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Abstract Theory has been developed that examines the
role of infectious disease in ecological invasions for
particular natural systems. However, a general understand-
ing of the role that shared disease may play in invasions is
lacking. Here, we develop a strategic theoretical framework
to determine the role of disease, in addition to competition,
in ecological invasions and the expansion of species’ spatial
range. We investigate the effect of different disease
parameters on the replacement time of a native species by
an alien invader. The outcome is critically dependent on the
relative effects that the disease has on the two species and
less dependent on the basic epidemiological characteristics
of the interaction. This framework is also used to
investigate the effect of disease on the spatial spread of
the invader. Our results show an interesting phenomenon
where a wave of disease spreads through the landscape
ahead of the wave of replacement.

Keywords Disease models . Spatial . Multi-species .

Ecological invasions . Squirrelpox . Travelling waves

Introduction

The catastrophic damage to native communities of past
introductions such as Nile perch (Lates niloticus) into Lake
Victoria (Kolar and Lodge 2001) and the rapid spread of the
European zebra mussel (Dreissena polymorpha) through

North America (Lodge 1993; Pimentel et al. 2001; Vitousek
et al. 1996) is well known. However, the rate at which
human activity is introducing species, either accidentally or
deliberately, into new habitats is still increasing (Prenter et
al. 2004). Of course, the large majority of these organisms
die out shortly after introduction, but those invasive species
which establish themselves are recognised as a major
international threat to native biodiversity (Kolar and Lodge
2001; Sala et al. 2000; Vitousek et al. 1997). In addition to
these human-induced species introductions, current and
predicted changes to the climate are likely to lead to
significant shifts in species ranges which are also likely to
threaten native systems (Dukes and Mooney 1999). In
general, there are likely to be many factors which affect the
success and rate of spread of invasive species, including
differences in resource utilisation or life history character-
istics between the invasive and native species. More
recently, a number of studies have highlighted the role of
infectious disease as an important determinant in native
survival and invasive success (Daszak et al. 2000; Hudson
and Greenman 1998; Prenter et al. 2004).

Commonly, when disease has been considered in the
context of invasions, it has been as part of the enemy
escape hypothesis. Here, the invasive species is thought to
gain an advantage in its new environment by virtue of
escaping its natural enemies, including virulent parasites as
well as predators. For example, Aliabadi and Juliano (2002)
found that when the invasive Asian tiger mosquito Aedes
albopictus is released in North America, it initially
experiences reduced infection by its gut parasite Ascogre-
garina taiwanensis. This escape gives it a small, but
significant, competitive advantage over the native tree-hole
mosquito Ochlerotatus triseriatus allowing it to expand its
range more rapidly. It is also increasingly recognised that an
invading species can gain an advantage by introducing a
novel harmful disease to the native system. This scenario
where the parasites acts as a “biological weapon” has been
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an important factor in the replacement of the UK’s only
native crayfish, the white-clawed crayfish Austropotamo-
bius pallipes throughout much of its range by the
introduced North American signal crayfish Pacifastacus
leniusculus. The white-clawed crayfish suffers both as a
result of competition for resources from the larger and more
aggressive signal crayfish and also the transmission of
crayfish plague Aphanomyces astaci from the invading
species. Signal crayfish are resistant to crayfish plague
(Cerenius et al. 2003); however, it is lethal to white-clawed
crayfish and has been responsible for mass mortality in
many British crayfish populations (Bubb et al. 2004;
Holdich 2003). Other examples include: the replacement
of the pedunculate oak Quercus robur in the UK by the
introduced Turkey oak Quercus cerris due to the impact of
the knopper gall wasp Andricus quercuscalicis which
causes huge acorn losses to the native species but has little
effect on the introduced species (Hails and Crawley 1991);
monogenean gill fluke Nitzschia sturionis which was
introduced with the Caspian Sea sturgeon Huso huso in
the 1930s has detrimentally affected the density of the Aral
Sea sturgeon Acipenser nudiventris (Rohde 1984) and the
expansion of the white-tailed deer Odocoileus virginianus
in North America into territories occupied by moose Alces
alces and caribou Rangifer tarandus which was aided by
the meningeal worm Parelaphostrongylus tenuis which is
carried by the white-tailed deer but lethal to the other
species (Anderson 1972; Bergerud and Mercer 1989; Oates
et al. 2000; Pybus et al. 1990). Perhaps the best known
example is the decline of the UK’s native red squirrels
Sciurus vulgaris over the past 60 years as a result of the
introduced North American grey squirrel Sciurus caroli-
nensis (Lloyd 1983; Middleton 1930; Reynolds 1985). Red
replacement was traditionally believed to result solely from
the superior competitive ability of the greys (Okubo et al.
1989). However, recent evidence has revealed the existence
of an infectious disease, squirrelpox, which is shared
between the two species (Rushton et al. 2000) but is
harmless (at least under laboratory conditions) to greys and
lethal to reds (Tompkins et al. 2002). In models of the
system, the inclusion of the effects of squirrelpox was
necessary to explain the rapid replacement of red squirrels by
greys in the UK (Rushton et al. 2006; Tompkins et al. 2003).

In all of the above examples, the invader gained an
advantage through disease. However, there are also exam-
ples where disease can be advantageous to the native
species. Hoogendoorn and Heimpel (2002) found that with
ladybird beetles in North America; the native species
Coleomegilla maculata (De Geer) suffers less from the
parasitoid Dinocampus coccinellae (Schrank) when the
alien species Harmonia axyridis (Pallas) is present. This
lessens the competitive effects of the alien ladybird beetle
and slows the rate of alien invasion. There is also evidence

that infectious disease that is endemic in the native
population may be highly pathogenic to invading species
and therefore prevents the invader from establishing (Hilker
et al. 2005; Petrovskii et al. 2005).

It is an open question, how the characteristics of
particular parasite interactions affect the likelihood and rate
of invasion by different species. Here, we develop a
theoretical framework to understand how disease in
combination with competition can affect the success of
invasion, the time taken for a native species to be replaced
by an invader and the spatial spread of the invading species.
We will consider the impact of a shared disease on the
dynamics of competing species under classical host–
parasite frameworks. These frameworks are extended to
include spatial spread by approximating dispersal as a
diffusion process. The model formulations allow us to
examine how disease affects the dynamics of invasion and,
in particular, we address the question of how the presence
of a shared disease affects the replacement time and spatial
range over which a native species is replaced.

Methods

Below, we outline the framework for the full reaction-
diffusion system. In the initial analysis, we set the diffusion
coefficients to zero and consider the temporal dynamics only.
The assumption is later relaxed when we consider the spatial
spread of the invasive species. The classes of susceptible, Si,
and infected, Ii, individuals are represented by the following
system of equations, where i=1, 2 with 1 representing the
native species and 2 representing the alien invader

@S1
@t

¼ a1 � q1 H1 þ c2H2ð Þ½ � S1 þ f1I1ð Þ � b1S1

� b11S1I1 � b12S1I2 þ g1I1 þ D1
@2S1
@x2

ð1Þ

@I1
@t

¼ b11S1I1 þ b12S1I2 � b1I1 � a1I1 � g1I1

þ D1
@2I1
@x2

ð2Þ

@S2
@t

¼ a2 � q2 H2 þ c1H1ð Þ½ � S2 þ f2I2ð Þ � b2S2

� b22S2I2 � b21S2I1 þ g2I2 þ D2
@2S2
@x2

ð3Þ

@I2
@t

¼ b22S2I2 þ b21S2I1 � b2I2 � a2I2 � g2I2

þ D2
@2I2
@x2

ð4Þ
where H1=S1+I1 and H2= S2+I2.
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We assume all parameters are non-negative and ai
represents the maximum reproduction rate, bi the natural
mortality rate, ci the competitive affect of species i on the
other species and βij the disease transmission coefficient
from species j to i. (In this study, we assume that βij=β for
all i and j, but see Tompkins et al. (2003) for an assessment
of different within- and between-species transmission rates.
We assume density-dependent (mass action) infection
dynamics (Bowers and Turner 1997; Tompkins et al.
2003) but see Saenz and Hethcote (2006) for a similar
model with frequency-dependent transmission.) We assume
a positive carrying capacity, Ki, which is related to
susceptibility to crowding, qi, since Ki ¼ ai � bið Þ=qi. The
model assumes that infected individuals experience disease-
induced mortality at rate αi. Infecteds may recover back to
susceptibility at rate γi and infecteds experience only a
proportion, fi, of the fecundity of a susceptible host; fi ∈
[0,1]. The diffusion coefficients, D1 and D2, approximate
random movement for each of the species; we assume that
dispersal is not affected by the disease.

By manipulating the infection parameters, the model
Eqs. 1 to 4 can represent different classical disease
frameworks. If γi>0, the model represents an SIS frame-
work, whereas if γi=0 it represents an SI framework. It is
also of interest to examine the effects of infection on
fecundity in these frameworks. These range from a
castrating parasite (fi=0) to one in which disease has no
effect on fecundity (fi=1). We will investigate the role of
disease on invasion under these different scenarios.

Results

Temporal results

We examine a non-spatial framework by setting the
diffusion coefficients to zero (Di=0). The model framework
is similar to that analysed in detail by Bowers and Turner
(1997) but we additionally include the possibility of the
parasite reducing the fecundity of infected hosts (see also
Begon et al. 1992; Greenman and Hudson 1997; Holt and
Pickering 1985; Malchow et al. 2008; Saenz and Hethcote
2006). The key difference between previous studies that
consider ecological interaction and infectious disease and
the current study is our focus on determining whether
disease increases or decreases the time taken for an invader
to replace the native population. A summary of the steady
states and their stability properties can be found in
“Appendix 1” and are analogous to the findings of Bowers
and Turner (1997). In this study we examine the invasion
of an alien species into a purely susceptible native species
at its carrying capacity, (S1, I1, S2, I2) = (K1, 0, 0, 0). As
stated, our focus is to understand how the disease affects

the replacement time of the native species by the invader.
To achieve this, we assume that the non-disease parameters
in Eqs. 1 to 4 are equal for the native and invading species
except that the invader has a superior competitive ability,
c2>c1. In the absence of the disease, the native will be
replaced and the population will be transformed to the
steady state containing a purely susceptible alien species at
its carrying capacity (0, 0, K2, 0) (Fig. 1). The replacement
time is measured as the time taken for the native population
to fall below 0.1% of its carrying capacity (which in Fig. 1
is when t=70.4 time units). To examine how the inclusion
of disease alters the replacement time, we use the same
non-disease parameters as in Fig. 1 and compare the
replacement time for competition-mediated replacement to
that for competition-and-disease-mediated replacement in
which the population is transformed to the endemic disease
equilibrium 0; 0; S�2 ; I

�
2

� �
. In this way, we examine whether

disease increases or decreases the replacement time of the
native species for a range of disease parameters.

Effects of disease-induced fecundity loss The effect on the
replacement time when both species suffer equal fecundity
loss as a result of the infection for a variety of combinations
of the other disease parameters is shown in Fig. 2a. When
there is no disease-induced mortality and no fecundity loss
for infecteds, the replacement time is the same as in the
absence of disease. As the loss of fecundity due to infection
increases (fi decreases from 1 to 0), the replacement time
increases. This trend occurs since fecundity loss leads to an
overall lower growth rate for the invader and therefore it
takes longer for the invader to increase in number and oust
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Fig. 1 Density of the native (solid line) and alien (dashed line)
species over time in the absence of disease. Initially, the native species
is at its carrying capacity and the invader is introduced at low density.
The alien species replaces the native species and reaches its carrying
capacity. Parameters are: a1=a2=1, b1=b2=0.4, K1=K2=200, c1=0.9
and c2=1.5. These results were produced using MATLAB ODE45
which is based on an explicit Runge-Kutta (4, 5) formula
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the established native population (Fig. 2a). When there is
mortality due to the disease (αi>0), the replacement time is
increased when compared to competition-only for all levels
of fecundity loss. When fecundity loss is low, disease-
induced mortality increases replacement time compared to
when it is absent. In contrast, when fecundity loss is high,
disease-induced mortality reduces replacement time (com-
pared to when disease-induced mortality is absent) since
here infected individuals, which contribute little to the
overall growth rate of the invading species, are removed
more rapidly. The effect of recovery is to reduce the
replacement time at all levels of fecundity when compared
to the appropriate results for the presence or absence of
disease-induced mortality (Fig. 2a). The clear general trend

is that if disease has the same effect in reducing the native
and invading species fecundity the replacement time
increases.

We next examine the effect on replacement time when
the disease-induced reduction in fecundity is more severe
for the native than the invading species. If the invading
species has a ‘low’ level of fecundity loss, then the disease
will increase replacement time (compared to in the absence
of disease) if the relative fecundity loss of the native is
small but reduce replacement time once the relative
fecundity advantage of the invading species exceeds a
threshold (Fig. 2b). This threshold increases if individuals
can recover to susceptibility (as, once recovered, the
disease-induced relative costs are not realised) and if the
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Fig. 2 The effect of different disease parameters on competition-and-
disease-mediated replacement time: a–c disease-induced fecundity
loss; d–f disease-induced mortality; g–i recovery from infection. For
each of these parameters, we look at combinations of presence–
absence of the other two disease parameters as detailed in the key for
each row of plots. In a, d and g, the native and alien have equal values
for the disease parameter, while in the remaining plots the native
suffers a relative disadvantage. The dotted line represents the

replacement time when disease is absent. Parameters common to
every plot are: a1=a2=1, b1=b2=0.4, K1=K2=200, c1=0.9, c2=1.5
and βij=0.06. In addition, we fix the following parameters: in b f2=
0.8, c f2=0.2, e α2=1, f α2=2, h γ2=1 and i γ2=5. The results are
qualitatively similar for a wide range of parameters that satisfy the
conditions necessary for the invader to have a competitive advantage.
All results were produced using MATLAB ODE45 which is based on
an explicit Runge-Kutta (4, 5) formula
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disease induces additional mortality (as the death of
infected individuals also negates the fecundity advantage
of the invading species). The threshold also increases if the
invading species has a ‘high’ level of fecundity loss
(Fig. 2c) and here even a high relative fecundity advantage
may not be sufficient for the replacement time to be less
than in the absence of disease.

Effects of disease-induced mortality We consider increases
in disease-induced mortality when it is equal in both species
(α1=α2) for a variety of combinations of the other disease
parameters (Fig. 2d). If the parasite castrates both species
(fi=0), an increase in disease-induced mortality reduces
replacement time, but it can never be less than that for
competition-only replacement (Fig. 2d). Here, the increase
in disease-induced mortality acts to reduce the prevalence
of an infection and so the castrating effect of the parasite
becomes less apparent. If the parasite has no effect on
fecundity (fi=1), the replacement time initially increases
as disease-induced mortality reduces the overall density
and therefore lowers total reproduction. As disease-
induced mortality increases further, replacement time
reaches a maximum and then decreases and tends to but
is never less than that for competition-only replacement.
The approach of the diseased replacement time to the non-
diseased time occurs because, when disease-induced
mortality is high, infected individuals are removed so
quickly that the model system behaves in a similar manner
to the competition-only case. As the fecundity loss
increases (fi changes from 1 to 0), the replacement time
at α1=α2=0 increases and the curves change between the
two cases. The effect of recovery is to reduce the
replacement time at all levels of disease-induced mortality
for all the cases (and is similar to the response shown in
Fig. 2a).

Next, we consider when the native suffers higher
disease-induced mortality than the invading species. If
the parasite is castrating and there is no recovery, the
replacement time is always increased even if the native
suffers high disease-induced mortality compared to the
invader (Fig. 2e). With recovery present, if the advantage
of the invader (in terms of lower disease-induced
mortality) is small, the disease will again increase
replacement time, but if the relative advantage of the
invader exceeds a threshold the replacement time can be
reduced compared to competition-only. This threshold is
lower if the parasite is non-castrating as this allows higher
reproduction into the susceptible class and therefore faster
growth of the invading species. The trend is observed if
the underlying level of disease-induced mortality of the
invading species is increased but the threshold values at
which the disease acts to reduce the replacement time are
increased and in some circumstance a high relative

advantage for the invader may not be sufficient to reduce
the replacement time below that of competition-only
(Fig. 2f).

Effects of recovery from disease If both species have an
equal recovery rate from the disease (γ1=γ2), the replace-
ment time decreases as the recovery rate increases but
replacement is never faster than competition-only (Fig. 2g).
If the relative advantage of the invader in terms of recovery
exceeds a threshold, then the replacement time can be lower
than for competition-only (Fig. 2h,i). When the disease is
castrating (or leads to a ‘large’ reduction in fecundity), the
recovery advantage is particularly important, as recovery
acts as a route back to full fecundity.

Generality of temporal results Above, we consider the
effects of disease on replacement time when the invader is a
superior competitor, but the disease can also have a
significant effect when the native species is the superior
competitor (and therefore the competition alone would
eradicate the invader). The disease can allow a competi-
tively inferior invader to replace a native species (this
occurs when criterion 21 is satisfied, see “Appendix 1”).
When the parasite is castrating, the invader requires a high
recovery rate to negate its inferior competitive ability (αi

can affect the speed of replacement but cannot alone allow
invasion). For a non-castrating parasite, replacement
requires the invader to suffer sufficiently lower mortality
due to disease (differences in recovery can affect the
replacement time but alone cannot allow invasion). In
general, the qualitative trends in replacement time for
changes in disease parameter values are as outlined in
Fig. 2. (Although not the focus of this study, the invading
species could coexist with the native, see “Appendix 1” for
relevant criteria. The disease impacts on the time taken
to coexistence in a similar manner to the one outlined
above.) It is also possible to have situations where the
disease acts to prevent invasion, even if the native is an
inferior competitor, providing the native has sufficiently
better recovery when fi=0 or sufficiently lower mortality
when fi>0 (see criterion 18 in “Appendix 1”).

The temporal results highlight the importance of infec-
tion in determining the outcome and time required for an
invading species to replace a native species. The replace-
ment time for alien species to invade are shortest when the
invader has better recovery than the native species, lower
mortality from the disease and a greater reproduction rate
when infected. However, a disease introduced by an
invading species may not reduce the replacement time.
The general message is that a shared disease carried by an
invading species may be detrimental to the invaders
attempts to replace the native if the disease has a similar
effect on both species even if it is more ‘harmful’ to the
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native. Only when the invading species has a sufficient
relative advantage does the disease assist in reducing the
replacement time.

Spatial spread

We now extend our analysis to investigate how the
temporal findings for the replacement of a native species
extend to a spatial model framework. Our aim is to
investigate the spatial spread and replacement when an
invading species is introduced at one location into a
disease-free native population. Again, we compare results
for competition-mediated and competition-and-disease-me-
diated replacement.

We consider a situation in which the alien species has a
competitive advantage in the absence of disease. In
competition-only replacement, a travelling wave sweeps
across the landscape, transforming the population from the
native carrying capacity in front of the wave to a population
of invaders only, at their carrying capacity, behind the
wave. In an extensive programme of numerical simulations,
we have found that, when disease is present, a rapid “wave
of disease” spreads across the landscape, followed by a
slower “wave of replacement”. The wave of disease spreads
through the native population (in the absence of the
invading species) and transforms the native population
from its disease-free to its endemic population level. This is
followed by the wave of replacement in which the invading
species replaces the native species, leaving the invading

species at its endemic population level. Figure 3a shows the
spatial replacement of the native species when there is no
disease present and Fig. 3b shows the spatial replacement
when there is disease present. For these parameter values,
the temporal model predicts that the replacement of the
native species will be faster when the disease is included. In
line with this, the invading wave moves faster when the
disease is present. For parameter values for which the
disease would slow the replacement of the native species in
the temporal system, our results indicate that the spatial
replacement is also slower than in the absence of disease.

The three types of wave described above are all
transition fronts, with a locally unstable steady state ahead
of the front and a locally stable steady state behind. Such
transition fronts are well understood for scalar reaction-
diffusion equations. Providing that the local dynamics
satisfy some simple conditions, there are wave front
solutions for any value of the wave speed above a critical
minimum value. Moreover, initial conditions of the type
relevant in any ecological application (specifically, having
sufficiently fast decay rate) lead to a wave travelling at this
minimum speed. Reviews of the theory of travelling waves
for scalar reaction-diffusion equations in ecological con-
texts are given in the books by Kot (2001), Murray (2002),
Petrovskii and Li (2006) and de Vries et al. (2006). For
systems of reaction-diffusion equations, the analogous
theory of transition wave fronts is much less complete. In
a few cases, it has been shown that the actual wave speed
arising from localised initial conditions corresponds to a
minimal speed that can be calculated in a manner analogous
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Fig. 3 Density of the native (S1, I1) and alien (S2, I2) species across
the spatial landscape. In a, competition-mediated spatial replacement
is shown and b competition-and-disease-mediated spatial replacement
at time points 400 and 600, respectively. The parameters are: f1= f2=1,
a1=a2=1, b1=b2=0.4, K1=K2=200, c1=0.9, c2=1.5, α1=0.7, α2=0.2,
γ1=γ2=0.2, βij=0.06 and Di=0.18. In a temporal model, these

parameters result in a decrease in replacement time when disease is
present. Similarly, in the spatial model, we see the invading species
spreading further across the landscape when disease is present (b)
compared to when it is absent (a). Note that in b the wave of
replacement occurs behind the wave of disease. These observed values
were produced using a semi-implicit Crank-Nicolson method
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to that used for scalar equations (Lewis et al. 2002; Li et al.
2005; Weinberger et al. 2002, 2007). Moreover, this
approach to calculating the wave speed has been proven
successful in a great many other cases, although underlying
theory is lacking. However, an important caveat is that
there are some systems for which the actual speed is
significantly faster than the minimal speed (Hosono 1998).

We have calculated the critical wave speed for the three
types of wave that occur in our solutions; details of the
calculations are given in “Appendix 2”. The critical wave
speed for competition-only-mediated replacement, θC,
is given by qC ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 a2 � b2ð Þ 1� c1K1=K2ð Þp

. The
critical wave speeds for the waves of disease and

of replacement, denoted by θD and θR, respectively,
are given by qD ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 b11K1 � a1 � b1 � g1ð Þp

and

qR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2ðAþ $þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ $ð Þ2�4A$þ 4EB

q Þ
r

(A, B, Δ and E are
defined in “Appendix 2”). For the parameters used in
Fig. 3, the values of these speeds are θC=0.2, θR=0.5 and
θD=2.8. These match very closely with the numerical
simulations plotted in Fig. 3, and this is true for a wide
range of other parameters for which θD>θR. When θD<θR,
one might expect that the wave of replacement would
“catch up with” the wave of disease, leading to the

formation of a single combined wave front. However, in
numerical simulations, we observe different behaviour,
namely that, while the wave of replacement still travels at
speed θR, the wave of disease travels at a speed faster than
θD and indeed faster than θR (illustrated in Fig. 4). This is
reminiscent of the behaviour observed by Hosono (1998) in
competition-only models; a detailed understanding of what
determines the actual wave speed is lacking even in that
much simpler case and is therefore beyond the scope of the
present paper. The only exception that we found to this
behaviour was in the case D1=0; then, a wave of disease is
not possible, and the invasion occurs via a single travelling
wave, moving at speed θC. Apart from in this very special
case, our results always show that a rapid wave of disease
spreads through the native population, with the actual
invasion of the alien population occurring more slowly.
This occurs regardless of whether disease acts to increase or
decrease the replacement time.

The spatial investigation has shown that, when the
disease decreases the temporal replacement time, it also
results in a faster spatial wave of replacement. We also
investigated whether disease can change the spatial range
over which the alien species can invade. To examine this,
we considered a heterogeneous spatial landscape in which
the carrying capacity of the invader decreases across the
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Fig. 4 Effect of relative diffusion on observed and critical wave
speeds. Critical minimum wave speeds are calculated for the three
types of waves seen in our solutions (competition-only wave (θC),
wave of disease (θD) and wave of replacement (θR)) for a range of
relative diffusion rates (D2/D1). In this scenario, the alien species
invades and replaces the native species with disease present. This
results in two waves, a wave of disease followed by a wave of
replacement. When θD>θR, the observed wave speeds seen in
numerical simulations match very closely with the critical wave

speeds. If θD<θR, the observed wave of replacement (observedR) still
travels at speed θR; however, the observed wave of disease
(observedD) travels at a speed faster than θD. The parameters used
are: f1=f2=1, a1=a2=1, b1=b2=0.4, K1=K2=200, c1=0.9, c2=1.5, α1

=0.7, α2=0.2, γ1=γ2=0.2, βij=0.06 and Di=0.18. The “observed”
results come from numerical solutions of the equations using a semi-
implicit Crank-Nicolson method. For larger ratios of the diffusion
coefficients, the numerical simulations are relatively time consuming
as they require a large spatial domain
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spatial landscape while the carrying capacity of the native
species increases. In the absence of the disease, the wave of
invasion causes replacement of the native population.
However, as this wave spreads across the landscape, it
begins to slow and eventually stops (Fig. 5a). The wave
halts as the competitive advantage of the invader is
countered by its inferior carrying capacity. Figure 5b shows
the outcome when the disease is included. The wave of
replacement is again observed, with the wave speed
slowing as the invader progresses across the landscape,
but the disease allows the wave to progress further.

Discussion

In this study, we have considered a strategic theoretical
framework to investigate the role of a shared disease, in
addition to competition for resources, in the invasion of
novel organisms and the expansion of their spatial range.
We have shown that disease can increase or decrease the
time taken for an invading species to replace an established
native population with the outcome critically dependent on
the relative effects that the disease has on the two species
and less dependent on the basic epidemiological character-
istics of the interaction. Disease may also allow the
invasion of a poorer competitor that otherwise would have
been excluded by the native species. A shared disease may
benefit an invading species by allowing it to expand over a

larger spatial region. When this occurs, a wave of disease
spreads through the native population in advance of the
invading species. This phenomenon may have important
management and conservation implications.

Of great conservation concern is the situation where a
shared disease can aid the invasion of an exotic species.
The extinction of native red squirrel by the introduced grey
in much of England and Wales has highlighted the role that
disease may play in speeding up the replacement process
(Rushton et al. 2006; Tompkins et al. 2003). We have
shown that a shared disease is most likely to aid the
invasion of a species if the native suffers higher disease-
induced mortality, a lower level of fecundity due to
infection and a lower rate of recovery compared to the
invading species. These characteristics closely match those
of the squirrel system in the UK. Squirrelpox virus appears
to have little effect on the mortality or fecundity of grey
squirrels and greys appear to make a full recovery from
infection. Red squirrels however suffer high mortality from
the virus, do not reproduce when infected and do not
recover from infection (Tompkins et al. 2002). As such, the
greys benefit from all of the factors that allow disease to
increase the speed of invasion.

The results for the temporal replacement of a native
species can be extended to understand the spatial spread of
invasion. When a disease reduces the temporal replacement
time (compared to the absence of disease), this translates
into a faster wave of replacement in the spatial framework
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Fig. 5 Total density of the native (solid line) and alien (dashed line)
species across a heterogeneous landscape. The heterogeneity is created
by altering their carrying capacities; the invader’s is 400 at x=0 and
decreases linearly to 200 at x=500 while the native’s is 200 at x=0
and increases linearly to 400 at x=500. In a, the disease is absent and
the competitive advantage, which is modified by the difference in
carrying capacity, allows the native to halt the spread of the invader at
approximately x=350. In b, the disease is present and the invading

species can spread further across the landscape and is halted at
approximately x=450 (note the change in scale on the y-axis). The
time points of each wave are 800, 1,600, 2,400, 3,200 and 4,000 in
both plots (although in a the final plot is the final three time plots
effectively superimposed). The parameters used are f1= f2=0, a1=a2=1,
b1=b2=0.4, c1=0.9, c2=1.5, α1=1.1, α2=1.0, γ1=1.0, γ2=1.1, βij=
0.06 and Di=0.18. These results were produced using a semi-implicit
Crank-Nicolson method
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(and increased temporal replacement time relates to a
slower wave of replacement). This correlation emphasises
how informative relatively straightforward temporal models
can be. Our spatial results also highlight an important
phenomenon. When a diseased population invades a
landscape composed of a disease-free native population,
the initial response is for a wave of disease to sweep
through the native population, reducing the population to its
endemic level. The wave of replacement of the invading
species travels well behind the wave of infection. Impor-
tantly, this phenomenon is observed even when the wave of
replacement is slowed down by the presence of disease.
There is some evidence that this may occur in natural
systems. Reynolds (1985) catalogued the replacement of
red squirrels by greys in East Anglia between 1960 and
1981. He reported that diseased red squirrels where found
well in advance of grey squirrels being reported at a
particular spatial location. At the time, this was used as
evidence to dismiss disease being linked to the subsequent
replacement of red squirrels. Our study suggests that such
observations may be a direct result of the invasion of a
disease-carrying species. From a conservation point of
view, the emergence of the disease in a protected native
population before the invader has reached the area may
indicate the imminent replacement of the conserved species.
This could be used as an early warning system to
implement emergency conservation efforts.

Disease can also allow an invading species to increase
the spatial range of replacement. The boundary between
species often arises due to niche separation whereby in its
own niche a species can out-compete another species.
However, the shared disease can act to remove the
competitive advantage of a species within its niche
resulting in its replacement. Grey squirrels have still to
invade some regions of Scotland and this is partly believed
to be due to habitat characteristics that favour reds over
greys. Conservation efforts are also being used to provide
red squirrel refuges in such suitable habitat. Our study
indicates that such conservation efforts should also consider
the role of squirrelpox virus as this may spread beyond
grey-squirrel-occupied areas and allow greys to invade
regions which would otherwise be unsuitable. From a
conservation point of view, the manipulation of habitat may
not be enough to prevent the spread of the invasive species
since the prevention of the disease is also crucial.

If an invading species has sufficient advantage due to the
disease, it can replace a native species even if the invader is
an inferior competitor. Disease, however, does not always
benefit invading species. Hoogendoorn and Heimpel (2002)
show that for ladybird beetle populations in North America;
the native species suffers less from a shared parasitoid
when the alien species is present. This reduces the
competitive effects of the alien ladybird beetle, allowing

the native an extra advantage and slowing the alien
invasion. If the native suffers less harm from a disease,
then this can allow the native to repel a potential invasion
even if the native is an inferior competitor (Hilker et al.
2005; Petrovskii et al. 2005). A shared disease can increase
the replacement time when disease characteristics are
similar for the native and invading species even when an
invading species has a competitive advantage. This empha-
sises that detailed epidemiological studies are needed when
we want to predict the impact of disease in natural
communities. A virulent disease may increase replacement
time as often it is the relative effects of the disease on the
native and alien species that are important. Furthermore, it
is not just the lethal effects that are important. Sub-lethal
effects on fecundity can have a pronounced influence on
the outcome of the interaction. It is increasingly recognised
that sub-lethal fecundity effects, rather than mortality
effects, can drive the population dynamics of natural
systems (Boots and Norman 2000; Dobson and Hudson
1986; Hudson et al. 1998). Our work emphasises that they
may also be crucial to invasion dynamics. Therefore,
disease may be crucial to conservation efforts even if it
does not result in large mortality since less obvious and less
studied effects on reproduction may be more important.

There are several examples where disease has played an
important role in the successful invasion on non-native
species. In the UK, the native white-clawed crayfish suffers
very high disease-induced mortality, with no recovery,
while the invasive signal crayfish are resistant (Bubb et al.
2004; Cerenius et al. 2003; Holdich 2003). If we consider
these characteristics under our framework, the relatively
higher mortality suffered by the native as a result of
the disease decreases replacement time compared to
competition-only. More detailed information on the system
regarding fecundity, recovery and competition would allow
us to gain better insight into this invasion but our
framework highlights that the disease should be considered
in conservation strategies to save the white-clawed crayfish.
In North America, the invasion of white-tailed deer has
been aided by the transmission of a meningeal worm which
is lethal to caribou (Anderson 1972; Oates et al. 2000;
Pybus et al. 1990). One of the conservation strategies has
been to reintroduce caribou; however, in regions where
infected white-tailed deer are present, these reintroductions
have been unsuccessful (Bergerud and Mercer 1989). This
emphasises the detrimental effect disease can have on
conservation efforts. A further example is the replacement
of the native pedunculate oak with Turkey oak in the UK.
The Turkey oak is aided in this replacement by the
detrimental effects of the knopper gall wasp on the
pedunculate oak; the sexual generation of gall wasp
develops in Turkey oak but causes little harm. However,
during the agamic generation, knopper galls develop which
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distort the growing acorns of pedunculate oak and can
greatly reduce fecundity (Hails and Crawley 1991). The
results from our general framework show that replacement
time can be lower than competition-only when the native
suffers a relative reduction in fecundity compared to the
invading species. This is the case here, with infection
giving the Turkey oak an advantage over the native oak
species. These effects should be considered in conservation
strategies for the pedunculate oak.

In summary, disease can reduce replacement time and
speed up the spatial replacement of native species
providing that invading species suffers sufficiently less
‘harm’ from the disease. Conservation efforts to protect
native species should consider the role of disease as it can
spread in advance of invading species and allow the non-
native species to extend the spatial range over which it can
invade.
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Appendix 1

In this appendix, we present a summary of the steady states
and their stability properties of the temporal model. These
results are analogous to the equilibrium and stability
analysis described in detail in Bowers and Turner (1997).

The temporal model has no spatial movement; the
relevant equations are found by setting D1=D2=0 in the
full model (Eqs. 1 to 4 in the main text), giving

dS1
dt

¼ a1 � q1 H1 þ c2H2ð Þ½ � S1 þ f1I1ð Þ � b1S1

� b11S1I1 � b12S1I2 þ g1I1 ð5Þ

dI1
dt

¼ b11S1I1 þ b12S1I2 � b1I1 � a1I1 � g1I1 ð6Þ

dS2
dt

¼ a2 � q2 H2 þ c1H1ð Þ½ � S2 þ f2I2ð Þ � b2S2

� b22S2I2 � b21S2I1 þ g2I2 ð7Þ

dI2
dt

¼ b22S2I2 þ b21S2I1 � b2I2 � a2I2 � g2I2 ð8Þ

where H1=S1+I1 and H2=S2+I2. There are seven equilib-
rium points obtained from setting the right-hand side of
Eqs. 5–8 equal to zero.

S1; I1; S2; I2ð Þ ¼ 0; 0; 0; 0ð Þ; ð9Þ

K1; 0; 0; 0ð Þ ¼ a1 � b1
q1

; 0; 0; 0

� �
; ð10Þ

S�1 ; I
�
1 ; 0; 0

� �
¼ b1 þ a1 þ g1

b11
;
<1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<2

1 þ 41

q
2q1f1b11

; 0; 0

0@ 1A; ð11Þ

0; 0;K2; 0ð Þ ¼ 0; 0;
a2 � b2

q2
; 0

� �
; ð12Þ

0; 0; S�2 ; I
�
2

� �
¼ 0; 0;

b2 þ a2 þ g2
b22

;
<2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<2

2 þ 42

q
2q2f2b22

0@ 1A; ð13Þ

Sþ1 ; 0; S
þ
2 ; 0

� �
¼ c2K2 � K1

c1c2 � 1
; 0;

c1K1 � K2

c1c2 � 1
; 0

�
;

� ð14Þ

bS1;bI1; bS2;bI2� �
ð15Þ

where in the steady state (Eq. 15), the values are
algebraically complicated and therefore omitted for brevity.
The steady state defined in Eq. 11 holds when f1>0 with Γ1=
α1+b1+γ1, <1= (a1f1−b1−α1)β11−q1f1Γ1−q1Γ1 and
Ω1 ¼ 4q21Γ 1 b11K1 � Γ 1ð Þ. The steady state defined by
Eq. 13 holds when f2>0; where Γ2, <2 and Ω2 are equivalent
to Γ1, <1 and Ω1, respectively, with the subscript 1 changed
to 2. In the case when f1=0, I�1 in Eq. 11 becomes
I�1 ¼ Γ 1 b11K1 � Γ 1ð Þ½ �= b11 b11K1 þ Γ 1ð Þ½ �. If f2=0, I�2 in
Eq. 13 is equivalent to that for I�1 with the subscript 1
changed to 2.

The trivial equilibrium is unstable (since we assume a1>
b1 and a2>b2). For the other equilibrium points, we will
give a brief description of their stability conditions. These
are calculated using standard linear stability analysis (see,
for example, Murray 2002) and the mathematical software
package Maple for algebraic manipulation. At the steady
state (K1, 0, 0, 0), the native is at its carrying capacity and
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the invader is not present. This is always feasible and is
stable if the following two conditions hold

c1K1 � K2 > 0 native has a competitive advantageð Þ;
ð16Þ

R0 1ð Þ ¼ K1b11
*1

< 1

the disease cannot invade the native speciesð Þ
ð17Þ

where Γ1=α1+b1+γ1 represents the total removal from
infection for the native species. At S�1 ; I

�
1 ; 0; 0

� �
, the native

is at its endemic level and the invader is not present. This
is feasible if R0(1)>1; when feasible, it is stable if the
following condition holds

a2 � b2 � q2c1 S�1 þ I�1
� �� �þ b21I

�
1

� �
=Γ 2

� �
f2a2 � b2 � f2q2c1 S�1 þ I�1

� �� a2

� �
< 0:

ð18Þ

This condition represents the fact that the fitness of the
alien species is negative.

At (0, 0, K2, 0), the invader is at its carrying capacity and
the native is not present. This is always feasible and is
stable if the following two conditions hold

c2K2 � K1 > 0 invader has a competitive advantageð Þ;
ð19Þ

R0 2ð Þ ¼ K2b22
*2

< 1

the disease cannot invade the alien speciesð Þ
ð20Þ

where Γ2=α2+b2+γ2.
At 0; 0; S�2 ; I

�
2

� �
, the invader is at its endemic levels and

the native is not present. This is feasible if R0(2)>1, and
when feasible it is stable if the following condition holds

a1 � b1 � q1c2 S�2 þ I�2
� �� �þ b12I

�
2

� �
=*1

� �
f1a1 � b1 � f1q1c2 S�2 þ I�2

� �� a1

� �
< 0

ð21Þ

This condition represents the fact that the fitness of
native species is negative.

At Sþ1 ; 0; S
þ
2 ; 0

� �
, the native and alien species are

coexisting with no disease present. This steady state is
feasible and stable if the following five conditions hold

c1K1 � K2 < 0; ð22Þ

c2K2 � K1 < 0; ð23Þ

c1c2 � 1 < 0; ð24Þ

b11S
þ
1 � *1

� �þ b22S
þ
2 � *2

� �
< 0; ð25Þ

b11S
þ
1 � *1

� �
b22S

þ
2 � *2

� �� b12b21S
þ
1 S

þ
2 > 0: ð26Þ

The final equilibrium, bS1;bI1;bS2;bI2� �
, represents all the

classes having positive densities and both the native and
invader coexisting with the parasite. We do not discuss the
stability of this steady state here but see Bowers and Turner
(1997) and Greenman and Hudson (1997) for a detailed
steady state and stability analysis for a similar model. We
remind readers that in this study we focus on a set-up in
which native species is initially at its carrying capacity with
no disease (K1, 0, 0, 0). Parameters are chosen such that
when the invader is introduced it has a competitive
advantage and replaces the native, with the invader
attaining its carrying capacity (0, 0, K2, 0) in the absence
of disease or its endemic steady state 0; 0; S�2 ; I

�
2

� �
when

disease is present.

Appendix 2

In this appendix, we calculate the critical minimum wave
speeds for the three types of travelling wave that are
described in the spatial spread section of the paper. The
minimum wave speed corresponds to a change from
complex to real for the eigenvalues that govern the decay
of the travelling wave solution to the steady state ahead of
the wave. This approach is based on established theory for
scalar reaction-diffusion equations, which is reviewed in
Kot (2001), Murray (2002), Petrovskii and Li (2006) and de
Vries et al. (2006). For each of the three types of travelling
wave, we begin by rewriting the relevant equations as a
system of first-order differential equations. These can then
be linearised about the steady state ahead of the wave to
find the relevant eigenvalues for calculating the minimum
wave speed.

Competition-only

The “competition-only” wave has I1=I2=0; substituting this
into the full model (Eqs. 1 to 4 in main text) gives

@S1
@t

¼ a1 � b1 � q1 S1 þ c2S2ð Þ½ �S1 þ D1
@2S1
@x2

ð27Þ

@S2
@t

¼ a2 � b2 � q2 S2 þ c1S1ð Þ½ �S2 þ D2
@2S2
@x2

: ð28Þ
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To investigate travelling wave solutions, we consider
Si(x, t)=Si(x−θt) where θ>0 is the wave speed. We use Z=x
−θt to denote the travelling wave variable. Substituting
these solution forms into Eqs. 27 and 28 and denoting
differentiation with respect to Z by prime gives

�qS ¶1 ¼ a1 � b1 � q1 S1 þ c2S2ð Þ½ �S1 þ D1S
¶¶
1 ð29Þ

�qS ¶2 ¼ a2 � b2 � q2 S2 þ c1S1ð Þ½ �S2 þ D2S
¶¶
2: ð30Þ

Using S
�
1 ¼ S ¶1 and S

�
2 ¼ S ¶2, Eqs. 29 and 30 can be

written as a system of four first-order ordinary differential
equations. These equations have four equilibrium points:

S1; S
�
1; S2; S

�
2

� �
¼ 0; 0; 0; 0ð Þ; K1; 0; 0; 0ð Þ; 0; 0;K2; 0ð Þ and Sþ1 ; 0; S

þ
2 ; 0

� �
;

where Sþ1 ¼ c2K2 � K1ð Þ= c1c2 � 1ð Þ and Sþ2 ¼ c1K1�ð
K2Þ= c1c2 � 1ð Þ.

In the “competition-only” wave, the native species is at
its carrying capacity until the alien species invades, so the
equilibrium in front of the wave will be (K1, 0, 0, 0).
Linearising the travelling wave equations about (K1, 0, 0, 0)
gives a Jacobian matrix with the following four eigenvalues

l1;2 ¼
�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4D2 a2 � b2ð Þ c1K1

K2
� 1

� �r
2D2

;

l3;4 ¼
�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4D1 a1 � b1ð Þ

q
2D1

:

λ3 and λ4 are always real since θ2+4D1(a1−b1)>0; one is
positive and the other is negative. λ1 and λ2 are either both
real and negative, or a complex conjugate pair with a
negative real part; the condition for them being real is

q � qC ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 a2 � b2ð Þ 1� c1K1

K2

� �
:

s
This suggests that the competition-only wave will move

with speed θC.

Wave of disease

The “wave of disease” is the wave seen ahead of the wave
of replacement, in which the native species is reduced from
its carrying capacity to its endemic state. This transition
occurs without direct involvement from the alien species, so
that the relevant equations are given by setting S2=I2=0 in
the full model (Eqs. 1 to 4 in main text), giving

@S1
@t

¼ a1 � q1 S1 þ I1ð Þð Þ S1 þ f1I1ð Þ � b1S1

� b11S1I1 þ g1I1 þ D1
@2S1
@x2

ð31Þ

@I1
@t

¼ b11S1I1 � b1I1 � a1I1 � g1I1 þ D1
@2I1
@x2

: ð32Þ

To investigate travelling waves, we look for a solution of
the form S1(x, t)=S1(x−θt) and I1(x, t)=I1(x−θt) where θ>0
is the wave speed. As before, we define the wave variable Z=
x−θt and denote differentiation with respect to Z by prime.
Therefore, Eqs. 31 and 32 become

�qS
0
1 ¼ a1 � q1 S1 þ I1ð Þð Þ S1 þ f1I1ð Þ � b1S1

� b11S1I1 þ g1I1 þ D1S
¶¶
1 ð33Þ

�qI
0
1 ¼ b11S1I1 � b1I1 � a1I1 � g1I1 þ D1I

¶¶
1: ð34Þ

Using S
�
1 ¼ S

0
1 and I

�
1 � I

0
1, Eqs. 33 to 34 can be written

as a system of four first-order ordinary differential equations.
We are considering a situation in which the native species is
at its carrying capacity ahead of the wave, with no disease
and no invader present, and so we linearise this system of
equations about the steady state (S1, S1

�
, I1, I1

�
)=(K1, 0, 0, 0).

The resulting Jacobian matrix has the following four
eigenvalues

l1;2 ¼
�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4D1 b11K1 � b1 � a1 � g1ð Þ

q
2D1

;

l3;4 ¼
�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4D1 a1 � b1ð Þ

q
2D1

:

λ3 and λ4 are real since θ2+4D1(a1−b1)>0; one is positive
and the other is negative. λ1 and λ2 are either both real and
negative, or a complex conjugate pair with a negative real
part; the condition for them being real is

q � qD ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 b11K1 � a1 � b1 � g1ð Þ

p
:

This suggests that the wave of disease will move with
speed θD, which is critically dependent on the basic
reproductive number of the disease R0(1) (as defined in
Eq. 17 in “Appendix 1”).

Wave of replacement

The “wave of replacement” is the wave seen behind the
wave of disease, in which the invading species replaces the
native species. This transition involves both species and
thus we must consider all four of the model equations
(Eqs. 1 to 4 in main text). To investigate travelling waves,
we look for a solution of the form S1(x, t)=S1(x−θt), I1(x, t)=
I1(x−θt), S2(x, t)=S2(x−θt) and I2(x, t)=I2(x−θt) where θ>0
is the wave speed.

As before, we define the wave variable Z=x−θt and
denote differentiation with respect to Z by prime. Therefore,
Eqs. 1 to 4 become
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�qS
0
1 ¼ a1 � q1 H1 þ c2H2ð Þ½ � S1 þ f1I1ð Þ � b1S1

� b11S1I1 � b12S1I2 þ g1I1 þ D1S
¶¶
1 ð35Þ

�qI
0
1 ¼ b11S1I1 þ b12S1I2 � b1I1 � a1I1 � g1I1

þ D1I
¶¶
1 ð36Þ

�qS
0
2 ¼ a2 � q2 H2 þ c1H1ð Þ½ � S2 þ f2I2ð Þ � b2S2

� b22S2I2 � b21S2I1 þ g2I2 þ D2S
¶¶
2 ð37Þ

�qI
0
2 ¼ b22S2I2 þ b21S2I1 � b2I2 � a2I2 � g2I2

þ D2I
¶¶
2: ð38Þ

Using S
�
i ¼ S

0
i and I

�
i ¼ I

0
i , Eqs. 35–38 can be rewritten

as a system of eight first-order equations. As before, we
will examine the stability of the equilibrium point in front
of the wave. We are considering a situation in which the
native species has already been reduced to its endemic state
by the disease (via the “wave of disease”) and there is no
invader present, so we linearise about (S1, S

�
1, I1, I

�
1, S2, S

�
2,

I2, I
�
2)=(S�1 ; 0; I

�
1 , 0, 0, 0, 0, 0). The four equations obtained

from Eqs. 37 and 38 decouple from the four equations
obtained from Eqs. 35 and 36.

For realistic travelling wave solutions, we require the
four eigenvalues obtained from these decoupled equations
to be non-oscillatory (if they have a negative real part). The
other four eigenvalues have zero components for S2 and I2
and therefore do not impose any restrictions on population
densities being positive in the travelling wave. For
notational simplicity, we define

A ¼ a2 � q2c1H
�
1 � b2 � b21I

�
1 ;

B ¼ a2 � q2c1H
�
1

� �
f2 þ g2;

E ¼ b21I
�
1 ;

$ ¼ �b2 � a2 � g2:

The relevant part of the resulting Jacobian has the
following four eigenvalues

l1;2 ¼
�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�2D2 Aþ$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ$ð Þ2�4A$þ4EB

p� �q
2D2

;

l3;4 ¼
�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�2D2 Aþ$�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ$ð Þ2�4A$þ4EB

p� �q
2D2

:

We are concerned with parameter values for which the
native species, in its endemic state, is unstable to the
introduction of the alien species. The condition for this is
(a2−b2−q2c1(S�1 þ I�1 ))+ (β21I

�
1 ) / (α2+b2+γ2) (f2a2−b2−

f2q2c1(S�1 þ I�1 )−α2)>0 (Eq. 18 in “Appendix 1”), which

is equivalent to EB−AΔ>0. This implies that the eigenval-
ues λ3 and λ4 are real with one positive and the other
negative. λ1 and λ2 are either both real and negative or a
complex conjugate pair with a negative real part; the
condition for them being real is

q � qR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 Aþ $þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ $ð Þ2�4A$þ 4EB

q� �
:

s
This suggests that the wave of replacement will move

with speed θR.
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