set of partial differential equations; spatial terms are added to a set of coupled ordinary
differential equations with a (stable) limit cycle. If a PTW solution exists for a given
model, general theory implies that there exists a family of possible solutions [25], of
which one is selected by imposed initial and boundary conditions that correspond to
a particular ecological situation. This means one can know all parameter values in a
model but be unable to predict the characteristics of PTWs seen in practice. It is,
therefore, instructive to focus both on one specific type of ecological interaction and
one pattern-generating scenario relevant to that interaction.

In this paper, we focus on predator–prey interactions. There are a number of
ecological situations one could consider in a predator–prey system that would generate
PTWs, including heterogeneous habitats [4, 13], hostile boundaries [31], migration
driven by pursuit and evasion [3], and an invasion of alien species [23]. In this paper,
we consider the latter of these mechanisms. Geographic features such as oceans,
mountains, and forests prevent the interaction of species in different locations. Natural
events can cause these divides to be bypassed, but humans especially are responsible
for the introduction of foreign species today [7, 39]. Understanding invasions and the
behavior left in their wake is therefore of considerable practical importance.

We model the predator–prey interaction in one space dimension using a reaction–
diffusion system. Let Y(x, t) ∈ R2 represent predator and prey population densities
dependent on space, x, and time, t. A general two-species predator–prey system can
be written as

(1)
∂Y
∂t

= F(Y;µ) + D
∂2Y
∂x2 ,

where D is a constant, diagonal 2×2 matrix of diffusion coefficients and F : R2 → R2 is
a function describing the interaction. Typically, F will involve a number of ecological
parameters, but we focus on one of them that we denote µ, so that we may control
whether dY/dt = F has a limit cycle. Figure 1 illustrates how PTWs can be generated
by an invasion in (1), with F specified using the well-known Rosenzweig–MacArthur
model [27]. In this case, the generated waves are stable, but for some parameter values
they may be unstable and will evolve into spatiotemporal irregularity.

Cyclic behavior arises as a result of a Hopf bifurcation associated with F, which
we assume is supercritical, giving rise to a stable limit cycle. In this paper, we show
how one can derive analytic results about waves behind invasion using the theory of
normal forms, a valid approximation close to a supercritical Hopf bifurcation. When
close to the bifurcation point, waves have a small amplitude with near-sinusoidal
oscillations, and so one can consider a simpler yet topologically equivalent set of
normal form equations. From the viewpoint of applications, the restriction to small-
amplitude waves is a severe limitation since most ecological studies are concerned with

D
ow

nl
oa

de
d 

09
/2

4/
19

 to
 1

37
.1

95
.2

6.
10

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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0 100 200 300 400 500 600 700 800 900 1000

Fig. 1. An illustration of invasion of predators into prey for cyclic populations. Numerical
solutions of (18) are plotted as functions of space, x, at successive times, t. The vertical separation
between plots is proportional to the time interval, with time increasing up the plot. Advancing
and receding wave fronts of predator and prey, respectively, move from left to right, behind which
is a band of periodic traveling waves. Parameter values are A = 2, B = 3, C = 5, δ = 1; initial
conditions correspond to a prey-only state everywhere except for a small perturbation at the left-hand
boundary.

large amplitude cycles. However, the generation of large-amplitude periodic traveling
waves remains an open problem mathematically, and the study of small-amplitude
waves provides an important framework for the interpretation of simulation-based
studies of the larger-amplitude case. Previous work on small-amplitude cycles has
focused on the special case where D = I, for which the normal form can be written as

(2)
∂u

∂t
= (1− r2)u+ αr2v +

∂2u

∂x2 ,
∂v

∂t
= (1− r2)v − αr2u+

∂2v

∂x2 ,

with r2 = u2 + v2, an equation of λ-ω type first described by Kopell and Howard [14].
α is an expression containing the original model parameters in (1) and is determined
via a normal form calculation that we will describe in section 2. Kopell and Howard
showed that (2) have a one-parameter family of PTW solutions of the form

(3) u = r0 cos
(
±
√

1− r2
0x− αr2

0t

)
, v = r0 sin

(
±
√

1− r2
0x− αr2

0t

)
,

for all r0 such that 0 ≤ r0 ≤ 1. Furthermore, they showed that the generated waves
are linearly stable as a solution of (2) if and only if

(4) 2(1− r2
0)(1 + α2)− r2

0 ≤ 0.

Sherratt [29] derived an amplitude formula for PTWs generated by invasion in the
λ-ω equations,

(5) r0 =
[

2
α2

(√
1 + α2 − 1

)] 1
2

,
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which, together with (3) and (4), give a complete description of low-amplitude waves
generated by invasion in a predator–prey model given by (1) with D = I.

In section 2, we review the theory of normal forms, showing that the normal form
of (1) for general D is the cubic complex Ginzburg–Landau equation, giving explicit
formulae for its coefficients. One way of obtaining the λ-ω normal form equations
is to have D = I, implying that predator and prey dispersal rates are equal (an
unrealistic assumption in many ecosystems). We prove the existence of alternative
model constraints for a normal form reduction of λ-ω type in section 3, allowing one
to study the effects of unequal dispersal using the established theory detailed in this
section. The most general case is considered thereafter; in particular, a formula for the
wave amplitude is derived for PTWs generated by invasion in the complex Ginzburg–
Landau equations in section 4, allowing us to draw conclusions about stability in
sections 5 and 6. This work allows us to study small-amplitude PTWs for general F
and D, i.e., for any model in the form (1). In section 7, we illustrate our results via
an example.

2. Normal form coefficients: A review. There is a large, well-established
volume of work that involves reducing (1) in the absence of diffusion to a topologically
equivalent “normal” form under the assumption of small-amplitude limit cycles [10,
16]. This corresponds to being close to a Hopf bifurcation parameter in order to obtain
near-sinusoidal oscillations. We consider solutions of (1) that are close in parameter
space to this homogeneous oscillatory solution. Kuramoto [15] uses a method of
multiple scales applied to space and time variables in order to reduce (1) to normal
form. The Stuart–Landau equations are first derived for the homogeneous solution
before results are extended to include diffusion terms. We give a brief review of the
calculation, but a complete and detailed treatment can be found in Kuramoto’s book.

Let us assume that Y0(µ) is a homogeneous steady state of (1) so that F(Y0(µ);µ)
= 0. One can express (1) in terms of u = Y −Y0 as a Taylor series expansion,

(6)
∂u
∂t

=
(

J + D
∂2

∂x2

)
u + Muu + Nuuu + . . . ,

where J is the standard Jacobian matrix evaluated at Y0. Muu and Nuuu denote
quadratic and cubic terms in u, respectively, where the ith element is given by

(7) (Muu)i =
1
2!

∑
j,k

∂2Fi
∂Yj∂Yk

∣∣∣∣
Y0

ujuk, (Nuuu)i =
1
3!

∑
j,k,l

∂3Fi
∂Yj∂Yk∂Yl

∣∣∣∣
Y0

ujukul.

M is sometimes referred to as the Hessian matrix. We denote elements of vectors
using subscripts so that, for example, Fi is the ith element of F. The stability of Y0

for space-independent perturbations is determined by the eigenvalues associated with
J. We let λ(µ) = σ(µ) + iω(µ) denote an eigenvalue that is becoming critical with
complex conjugate, λ̄(µ), and beyond the critical parameter value, µcrit, the steady
state, Y0, becomes unstable, generating a limit cycle in the homogeneous system.
For the nonhomogeneous case, we assume the same—that instability is a result of a
complex conjugate pair of eigenvalues associated with J becoming purely imaginary at
µcrit. In assuming this, we are neglecting the possibility of diffusion-driven instability,
i.e., Turing patterns.
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2140 JAMIE J. R. BENNETT AND JONATHAN A. SHERRATT

Near µcrit, one can expand the quantities defined above in terms of a convenient
parameter we label ε,

u = εu1 + ε2u2 + . . . , J = J0 + ε2χJ1 + ε4J2 + . . . ,

λ = λ0 + ε2χλ1 + ε4λ2 + . . . , M = M0 + ε2χM1 + ε4M2 + . . . ,(8)

N = N0 + ε2χN1 + ε4N2 + . . . ,

where ε2χ = (µ − µcrit), χ = sgn(µ − µcrit), and λν = σν + iων . χ is introduced
here because we have not yet specified whether a limit cycle is generated for µ < µcrit
or µ > µcrit, and so we ensure that ε is always well defined. The quantities J0,
M0, and N0 are the matrices J, M, and N, respectively, evaluated at µcrit. Our
assumptions imply that σ0 = 0 in order to ensure that eigenvalues associated with
the homogeneous linearized problem are purely imaginary when µ = µcrit. Let U and
U∗ be right and left eigenvectors, respectively, associated with J0 and the eigenvalue
λ0. Then λ0 = iω0 = U∗J0U and

(9) λ1 = σ1 + iω1 = U∗J1U.

We have used the fact that the eigenvectors are normalized such that U∗U = Ū∗Ū =
1, where a bar denotes a complex conjugate. Also, note the standard relationship
U∗Ū = Ū∗U = 0.

The eigenvalue λ has a small real part of order ε2, and so we introduce a scaled
time variable defined by τ = ε2t. A slow space dependence is also anticipated due
to the slow spatiotemporal dynamics close to the Hopf bifurcation point, and so we
write u = u(t, τ, s), scaling space as s = εx. It can then be shown [15] by substitution
of (8) into (6) that Y(t, τ, s) is approximated close to the Hopf bifurcation point by
the equation

Y(t, τ, s) = Y0 + ε
(
W (τ, s)eiω0tU + W̄ (τ, s)e−iω0tŪ

)
,

whereW (τ, s) is some complex amplitude that satisfies the unscaled complex Ginzburg–
Landau equation

(10)
∂W

∂τ
= χλ1W − g|W |2W + d

∂2W

∂s2 ,

with d = U∗DU,(11a)
and g = −2U∗M0UV0 − 2U∗M0ŪV+ − 3U∗N0UUŪ,(11b)

where V+ = −(L0 − 2iω0)−1M0UU and V0 = −2L0
−1M0UŪ. The real and imag-

inary parts of W represent predator and prey population densities. With this result,
we have outlined the calculations necessary to obtain the normal form coefficients
(9) and (11), so that close to a Hopf bifurcation, one can reduce (1) to (10). Notice
that (10) has no dependence on the control parameter µ due to the scalings we have
made in space and time. We can further reduce the equation to the scaled complex
Ginzburg–Landau equation (CGLE)

(12)
∂W

∂τ
= W − (1 + iα) |W |2W + (1 + iβ)

∂2W

∂s2 ,

where

(13) α =
Im(g)
Re(g)

, β =
Im(d)
Re(d)

.
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One obtains (12) by performing the change of variables:

τ → 1
σ1
τ , s→

√
Re(d)
σ1

s , W →
√

σ1

|Re(g)|
e
iω1
σ1

τW.(14)

All predator–prey models of the form (1) can be reduced to (12) with the assumptions
detailed above, and so we can now safely focus our attention on the CGLE with the
knowledge that results are related directly via (14).

In general, a predator–prey model of the form (1) gives nonzero α and β. However,
in some special cases, one can obtain β = 0, and then (12) is simply the λ-ω equations
(2), for which the results outlined in section 1 apply. Note that in this scenario, any
diffusion coefficients in the original model are scaled out via (14). We now consider
what features of (1) result in β = 0 and, hence, a normal form of λ-ω type.

3. Conditions for equations of λ-ω type. Predator–prey interactions in
which populations tend to move about their habitats at similar rates can be rep-
resented in our model ecosystem by setting the dispersal coefficient of the predator
population equal to that of the prey, i.e., D = I. This is appropriate for many
aquatic micro-organisms [11], but the ratio of predator to prey dispersal rates will be
significantly greater than one for most mammalian systems [5] and, also, for macro-
scopic marine species [44]. When D = I, one can clearly see that (11a) collapses to
d = U∗IU = 1 and implies β = 0 in (12), yielding λ-ω-type equations (2). We now
show that D = I is sufficient but not necessary in order to obtain equations of λ-ω
form, allowing one to study the effects of unequal diffusion using theory described in
section 1. We prove the following theorem:

Theorem 3.1. Consider (1) and let F(Y;µ) := (F1(Y;µ), F2(Y;µ))T be such
that populations represented by Y(x, t) := (Y1(x, t), Y2(x, t))T are cyclic as a result
of a supercritical Hopf bifurcation. A normal form reduction then yields equations of
λ-ω type if at least one of the following conditions hold:

(i) D = I,

(ii)
∂F1

∂Y1

∣∣∣∣
Y0,µcrit

=
∂F2

∂Y2

∣∣∣∣
Y0,µcrit

= 0.

Proof. For β = 0, we need Im(d) = 0. We consider equation (11a) and write U,
J0, and D in terms of their components:

U :=
(
u1 + iv1
u2 + iv2

)
, J0 :=

(
j1 j2
j3 j4

)
, D :=

(
δ1 0
0 δ2

)
,

where u1, u2, v1, v2, j1, j2, j3, j4, δ1, δ2 ∈ R. Note that since J0 is at criticality, i.e.,
µ = µcrit, we express the purely complex eigenvalues associated with J0 as

λ, λ̄ = ±i
√
j1j4 − j2j3,(15)

with j1j4 − j2j3 > 0 and j1 + j4 = 0.(16)D
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The left eigenvalue U∗ can be calculated in terms of u1, u2, v1, v2 so that (11a)
implies

d =
1

2(u1v2 − u2v1)

(
v2 + iu2
−v1 − u1

)T (
δ1 0
0 δ2

)(
u1 + iv1
u2 + iv2

)
,

the imaginary part of which can be written as

Im(d) =
1
2

(u1u2 + v1v2)(δ2 − δ1)
(u1v2 − u2v1)

.

For Im(d) = 0, we require δ1 = δ2 (i.e., D = I), or

u1u2 + v1v2 = 0.(17)

One can easily show that the eigenvectors associated with J0 and (15) are given by

j2(u2 + iv2) =
(
i
√
j1j4 − j2j3 − j1

)
(u1 + iv1) ,

j3(u1 + iv1) =
(
i
√
j1j4 − j2j3 − j4

)
(u2 + iv2) .

Without loss of generality, choose u1 + iv1 = j2 and u2 + iv2 = i
√
j1j4 − j2j3 − j1.

Then (17) implies that j1j2 = 0. Together with (16), we have j1 = 0 and j4 = 0
with either j2 < 0 and j3 > 0, or j2 > 0 and j3 < 0. Note that j2 6= 0 because (16)
would not be satisfied. Recall that J0 is simply the Jacobian matrix evaluated at
both Y = Y0 and µ = µc.

We have discussed Theorem 3.1(i) and its ecological significance. We now provide an
example of a widely used predator–prey model for which Theorem 3.1(ii) applies.

Example: The Rosenzweig–MacArthur model. In order to reduce the num-
ber of parameters that need to be considered, we present the well-known Rosenzweig–
Macarthur model [27] in its nondimensionalized form

∂p

∂t
=
∂2p

∂x2︸︷︷︸
dispersal

+

benefit from predation︷ ︸︸ ︷
cph

b(1 + ch)
− p

ab︸︷︷︸
death

, predators(18a)

∂h

∂t
= δ

∂2h

∂x2︸ ︷︷ ︸
dispersal

+

logistic growth︷ ︸︸ ︷
h(1− h)− cph

1 + ch︸ ︷︷ ︸
predation

. prey(18b)

The scaled predator and prey densities p and h, respectively, are functions of space,
x, and time, t. The omitted nondimensionalization means that parameters a, b, c, δ
correspond to ratios of ecological quantities. a is the ratio of predator birthrates and
death rates, b is the ratio of prey and predator birthrates, c is the product of prey
carrying capacity and a rate associated with how fast prey consumption saturates
as the number of prey increases, and δ is the ratio of prey and predator disperal
coefficients. For a full model description see, for example, [30].
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Fig. 2. A plot to show the relationship between the wavelength of PTWs generated in (18)
with the diffusion coefficient, δ. Points and lines indicate numerical simulation and analytic ap-
proximation, respectively. Parameter values are set to a = 3 and b = 4, giving a Hopf bifurcation
point at ccrit = 2. We consider three different values of c:c = 3 (dot-dashed line and squares),
c = 2.4 (dashed line and circles), and c = 2.1 (solid line and crosses)—to show the convergence of
the analytic approximation to the numerical simulation as the Hopf bifurcation point is approached.

There exists one coexistence steady state (p, h) = (ps, hs), where hs = 1/c(a− 1)
and ps = ahs(1− hs). The Jacobian at (ps, hs) is then given by

J =

 0
ac− c− 1

acb

−1
a

ac− a− c− 1
ac(a− 1)

 .

One can easily see that the upper left entry is a zero because the rate of change
of predator population density is linear in p, neglecting spatial terms. Let c be our
control parameter without loss of generality. At criticality, we see that the bottom
right entry is forced to be zero by definition, with the critical value of the parameter
given by ccrit = (a+ 1)/(a− 1), and so we have satisfied Theorem 3.1(ii).

In a similar way, we obtain a normal form reduction of λ-ω type if, for arbitrary
functions gp, gh : R→ R, either the predator kinetics have the form p ·gp(h) like (18a)
or the prey kinetics have the form h · gh(p). In such cases, we can make predictions
about PTWs via (3)–(5), noting the scalings made in section 2. Figure 2 illustrates
the effect of dispersal on the wavelength of PTWs. Close to the Hopf bifurcation, the
theory describes PTWs well, and analytic predictions match numerical simulations
accordingly. Farther away, accuracy is lost as PTWs become larger and less sinusoidal.
Theorem 3.1(ii) turns out to be a common feature of many predator–prey models, but
the remainder of this paper considers the more general case when (1) satisifes none
of the conditions in Theorem 3.1, with the aim of giving a comprehensive method for
studying low-amplitude PTW solutions generated by invasion.

4. Amplitude behind invasion in the CGLE. As discussed in section 2, the
normal form of (1) in general is the CGLE. Here, we return to the standard x and t
notation for the analysis of (12). The CGLE is particularly well studied in the physics
community due to its rich dynamics and varied applications [2]. One of the simplest
pattern structures that one can generate are PTWs (sometimes called plane waves)
given by

W = r0e
i(qx+ωt),(19)
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2144 JAMIE J. R. BENNETT AND JONATHAN A. SHERRATT

where r2
0 = 1− q2 > 0 and ω = (β − α)q2 + α. This family of solutions is effectively

parametrized by the amplitude of the PTW, and so in this section we aim to derive an
amplitude equation corresponding to an invasion. Let us first be more precise about
what we mean by an invasion. In ecological terms, we want a prey-only environment
with a small introduction of predators near the edge of the habitat. This prey-only
environment would be the unstable steady state of the predator–prey model; however,
the CGLE has a zero unstable steady state obtained via a recentering in the normal
form calculation. Mathematically, for some small p ∈ R, we consider initial conditions
of the form

(20a) W (x, 0) =

{
p, x = 0,
0, x > 0,

on a semi-infinite domain [0,∞). The physical interpretation becomes apparent when
one considers the complex counterparts that make up W ; Re(W ) and Im(W ) can
be interpreted as predator and prey equations, respectively. We specify boundary
conditions as

∂W

∂x
= 0 at x = 0 and W → 0 as x→∞;(20b)

however, numerical simulations show that the left-hand boundary condition affects the
behavior of the solution only locally so that one may consider a different condition at
x = 0 without affecting the generated PTWs.

To simplify analysis, we represent the complex amplitude W in terms of its real
amplitude and phase,

rt = rxx − β (rθxx + 2rxθx)− rθ2
x + r(1− r2)(21a)

θt = θxx + β
(rxx
r
− θ2

x

)
+

2rxθx
r
− αr2,(21b)

by letting r = |W | and tan(θ) = Im(W )/Re(W ). Observing numerical simulations of
r (Figure 3(a)) reveals a transition wave moving across the domain in the positive x
direction, which changes the amplitude of the solution from zero to that of the gen-
erated PTW. One would not expect the same behavior when plotting θ, but previous
analysis of the CGLE, for example, [2] (and also of the λ-ω equations [14]), prompts
us to consider the phase gradient ψ := θx, plotted in Figure 3(b). A transition wave
in ψ can clearly be seen moving in parallel with that of r, and so we seek a traveling
wave solution of the form r(x, t) = r̃(x − ct) and ψ(x, t) = ψ̃(x − ct), which implies
θ(x, t) = Ψ̃(x, t) + f(t), where Ψ̃ is some indefinite integral of ψ̃ and f is a function
to be determined. We get two second-order ordinary differential equations,

r̃′′ + cr̃′ + r̃ − r̃3 − r̃ψ̃2 − β
(
r̃ψ̃′ + 2r̃′ψ̃

)
= 0

ψ̃′ + cψ̃ − αr̃2 +
2r̃′ψ̃
r̃
− β

(
ψ̃2 − r̃′′

r̃

)
− f ′(t) = 0,

where a prime denotes differentiation with respect to z = x − ct. We define a new
parameter φ = −r̃′/r̃, following, for example, [42], in order to reduce the system to
three first-order differential equations,

r′ = −rφ,(22a)

φ′ = φ2 − β(ψ′ − 2φψ)− ψ2 − cφ+ 1− r2,(22b)

ψ′ = f ′(t) + β(ψ2 − φ2 + φ′) + 2φψ − cψ + αr2,(22c)
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A
(x

;t
)

0.3

0.4

0.5

0.6

x
4000 4200 4400 4600 4800 5000

?
(x

;t
)

0

0.5

1

r(
x
;t

)

0

0.4

0.8
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(b)
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ψ0
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Fig. 3. Typical solutions for (a) r(x, t), (b) ψ(x, t) = θx, and (c) φ(x, t) = rxx/r. We plot the
solution at equally spaced time intervals, revealing a transition wave that moves across the domain
in the positive x direction. Ahead of the wave front, r → 0, ψ → ψ0, and φ → φ0; constants that
are easily determined analytically, the details of which can be found in the text. The constant value
behind the transition front in (a), (b), and (c) corresponds to a particular PTW, selected by an
invasion given by (20). We use parameter values α = 1, β = 0.4 and plot solutions until r is of
the order 10−15. The amplitude of periodic traveling waves generated by an invasion (behind the
wave front in (a)) can be expressed in terms of parameter values as (27). This formula gives the
amplitude as 0.827 to three significant figures.

where tildes have been dropped. Figure 3 illustrates how all variables tend toward
constant values, r → 0, ψ → ψ0, and φ → φ0 as x → ∞, where ψ0 and φ0 are
constants. Examining the behavior of the system for large x will give us an expression
for f , allowing us to calculate the steady states of (22) in terms of α and β.

The quantities φ0, ψ0, and c can be derived using the theory of front propagation
into unstable steady states, for which a detailed review has been collated by van Saar-
loos [43]. Equation (12) has a linearly unstable steady state at W = 0, implying that
our localized initial condition (20a) will grow and spread in the positive x-direction,
as we have seen. There are two classes of traveling front that can develop: either a
“pulled” front or a “pushed” front, both of which travel at different speeds in the limit
t → ∞. Our initial conditions are sufficiently “steep” (see [43]) for a pulled front to
develop, and therefore c is the asymptotic linear spreading speed associated with the
dynamical equations obtained by linearizing the CGLE. It is easily calculated from
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2146 JAMIE J. R. BENNETT AND JONATHAN A. SHERRATT

the linear dispersion relation along with φ0 and ψ0. If one decomposes W into Fourier
modes, we can write

W̃ (k, t) =
∫ ∞
−∞

W (x, t)e−ikxdx

and calculate the linear dispersion relation, ω(k) via the substitution of the ansatz,

W̃ (k, t) = W̄ (k)e−iω(k)t,(23)

giving ω(k) = (β− i)k2 + i. The inverse Fourier transform and (23) can then be used
to write

W (x, t) =
1

2π

∫ ∞
−∞

W̄ (k)eikx−iω(k)tdx,(24)

where W̄ is just the Fourier transform of the initial condition.
Consider two observers initially located at x = 0 who move off in the positive

x-direction along with the wave front. The first observer is moving at some speed
greater than c and so will eventually see the unstable zero steady state that is being
invaded, whereas the observer moving at some speed less than c will eventually see
the invasive stable steady state, which in our case takes the form of PTWs. If we
consider a moving frame of reference z = x − ct, the front should neither grow nor
decay. Then (24) becomes

W (z, t) =
1

2π

∫ ∞
−∞

W̄ (k)eikz−i[ω(k)−ck]tdk,

which can be evaluated using the method of steepest descent (saddle point approxi-
mation) due to the large time limit. The saddle point, k∗, is given by

d[ω(k)− ck]
dk

∣∣∣∣
k∗

= 0 =⇒ c =
dω(k)

dk

∣∣∣∣
k∗

= 2(β − i)k∗.(25)

Furthermore, the dominant term in the integral becomes ei[ω(k∗)−ck∗]t because of the
expansion in the exponent associated with the saddle point approximation. Hence, to
ensure that this term neither grows nor decays, we also have the condition

Im(ω(k∗))− c Im(k∗) = 0,

which together with (25) gives us an expression for the asymptotic speed of the tran-
sition front. The values of ψ0 and φ0 are the real and imaginary parts of the saddle
point, respectively, and so we obtain the expressions

c = 2
√

1 + β2, φ0 =
1√

1 + β2
, ψ0 =

β√
1 + β2

.(26)

Returning to (22), we let x → ∞, implying that r → 0, φ → φ0, ψ → ψ0, and
the speed of the wave front approaches c, so we calculate via (26) that f ′(t) = β; it
is not necessary to calculate f(t) in order to proceed. The steady states (r, φ, ψ) =
(rs, φs, ψs) must satisfy rsφs = 0 from (22a). rs = 0 is the steady state ahead of the
wave front, and so we assume φs = 0 with rs = r0 > 0. The steady state behind the
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wave front must then satisfy 1− r2
0 − ψ2

s = 0 and β(1 + ψ2
s)− cψs + αr2

0 = 0, and by
solving these equations we obtain the amplitude

(27) r0 =
[

2
(α− β)2

(√
(1 + α2)(1 + β2)− (1 + αβ)

)] 1
2

of PTWs given by (19), generated by an invasion described by (20), which is the
analogue of (5).

Many results derived about PTWs generated in the CGLE are hinged on the as-
sumption that the amplitude is a known parameter value. In empirical data sets, this
is an unlikely premise due to the difficulties in recording spatiotemporal data. In nu-
merical simulations of a mathematical model, the calculation of an amplitude is more
feasible, though an accurate reading can require large computation times and would
need to be repeated with each new set of parameter values. In both cases, it is a nec-
essary requirement that PTWs have already been generated, though from simulations
(see Figure 7) one can see that a certain amount of time is needed before one starts to
observe oscillatory behavior. The use of (27) allows one to predict PTWs analytically
from the system’s initial conditions rather than examining existing PTWs in order to
derive further characteristics. This is of particular benefit to ecologists making pre-
dictions about newly invading species. The following section describes how one can
use (27) to determine the stability of PTWs with respect to model parameter values.

5. Stability of PTWs in the CGLE. For certain parameter values, irregu-
lar wakes occur behind invasion (see Figure 4), making the notion of an amplitude
irrelevant. In order for (27) to be of any use, we must be able to say in terms
of our choice of parameters whether one will generate stable PTWs or spatiotem-
poral irregularity. Stability can be loosely described as follows: a solution is sta-
ble if any small perturbation decays over time. In contrast, a solution is unstable
if some small perturbation grows over time. To investigate the stability of PTWs

0 50 100 150 200 250

Fig. 4. An illustration of instability of PTWs generated in the CGLE by an invasion of the
unstable zero steady state. Numerical solutions of (18) are plotted as functions of space, x, at
successive times, t. The vertical separation between plots is proportional to the time interval, with
time increasing up the plot. A band of PTWs can be seen immediately behind the invasion, be-
fore waves destabilise into spatiotemporal irregularity. Parameter values are α = 5, β = 0.4, and
initial/boundary conditions are given by (20).
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in the CGLE, we consider (21) and linearize about the PTW solution given by
(r, θ) = (r0,

√
1− r2

0x +
[
(α− β)r2

0 + β
]
t), yielding a set of equations for small per-

turbations r̂, θ̂,

r̂t = r̂xx − βr0θ̂xx − 2
√

1− r2
0(βr̂x + r0θ̂x)− 2r2

0 r̂(28a)

θ̂t = θ̂xx −
βr̂xx
r0

+ 2
√

1− r2
0

(
r̂x
r0
− βθ̂x

)
− 2αr0r̂,(28b)

with constant coefficients. In a standard way, one then looks for solutions of (28)
in the form (r̂, θ̂) = (r̄, θ̄)exp(λt + ikx). After some manipulation, one obtains the
dispersion relation as

0 = D(λ, k) : = λ2 + 2λ
[
k2 + 2ikβ

√
1− r2

0 + r2
0

]
+ k2 [(1 + β2)k2 + (4β2 + 2αβ + 6)r2

0 + 4(1− β2)
]

+ 4ik(β − α)r2
0

√
1− r2

0.(29)

For stability, we must take k ∈ R and consider the set containing values of λ such
that D(λ, k) = 0; this is known as the “essential spectrum.” Note that the essential
spectrum with respect to (29) necessarily goes through the origin for all r0 since
D(0, 0) = 0, reflecting the neutral stability of waves to translation. Therefore, the
condition for stability is that Re(λ) < 0 for all λ in the essential spectrum, except
λ = 0. Ideally, one would like to derive an analytic condition for stability in terms of
parameter values, analogous to (5) for the λ-ω equations, though in the CGLE this is
possible only in the small k limit.

If one expands the growth rate λ in powers of k, giving

(30) λ = −2iq(α− β)k −
[
1 + αβ − 2q2(1 + α2)

r2
0

]
k2 +O(k3),

one can then easily see that PTWs are stable to long-wave perturbations when

(31) 1 + αβ − 2(1− r2
0)(1 + α2)
r2
0

> 0,

which is known formally as the Eckhaus criterion [8]. In many situations, Eckhaus
stability does indeed imply that PTWs are stable. A more rigorous stability analysis
has been carried out by Matkowsky and Volpert [19] that considers the case when
(31) is not sufficient for stability. In particular, they demonstrate that for smaller
values of r0, waves can destabilize for larger values of k—this is sometimes known
as a “Hopf”-type instability, illustrated in Figure 5. Figure 5(a) demonstrates, in
parameter space, how Eckhaus curves given by (31) can differ significantly from the
true stability boundary, which we calculate numerically. By setting r0 = 0.72, we
select PTWs with amplitude small enough for destabilization via Hopf instability.
Since k = 0 when λ = 0, as mentioned, small values of k correspond to the elements of
the essential spectrum near the origin in the complex λ plane; these values determine
whether a wave is Eckhaus stable. Figures 5(b)–(d) are plots of the essential spectrum
for a Hopf instability; in particular, Figure 5(c) is the spectrum of an unstable wave
that is Eckhaus stable, demonstrating that the Eckhaus criterion is valid only in the
limit k → 0. For the models considered in this paper, we always have the Eckhaus case,
but in general one must be careful to rule out the possibility of a Hopf destabilization
mechanism as shown in Figure 5.
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0.70 0.72 0.74 0.76 0.78
0.00
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0.08

(a) r0 = 0.72

b

a

(U)

(ES) (S)

2 0
5

0

5

Im(λ)

Re(λ)

(b) Unstable (U)

2 0
5

0

5

Im(λ)

Re(λ)

(c) Eckhaus stable
but unstable (ES)

2 0
5

0

5

Im(λ)

Re(λ)

(d) Stable and
Eckhaus stable (S)

Fig. 5. Plots to illustrate a Hopf-type instability in the CGLE in terms of ecological parameters
relating to (32) defined in section 7, with δ = −0.68 (note this is an ecologically insignificant
parameter choice). In (a), we can see the difference in the Eckhaus curve (dashed line), calculated
using (31), and the true stability line (solid line), which is calculated numerically and separates
unstable (shaded) and stable (white) regions of the a-b parameter plane. (b)–(d) are plots of essential
spectra for different parameter values. Point (U) in (a) represents parameter values a = 0.71,
b = 0.07, and gives the spectrum in (b), implying unstable (and Eckhaus unstable) PTWs. Similarly,
point (ES) represents parameters a = 0.74, b = 0.04, and is associated with spectrum (c). In
this case, Re(λ) < 0 close to the origin, implying the PTW is stable to perturbations with large
wavelength but unstable overall due to larger k values located away from the origin in the complex
λ plane. Point (S) represents a PTW with parameter values a = 0.78, b = 0.03, that is stable, as
seen in the corresponding spectrum (d).

6. Absolute and convective instabilities. We now focus on unstable PTWs,
distinguishing between absolute and convective instabilities. If a perturbation grows
in time at every fixed point in the domain, we say the solution is “absolutely unstable.”
The issue is that in a spatially dependent system, a perturbation may move in space
while it grows, meaning that the perturbation may decay at the point at which it is
applied but grow overall. If perturbations decay at every fixed point but the overall
norm of the perturbation grows, then we say the solution is “convectively unstable.”
In our specific case, a convective instability allows a band of PTWs to be seen behind
invasion, before they appear to destabilize. This is because, for an invasion, we
consider a finite domain with separated boundary conditions so that perturbations
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moving away from one boundary do not reenter at the other. Figure 4 illustrates
how a fixed-width band of PTWs is generated behind the invasion front. From an
ecological viewpoint, one would wish to be able to predict whether PTWs observed
in practice will eventually destabilize.

A few methods exist that calculate whether an unstable steady state is absolutely
or convectively unstable, some of which are very complicated [6, 37], and so we proceed
with a method that uses the notion of an “absolute spectrum,” a term coined by
Sandstede and Scheel [28]. To explain the absolute spectrum, we refer back to the
dispersion relation, D(λ, k) = 0, as given by (29)—a fourth-order polynomial in k.
Now though, it is necessary to let k ∈ C. For a given λ, we obtain four roots for k
that we label ki(λ) (i = 1, 2, 3, 4) such that

Im(k1) ≤ Im(k2) ≤ Im(k3) ≤ Im(k4).

For a system of two coupled reaction-diffusion equations (in our case the real and
imaginary parts of (12)), the “absolute spectrum” is the set of λ values such that
Im(k2) = Im(k3) (for details of this, we refer the reader to the proofs in [28]). Whether
a solution is absolutely or convectively unstable can be determined by the branch
points in the absolute spectrum [28]—if all branch points have Re(λ) < 0, the solu-
tion is convectively unstable, whereas if there exists a branch point with Re(λ) > 0,
the solution is absolutely unstable. In principal, the absolute spectrum can cross into
the right-hand half of the complex plane even when all branch points are in the left-
hand half; the solution would then have “remnant” instability [28, 34], with growing
perturbations traveling in both space directions. This is extremely rare—we know
of only one documented example [24]—and we have seen no evidence for behavior of
this type in our simulations. Figure 6 shows the division of the parameter plane into
absolutely and convectively unstable cases via the calculation of branch points of the
absolute spectrum.

7. Example: The Leslie-May model. We now put the theory described in
sections 4–6 into practice via an example. A well-established model, sometimes known
as the Leslie [18] or May [20] model for predators, p(x, t), and prey, h(x, t), can be
written in its nondimensionalized form as

∂p

∂t
=
∂2p

∂x2︸︷︷︸
dispersal

+

benefit from
predation︷︸︸︷
cp − cp2

h︸︷︷︸
death

, predators(32a)

∂h

∂t
= δ

∂2h

∂x2︸ ︷︷ ︸
dispersal

+

logistic growth︷ ︸︸ ︷
h(1− h)− aph

b+ h︸ ︷︷ ︸
predation

, prey(32b)

where a, b, c, and δ are positive constants from which we, again, select c as our control
parameter. There are two coexistence homogeneous steady states, and so, without
loss of generality, we consider

ps =
1
2

(
1− a− b+

√
((1− a− b)2 + 4b)

)
, hs = ps.

Although the Leslie-May model appears similar to (18), the key difference is in
the predator equation; due to a logistic-type growth of predators, the kinetic part
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Fig. 6. The effect of diffusion on PTWs generated by invasion in (32). (a)–(c) show the stable
(white) and unstable (shaded) regions of the parameter space, separated by the Eckhaus stability
boundary (black line) calculated using (31), for different values of the diffusion coefficient, δ. The
light shaded region represents convective instability in the generated PTWs (see section 6) and
indicates that a band of PTWs will be observed before destabilisation. The dark shaded region
represents absolutely unstable behaviour for which no PTWs are observed. The absolute stability
boundary is calculated numerically by finding branch points in the absolute spectrum (see section 6
for details). (b) represents the λ–ω case discussed in sections 1 and 3. Crosses relate to Figure 7. In
(d), we plot wavelength against δ to compare analytic predictions (lines) with numerical simulations
(points) for different values of the control parameter, c. We set a = 0.76, b = 0.04, giving a Hopf
bifurcation point at ccrit ≈ 0.29 (see (33)), below which cyclic behavior occurs. We plot for c = 0.24
(solid line and crosses), c = 0.19 (dashed line and circles), and c = 0.13 (dot-dashed line and
squares). As we approach ccrit, our analytic predictions converge to numerical simulations.

of (32a) is no longer linear in p. To be clear, one can calculate the associated
Jacobian as

J =

 −c c

− ahs
(b+ hs)

1− 2hs −
aps
b+ hs

+
apshs

(b+ hs)2

 ,

which, when evaluated at the Hopf bifurcation point

(33) ccrit = 1− 2hs −
aps
b+ hs

+
apshs

(b+ hs)2 ,

no longer satisfies Theorem 3.1(ii) in section 3. Therefore, when Theorem 3.1(i) does
not hold, we must proceed by reducing (32) to the CGLE. We do not give the normal
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(a) a = 0.71, b = 0.01, δ = 0.2, t = 850.

(b) a = 0.75, b = 0.08, δ = 1, t = 2550.

(c) a = 0.79, b = 0.07, δ = 3, t = 3000.

Fig. 7. Numerical simulations to show the effect of parameter values, illustrated in Figure 6,
on stability. We fix c − ccrit = 0.05 so that we are a constant distance from the Hopf bifurcation.
Note that (a) is related to parameters represented by a cross in Figure 6(a) and, similarly, that (b)
and (c) relate to Figures 6(b) and 6(c), respectively. In (a), the selected PTW is absolutely unstable,
and irregular behavior is observed immediately behind invasion due to stationary modes. In (b),
the selected PTW is convectively unstable, allowing a band of PTWs to develop before perturbations
grow large enough to be observed at x = 220. In (c), a stable PTW is selected.

form expressions explicitly since they are long and awkward, but they can be easily
calculated using a computer algebra package via (13), giving us α = α(a, b) and
β = β(a, b, δ). These expressions can be substituted into (27), allowing one to specify
the PTW selected by invasion from (19) in terms of the original model parameters. We
have investigated a wide range of ecologically significant parameter choices and find,
in all cases, that PTWs destabilize via an Eckhaus instability so that (31) determines
stability. For other methods of wave generation, PTWs could destabilize via Hopf
instability, and one would have to calculate stability numerically (see section 5)—we
give an example of this for (32) in Figure 5(a) for a fictional method of wave generation
that generates PTWs of amplitude r0 = 0.72.

Figures 6(a)–(c) use (31) to calculate stable and unstable regions of the parameter
plane. In addition, we calculate absolutely unstable regions (where spatiotemporal
irregularity is observed immediately behind invasion) and convectively unstable re-
gions (where PTWs are observed but then destabilize after some time) by calculating
branch points in the absolute spectrum. Assuming that PTWs are observed, we can
make predictions about their characteristics: Figure 6(d) demonstrates the effect of
δ on the wavelength while highlighting the importance of being close to the Hopf
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bifurcation. Close to ccrit, our predictions agree well with numerical simulations, but
as c moves away from ccrit, they become less accurate, though, in accordance with
normal form theory.

8. Discussion. Our amplitude equation (27) enables us to specify explicit solu-
tion forms for a more general class of ecological models (1), giving accurate predictions
of PTW characteristics near a Hopf bifurcation. We have shown that dispersal has a
significant effect on the general stability of PTWs and for unstable waves employed
the notion of absolute and convective instabilities to predict the existence of a band of
waves prior to destabilization into spatiotemporal irregularity. Furthermore, by com-
bining theory from [35] with the results in this paper, one can calculate the bandwidth
of a band of PTWs.

We suggest three directions for future work:
• Large-amplitude PTWs: Our work has assumed that PTWs must necessar-

ily be of the small-amplitude type by fixing a control parameter close to the
Hopf bifurcation point. Ecologists, in general, would be interested in large-
amplitude PTWs that have a more significant impact on the surrounding
ecosystem. This is the natural direction for future work on PTW selection—
little has been done in this area, with the exception of recent work by Mer-
chant and Nagata [21, 22], who developed a new method of PTW prediction
that retains accuracy further from the Hopf bifurcation by assuming the ex-
istence of a front between the spatially homogeneous steady state and the
selected PTW.

• Nonlocal dispersal: For many natural populations, diffusion is considered to
be a crude representation of movement, failing to capture instances of rare
long-distance dispersal events. Recent work [32, 33], instead, uses spatial
convolution with a dispersal kernel, which is more accurate in many systems.
In [32, 33], it is assumed throughout that parameters are close to a Hopf
bifurcation and that dispersal terms are the same for predators and prey,
enabling one to approximate the model via the λ-ω equations. Instead, one
could allow dispersal coefficients to vary, resulting in a CGLE normal form
and allowing one to apply the results in this paper to models with nonlocal
dispersal. A much harder problem, though, would be to study the dynamics
for different dispersal kernels, which would give a completely different and,
likely, more complicated normal form equation.

• Two-dimensional perturbations: Our focus with regards to the stability of
PTWs has been on one-dimensional patterns. In reality, ecological systems
are more accurately represented in two space dimensions, the implication be-
ing that PTWs that are stable to one-dimensional perturbations may or may
not be stable when trivially extended as striped patterns. This is because
of additional transverse two-dimensional perturbations. Siero et al. [36] have
done work in this area with respect to banded vegetation patterns observed
in semiarid desert regions. The authors identify that the resilience of these
striped patterns is greater on a steeper incline by numerically computing sta-
bility regions, and show that the destabilization process leads to “dashed” veg-
etation patterns before desertification. The consideration of two-dimensional
perturbations in relation to PTWs in cyclic populations could reveal inter-
esting new pattern formations that are as yet undiscovered due to a lack of
empirical data.
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