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Experimental evidence suggests that anisotropic stress induces alignment of intracellular actin
filaments. We develop a model for this phenomenon, which includes a parameter reflecting the
sensitivity of the microfilament network to changes in the stress field. When applied to a uniform
cell sheet at rest, the model predicts that for sufficiently large values of the sensitivity parameter,
all the actin filaments will spontaneously align in a single direction. Stress alignment can also be
caused by a change in external conditions, and as an example of this we apply our model to the
initial response of embryonic epidermis to wounding. Our solutions in this case are able to reflect
the actin cable that has been found at the wound edge in recent experiments; the cable consists of
microfilaments aligned with stress at the wound boundary of the epithelium. These applications
suggest that stress-induced alignment of actin filaments could play a key role in some biological
systems. This is the first attempt to include the alighment phenomenon in a mechanical model of
cytogel.

1. Biological background. The mechanical balance of forces in living tissue
has formed the basis for many recent models of developmental morphogenesis.
This approach was introduced by Odell et al. (1981), who developed a discrete
model for the folding of embryonic epithelia. Building on this work, G. F.
Oster, J. D. Murray and their colleagues (Oster et al., 1983; Murray et al., 1983;
Murray and Oster, 1984a,b; Qster et al., 1985a,b; Murray et al., 1988)
developed a series of continuum mechanochemical models for pattern
formation in a wide range of embryonic systems. In the Oster—Murray
approach, cytogel is treated as an isotropic viscoelastic continuum, and the
non-viscous response to applied strain is the same as for, say, a simple rubber
sheet, except for the exertion of an isotropic contraction stress. Experimentally,
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such traction forces have been observed in a number of cell types (see Harris,
1982; and refs in Stopak et al., 1985). In the model equations, this traction
stress is analogous to a “negative pressure”, and is crucial to the predictions of
the various models.

In reality, of course, there are other differences between the non-viscous
response to applied strain of simple non-living materials, such as a rubber
sheet, and of cytogel. In this paper, we focus on one such difference, namely the
alignment of actin filaments with the stress field, which is illustrated
schematically in Fig. 1. Intracellular actin filaments determine many of the
mechanical properties of a confluent cell sheet (Pollard, 1990), and the
alignment phenomenon has been recognized but neglected in previous
applications of the Oster-Murray approach (for example, Oster and Odell,
1984a). Here we develop a new model which reflects stress alignment, and
discuss two simple applications, which highlight the importance of the
phenomenon in some biological systems. i
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Figure 1. A diagrammatic representation of stress-induced actin filament align-
ment. The filaments tend to align with the applied stress field.

We begin by briefly reviewing the experimental evidence for stress-induced
alignment of actin filaments. The seminal work is by Kolega (1986). He studied
the cytoskeleton of fish epidermal cells held under tension either by
micromanipulation or by cellular locomotive activity, and found that the actin
filaments were aligned parallel to the tension. Moreover, in the case of
micromanipulation, filament alignment occurred within a few minutes, as a
direct response to applied tension.

Although not as clear as Kolega’s (1986) study, previous authors had found a
similar response to applied tension. Chen (1981) investigated the retraction of
fibroblast tails following detachment from the substratum. In common with
previous authors (for example Spooner et al., 1971; Luduefia and Wessells,
1973) he found that a taut elongated tail contained bundles of microfilaments
extending parallel to the long axis, and thus aligned with the stress field. Upon
detachment, these microfilament bundles lost their orientation and returned to
a random mesh-like arrangement; this conversion took about 15 sec. Valberg
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and Albertini (1985) used a magnetic particle method to study the effects of
applied tension on pulmonary macrophages from the lungs of hamsters. They
caused the macrophages to ingest magnetic particles, which then entered
phagosome organelles, and they applied external magnetic fields. This resulted
in positive staining for actin coinciding with the location of the magnetic
particles, which again suggests stress-induced microfilament alignment.
Finally, a number of authors have studied the alignment of actin filament
bundles in endothelial cells under shear stress. This is an important feature of
blood flow, and occurs in both isolated cells and in confluent cell sheets (see, for
example, Franke et al., 1984; Wechezak et al., 1989).

2. A Model for Filament Alignment. The detailed biological mechanisms by
which an applied stress field induces actin filament alignment are largely
unknown. We therefore base our model on simple, intuitively plausible
assumptions. Most importantly, we assume that alignment occurs as a direct
response to the ratio of the principal components of stress. This implies that
multiplying the stress tensor by an isotropic factor will have no effect on the
actin filament network; in reality, there may be an increase in the proportion of
actin that is polymerized (Pender and McCulloch, 1991), but here for simplicity
we take any such increase to be negligible. We will denote the principal axes of
the stress tensor g as the 1- and 2-axes, with corresponding principal values g,
and o, . These axes are orthogonal since g will always be symmetric. With this
notation, we gepresent the microfilament network via the density function
F(¢; p), defined by the condition that F(¢; p)d¢ is the continuum average of
the proportion of the actin filaments inclined to the 1-axis at angles in the range
(¢, ¢ +6¢), when o, /0, =p. Thus Fis also a function of space, but since all our
calculations will be at a single point in space, we do not include r as an
argument of F, for notational simplicity. The symmetries of the system are such
that F(— ¢, p) and F(¢ +n, p) must both equal F(¢, p), and we can therefore
restrict our attention to values of ¢ in [0, 7/2]. We require F to satisfy the
following conditions.

(@) F(¢; p)—d(n/2—¢) as p—0 and F(¢; p)>5(¢) as p—oo, where &
denotes the Dirac delta function. That is, when the stress field is unidirectional,
all filaments are oriented in that direction.

(b) (5 F(¢; p) dp =1, since Fis a density function. Thus the total number
of microfilaments is unchanged by the process of stress alignment: as discussed
above, we assume that changes in the stress field do not affect the extent of actin
polymerization.

(c) F(¢;1) is a constant. That is, when the stress field is isotropic the
filaments are oriented randomly. Condition (b) implies that the value of this
constant is 2/7x.
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(d) F(¢; p)=F(n/2—¢; 1/p), by symmetry.

These conditions do not determine F, but they are fairly restrictive. In
particular, the definition of the Dirac delta function as 6(x)=

lim,_, (1 /sﬁ ) exp[ —x2/e?] suggests the following functional form:

v 1 k(n/2—¢)? 242 ]
;)=o) s s — Lo expl—or) | @
where k is a positive constant and ¥(0)=0, y(1)=1 and y(c0)= 0. We choose
Fy(p) such that condition (b) is satisfied. If we take y/(p) = p” for some p >0 then
condition (d) is also satisfied.

It remains to consider condition (c), that F(¢; 1) is independent of ¢. This
does not hold exactly for any non-zero value of k, but it is approximately true
for values of k close to 1. We choose k to minimize the variation of F(¢; 1) on
[0, /2], and we show in the Appendix that this gives k~0.988, and reduces the
variation to about 1.4%. The form of F(¢; p) with this value of k is plotted in
Fig. 2 for a range of values of pP. The parameter p remains undetermined, and

reflects the sensitivity of the microfilament network to changes in the stress
field.

Fle,p)

pP incr.
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¢

Figure 2. The form of F(¢; p), defined in (1), plotted as a function of ¢, for p? =0.01,
0.05,0.1,0.2,0.3,0.5,0.75, 1.0; F(0; p) increases with p®. It is sufficient to consider
p<1, since F(¢; 1/p)=F(n/2—¢; p).

We denote by G,(r) the total actin filament density at position r. We assume
that each actin filament generates/supports a force along its length; thus the
stress exerted by the mesh of actin filaments is determined by the “actin filament
density components” along the principal axes of the stress tensor, which are
related to F as follows:
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n/2
G,)=Golt) f F(@; p(p))cos ¢ do
0

n/2 n/2
G,(r)=Gy(r) f , F(¢; p(r))sin ¢ dp=G,(r) f F(¢; 1/p(r)) cos ¢ d¢
0

using the symmetry condition (d). Note that G, and G, do not depend on the
full form of F(¢; p); rather, they depend only on the integral:

/2

| F0rc0s 6 a0=1to). say. @
o

Condition (a) implies that f(0)=0 and f(c0)=n/2, while condition (b) gives
f(1)=1. Further, f is a strictly increasing function of pP. Motivated by these
properties, we found that to a very good approximation:

}
(n/2)p®

f(;o)z_—ppﬂ/z_1

as illustrated in Fig. 3. Thus we represent actin filament alignment by the
relations:

__(m/2)0}Go(r)
GO = =)o (3a)
6.0) — DG ab)

o5+ (m/2—1)0%

Under certain conditions, microfilament alignment can occur spontan-
eously, as a result of the stress exerted by the filaments themselves; more
generally, it cap be caused by a change in external conditions, for example at
the boundary of a cell sheet.We now consider an example of each of these two
types of alignment.

3. Applications

3.1. Auto-alignment of actin filaments. Actin filament alignment occurs in
response to the local stress field, and in the absence of external influences, these
stress forces are exerted by the actin filaments themselves. We thus expect
intuitively that auto-induction of filament alignment will destabilize a random
filament mesh-work if alignment depends sufficiently steeply on stress
anisotropy. We now use our model (3) to investigate this phenomenon. Our
stability calculation assumes that the two regulatory processes that are
reflected in (3) have different time scales. The actin-generated stress alters
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Figure 3. The function f(p), defined in (2), compared to Japprox(P)=TPP/(2pP + 7 —2).

For clarity, we plot these functions against p? when p < 1-and against 2 — 1/p® when

p=1. The curves show that f, . provides a good hpproximation to the
transcendental function f.

almost instantaneously with changes in filament density, while the alignment of
filaments takes about 10 sec or more to adjust to changes in the stress field
(Kolega, 1986; Chen, 1981).

We consider the very simple case of a cell sheet at equilibrium, with its
boundaries held fixed and with no strain at any point. The sheet will then be
under tension, even though the strain field is zero, because of the traction forces
exerted by the cells. This traction stress will depend on the local actin filament
density, and following previous authors (for example Oster, 1984; Oster et al.,
1985a), we take this dependence to be a simple proportionality. Thus:

6,=1,G, and o0,=1,G, “4)

where 7, is a positive constant, and the 1- and 2-axes are in this case in arbitrary
orthogonal directions. Writing y=G, /G, , these imply that p=7. As discussed
above, this dependence of stress p on changes in alignment y is essentially
instantaneous, while the dependence of y on changes in p that is implied by our
equations (3) occurs on a longer time scale. Together, (3) and (4) give an
equation for y, with multiple solutions. We now use the difference in time scale
of the two responses to investigate the stability of these various equilibrium
configurations of the microfilament network.
Suppose that p=p_ and y=y, is a solution of (3) and (4), so that:

__pel+(=/2—1)pF]
AR ey )
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Then our assumption that (4) is satisfied instantaneously implies that if we
perturb the alignment ratio to a new value y,+¢, the stress ratio will
simultaneously change to p,+e¢. If this value of the stress ratio p were
maintained, our equations (3) imply that the actin filament density ratio would
move to the value: '

_ (e +e)PL1+(m/2—1) (p.+¢)°]
Vpen G.teP+n2—1 :

The initial direction of change of alignment ratio y is thus increasing if
Ypert > Y +&; and since p follows y instantaneously, this entails an increase of p
also, that is an increase in the departure from equilibrium—in other words, an
instability. Thus (p,, y.) will be stable to small perturbations if and only if:

d {pP[1+(n/2—1)p"] <1
dp pP+m/2—1 p=p !

since this derivative is clearly non-negative for all p. We now write

H(p)= PP+ (m2—1)p%]

pP+m2—1 ©®)

Then for a solution of our model we require H(p)=0, and this solution is stable
if and only if H '(p)<O0. In Fig. 4 we plot H(p) for a number of values of p. We
restrict attention to 0< p <1, since our problem is symmetric in the 1- and 2-
axes. There is an abrupt change in the form of H as p increases through 1, since:

o0 forO<p<l1
H'0)=14—-n)/(n-2) forp=1
-1 for p>1.

The figure shows that the number of solutions and their stability depends on p:

for 0<p<1: p=0 is an unstable solution
p=11is a stable solution

for 1<p<p., p=0and p=1 are both stable solutions
There is also an unstable solution p=p€(0, 1)

for p>p i p=01is a stable solution
p=1is an unstable solution.

Here p,,,, is defined by H'(1)=0, which gives p_; =3[1+1/(r/2—1)]~1.38.In
the case 1<p<p,,,, the two stable solutions p=0 and p=1 have basins of
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Figure 4. The function H(p), defined in (5), for a range of values of the parameter p,

which reflects the sensitivity of the microfilament network to changes in the stress

field. We restrict attention to 0< p < 1, since our problem is symmetric in the 1- and

2-axes. Equilibrium configurations of the microfilament network satisfy H(p)=0,

and are stable if and only if H'(p) <O0. In the figure, we denote stable and unstable
equilibria by S and U, respectively.

attraction [0, p) and (J, 1], and as shown in Fig. 5, § is extremely small for
values of p as high as 1.1, so that for practical purposes p =0 is then unstable.

Recalling that p=y=G,/G, at equilibrium, p=0 corresponds to unidirec-
tional actin filaments, while p=1 corresponds to a random filament mesh-
work. Thus our model predicts that the configuration of the microfilament
network in a cell sheet at rest will depend on the sensitivity of actin filament
alignment to changes in the stress field. When this sensitivity is low, the
network will have a random, mesh-like arrangement, but when it is sufficiently
high, this random configuration will be driven unstable, and all the
microfilaments will become spontaneously aligned in a single, random
direction. Such spontaneous filament alignment could play an important role
in morphogenetic processes such as convergent extension (Gerhart and Keller,
1986; Lewis et al., in preparation).

3.2. Boundary-induced filament alignment. Stress-induced alignment of
actin will also have important effects in the responses of an epithelial sheet to
externally applied forces and boundary conditions. This is well exemplified in
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Figure 5. The value of the unstable solution g e (0, 1) of H(p) =0. This solution exists
for 1 <p<p,,,,butis very small when pis close to 1, so that the anisotropic solution
p=0 of H(p)=0 has a very small basin of attraction.

the case of wound healing, where a surgical cut creates an epidermal free edge,
and the cellular response to wounding is to a large extent a response to this free
edge. In the epidermis of chick and mouse embryos, Martin and Lewis (1991,
1992) have recently shown that wounding induces marked alignment of actin
filaments, resulting in a thick cable of filamentous actin around almost all of the
wound margin, localized within the leading row of basal cells. By contrast,
wounding in adult epithelia induces increased proliferation and lamellipodial
crawling (Winter, 1962, 1972; Clark, 1989; Sherratt and Murray, 1990, 1991,
1992). We now use our model (3) to investigate the initial formation of this
actin cable, as an example in vivo microfilament alignment caused by a free
boundary. In the epidermal cell sheet, the intracellular actin filaments are
linked via cell—cell adherens junctions in a transcellular network, and following
wounding this network undergoes rapid changes, forming a new quasi-
equilibrium state in which an actin cable runs around the wound margin; this
cable appears to act like a purse-string, causing the wound gradually to close.
Here we restrict attention to the quasi-equilibrium configuration, with its
prominent feature of an actin cable at the wound margin.

We take the microfilament network as two-dimensional, since its thickness is
much smaller than the typical wound dimensions of about 500 ym, and for
simplicity, we consider the case of a circular wound. The principal axes of the
stress tensor g will then be aligned at all points with the radial and tangential
coordinate axes. In addition to the traction stress, we also have to take account
of strain and elastic contributions to the stress, since the epithelium is
displaced. At equilibrium, there will be no viscous contribution to g, and we
take its principal values to be given by:
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o,.= G[Ee +TV-u] + G (6a)
Ogo= Gyl Eego+TV-u] + Gyt. (6b)
elastic active
stress contraction

stress

Here G,(r) and G,(r) are the radial and tangential “components” of actin
filament density at the material point initially at r, u(r) is the displacement of
that point from its pre-wounding position, ¢,, and &, are the principal values of
the strain tensor ¢ =3(Vu+ VuT), 7 is the traction stress per actin filament, and
E and I are positive constants. The form (6) is the standard representation of
stress at equilibrium in the Oster-Murray approach (see in particular the
model of Murray and Oster, 1984a, for epithelial morphogenesis), although in
previous applications, G,=G,. Many authors have taken the traction stress
per actin filament, 7, to be an increasing function of the local compaction, since
as the microfilament network is compressed, the degree of filament overlap
increases and additional myosin cross-bridges form (Oster, 1984; Oster and
Odell, 1984a,b; Oster et al., 1985a). For generality, we therefore take
1=14,/(1—pQ), where 7,>0 and >0 are constants, and Q is the fraction of its
pre-wounding area by which a small region of cytogel contracts in response to
wounding. In a radially symmetric circular geometry, Q=1—(1+u') (1 +u/r),
where r=|r|, u(r)=u(r)f, and prime denotes d/dr.

The models (3) and (6) together give implicit equations for stress as a
function of strain:

o —_ (@20EG,
T 6% +(n/2—1)ab,
o (1/2)08,G,
%" g+ (n/2—1)aP,

A{EW +T (W +ufr)+1o/[1+ B +u/r+ud'/r)]} (Ta)

{Eu/r+ T (U +ufr)+1o/[1+ B +u/r +uu'/r)]}. (Tb)

At equilibrium, these elastic and traction stresses balance the elastic restoring
forces due to attachment to the substratum. Following Murray and Oster
(1984a), we represent the restoring forces by AGu, where the positive constant
A reflects the strength of the attachments. The dependence on G, arises because
we assume that the attachments are fixed in the basal lamina and that this
becomes wrinkled (so that the attachments are compressed) in response to
wounding, to an extent reflecting the compaction of the cell sheet. Experi-
mental justification for this dependence is given by Hergott et al. (1989), who
find that the density of focal contacts increases in parallel to that of actin
filament bundles in the response of chick embryonic corneal cells to wounding
in an organ culture system.
Thus the equation to be solved for the new equilibrium configuration is:
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V-g=AGou 8)

with g given by (7). For general values of p, (7) cannot be solved analytically to
give expressions for g, and g, as functions of u. We therefore restrict attention
to the case p= 1. We have shown in the previous section that there will then be
no spontaneous microfilament alignment prior to wounding. Therefore,
solutions of (7) in which one of the principal values of stress is identically zero
are not relevant, since we require both G, and G, to be non-zero at points far
from the wound. The solutions for ¢,, and o, in the case p=1 are thus:

_ EQu' —(n—2)u/r) , T,

ou= G (P E I R+ gt 69
_ EQu/r—(n—2)') , N3

Uee"Go{ g +T(u +u/r)+1+ﬁ(u+:/r+uu/r)} (9b)

It remains to consider the relationship between G, and u. The results we
present here are based on the assumption that the total amount of filamentous
actin within each cell remains constant during the initial response to wounding.
Since we are treating the cell sheet as a continuum, the mathematical
formulation of this assumption is G,(1—-Q)=kx, a spatially homogeneous
constant; recall that Q=1—(1+u')(1+u/r) is the local compaction. The
implications of assuming more localized conservation of filamentous actin are
presented elsewhere (Sherratt, 1992). To clarify the roles of the various model
parameters, we nondimensionalize (8) by defining:

r*=r/R u*:u/R E*:E/‘ro F*=F/T0 }.*=1R2/To

where * denotes a dimensionless quantity, and R is the initial wound radius.
Substituting these rescalings into (8) and (9), and dropping the asterisks for
notational simplicity, gives a highly nonlinear second order ordinary
differential equation for u(r):

" _ 1 . w __,
Y TREG-0)+¥Ie+u)+ Tr—ur) {'1’“[1*'“ +o+ r]
(u' __) [42—En (1 +—’ *t ) +T(1-u?)+¥( +u'):|} (10)

(n—2)Eu 14+ B+2BW +ufr+uu'/r)
4—ny  [1+BW +u/r+ud/r)]*

where

Y=
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We treat the cell sheet as infinite, which is valid provided the wound area is
small compared to the whole sheet. The biologically appropriate boundary
conditions are then o,,=0 at r=1 (the wound edge) and u=0 at r=c0.

Within the context of our continuum approximation across the cell sheet, the
actin cable observed experimentally should correspond to a sharp increase in
the calculated density of tangentially aligned actin filaments near the wound
edge. This indeed is our finding in the model solutions for a wide range of
parameter values: a typical solution is shown in Fig. 6. Here we plot G, and G,
as functions of r; (2.3) and (3.9) together imply that:

W +u/r)+1/[1-Q}+ E[2u' — (m—2)u/r}/(4—n)
' +u/r)+1/[1—-pQ]+ Eu

' +u/r)+1/[1—-BQ)+ E[2u/r— (n—2)u']/(4— =)
C@ +u/r)y+1/[1—-pQ)+ Eu/r ® s

G, =G,

(11a)

G, =G,

(11b)

<
25; 10 4
< 8- Gy lr)
N
QG 67
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e
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Figure 6. The effective densities of radially and tangentially aligned actin filaments,
G, and G,, defined in (11). The solution for u(r) is obtained by solving the model
equation (10) numerically using a finite difference scheme and Newton’s method,
with deferred correction and continuation in 8 (Pereyra, 1979). The dimensionless
parameter values are E=0.5,I'=0.8, 1=3, f=0.485. This solution exhibits a sharp
increase in the density of tangentially aligned actin near the wound edge, and thus
reflects the phenomenon of the actin cable found experimentally by Martin and
Lewis (1991, 1992).

The corresponding model without filament alignment can be obtained by
setting the parameter p=0 (recall that the above solutions are for p=1). We
anticipate that the absence of stress-induced alignment of microfilaments
parallel to the wound edge will increase the radial traction stress exerted by
aggregated actin near this edge, and thus reduce the ability of the restraining
elastic stress to hold the epidermal sheet in mechanical equilibrium. This is
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confirmed by the model solutions: for the parameter values used in Fig. 6, a
solution of the model does not exist in the case p=0 (Sherratt, 1992). Model
solutions do exist in this case for larger values of the elasticity parameters E and
I', although the parameter domain in which a solution exists is considerably
smaller than in the case p=1. Moreover, for appropriate parameters, these
solutions do imply an aggregation of actin density G, near the wound edge;
however, they are unable to capture the experimentally observed tangential
alignment of this aggregated actin.

Biologically, our results suggest that the initial formation of the actin cable at

the edge of embryonic epidermal wounds can be explained simply as a by-
product of the post-wounding mechanical equilibrium in the epidermis,
without ascribing any special properties, such as elevated levels of regulatory
chemical or a phenotype change, to the cells at the wound edge. Such changes
may occur (Pender and McCulloch, 1991), but our model suggests that they are
not necessary for the formation of an actin cable. . }
4. Conclusions. Despite considerable biological evidence for stress-induced
alignment of the cellular microfilament network, the phenomenon has been
neglected in previous mechanical models for tissue deformation. We have
developed a model for this effect, in which actin filaments align according to the
local anisotropy of the stress field, and our formulation includes a parameter
reflecting the sensitivity of this response. We have used the model to investigate
the equilibrium state of the microfilament network in a cell sheet at rest, and the
response of embryonic epidermis to wounding. In the former system, filament
alignment can occur spontaneously, while in the latter it is induced by the free
edge at the wound front. These applications suggest that stress-induced actin
filament alignment could play a key role in some biological systems.
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APPENDIX

The value of k. The definition (1) of F(¢; p) does not exactly satisfy condition (c), that F(¢; 1)is
constant. In this Appendix, we show that the condition can be satisfied to a good approximation
for appropriate values of k. Specifically, we look for the value of k, not near zero, that minimizes
the variation of:

g(¢)=exp[ —k¢*] +exp[ —k(n/2 - $)*]= F(¢; 1)/F,(1) (A1)

‘:
v
i

A
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on 0< ¢ <n/2. [Trivially, g(¢)=2 when k=0, but this case is not biologically relevant.] The

form of g(¢) for a selection of values of k is shown in Fig. Al. Differentiating equation (A1) with
respect to ¢ gives:

99 _ oo miz—a| P
i 2ke ~**(n/2 ¢)[exp{kn(¢ n/4)} . ¢]
= 0<>exp{kn(¢ —n/4)} = -7-1-/—2%—&; (A2)

(b)

gle)

(c) (d)

04 08 L2 w2 oa o8 12

Figure A1. The form of the function g(¢), defined in equation (A1), as the parameter
k varies. (a) k=0.7; (b) k=0.93; (c) k=k_;, ~0.988, defined in (A3); (d) k=1.1.The
dashed line indicates the equal values of g(0) and g(/2).

1t is sufficient to consider this equation on [0, n/4], by the symmetry of g(¢) about ¢ =n/4. The
two sides of (A2) are plotted in Fig. A2 for a range of values of k. From this, it is clear that in

addition to the root at ¢ = /4, equation (A2) has a second root in (0, n/4) ifk>k ., where k
satisfies:

d ¢
3 [exp{kﬂ(d) —n/4)} — m]

o =x/4

This uniquely determines k_,;,, as 8/n%, ~0.81.
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Figure A2. The right-hand (full curve) and left-hand (dashed curves) sides of
equation (A2)for k=0.2,0.4,0.6, . . ., 2.0; the value of the left-hand side decreases,
for any given ¢, as k increases. The number of solutions of the equation on [0, n/4]

increases from one to two as k increases through the critical value k_, .

We now write:

gmax(k)= mang(¢) and gmin(k)= min g(¢)

0<o<n/ 0<h<n/2

By symmetry these are also the maximum and minimum values, respectively, on [0, n/4]. Then
for k<k

eritt -
Grax(k) =g(m/4) =2e~*"*/16
and g, (k)=g(0)=1+e ¥4,
For k>kyiiy > Gmax(k) = g(Ppmay)> Where ., is the unique solution of:

_9
T/2—¢
in the open interval (0, 7/4). This cannot be found analytically, but can easily be calculated

numerically for a given value of k. Also for k> k., , gmin(k)=min{g(0), g(n/4)}. It is clear from
Fig. Al that there is a critical value k_,, , such that:

exp{kn(¢p—n/4)} =

fOr kcrill <k< kcrilZv g(o) <g(1t/4)1 so that gmin(k)= 1 +e_‘m2"
and for k> Koz, 9(0)>g(n/4), 5O that g, (k)= 26415,
Here k_,;,, satisfies g(0)=g(n/4), that is:

1 +e—kn2/4= ze—lmz/IG'
Thus k., = — (16/n%)log x, where x is a solution of x*—2x+1=0. Now:

x*=2x+1=(x—1)(x3+x2+x—1).
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The root x=1 corresponds to the trivial case of g(¢)=2 when k=0. Substituting x=
%(2\/5. sinh X —1) in the cubic equation shows that this has a unique solution, which gives:

Keeiz = — ;1[—3 log {¥ sinh [l sinh ™! ( 17 )] - %} ~0.987886. (A3)

37 a2

2.0 ' '
1] 1
I
H!
HE
1.8 1 E E
k=keivrt ) K=keriez
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< H :
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® 104 :
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08 Pl }
I
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Figure A3. The maximum and minimum values of g(¢) on [0, n/2], g,,,.(k) and

Imin(k), plotted as functions of the parameter k. The vertical lines k=k,,,, and

k=k_, are also drawn. Trivially, g(¢) =2 when k =0, but for values of k away from

zero, the variation of g(¢) is minimized in both an absolute and relative sense when
k

=Rerit2-

In Fig. A3 we plot g, (k) and g, ;. (k) as functions of k. These suggest that the variation of g(¢)
is minimized when k=k_,,, and this is confirmed by numerical minimization using quadratic
interpolation. Specifically, numerical calculations show that both [g,,, (k)—g,.(k)] and
[9max (k) = Gmin(K)1/[Grmax(k) + Gmin (k)] are minimized at k=k,,,, for k not near zero. [Trivially,
Imax(K) =G in(k) when k=0, since then g(¢)=2.] Thus the variation of g(¢) on 0<p<n/2 is
minimized in both an absolute and relative sense when k=k__,,, . For this value of k, the variation
of g on [0, n/2] is about 1.4%.
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