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Part (D): Sampling distributions and confidence intervals

(Reading: Wild & Seber, Chapters 6,7, Freund, Chapters 8,11)

13 Sampling distributions

13.1 Introduction

Suppose we want to estimate the expected (mean) yield (�) of a certain plant

variety. We grow 100 plants and measure their yields:

Data: x1; x2; : : : ; x100

We can estimate � by

^� = �x =

1
100

100X
1

xi
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Suppose that in our experiment

�x = 1:56; s2 =

1
99

�X
x2i �
(
P

xi)
2

100

�
= 0:26:

Then clearly ^� = 1:56kg. But, how accurate is this as an estimate of �?

To quantify the ‘accuracy’of ^� = �x as an estimate of � we require a probability

model.

Model assumptions

We assume that each measured yield is the outcome of a random experiment such

that:

(A) The outcome of each experiment is independent of all other experiments.

(B) The probability distribution for the result of each experiment is the same for all

experiments.
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Recall that (A) and (B) imply that the data represent a realisation of

independent, identically distributed (i.i.d) random variables

X1;X2; : : : ;Xn

where Xk is the outcome of the kth experiment, n = sample size (= 100 here).

The probability model consists of:

� The variables fX1;X2; : : : ;Xng which are called a random sample, and

� The common distribution of fX1;X2; : : : ;Xng which is called the population

distribution:

� = E(X) = population mean

� =
p

var(X) = population standard deviation.
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An important distinction:

Before we carry out the experiment we don’t know what the measured yields will

be. Therefore they are random variables X1;X2; : : : ;Xn (UPPER CASE).

After the experiment we obtain actual observed values x1; x2; : : : ; xn (lower

case).

Now, since X1;X2; : : : ;Xn are random variables, then

�X =
1

n

nX
1

Xi

is also a random variable.

The value �x = 1:56kg observed in our plant-yield experiment is a realisation of

the r.v. �X .

Each time we conduct the experiment (i.e. grow 100 plants and measure yield) we

will obtain a different observed value �x.
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Simulation study:

Suppose the population distribution is N(5; 4) and the sample size is n = 25.

Then the sample mean (as a r.v.) is

�X =
1

n
(X1 +X2 + : : :+X25)

where Xi � N(5; 4) (i.i.d).

Now, we can generate (using a computer) a realisation (sample)

x1; x2; : : : ; x25

and calculate �x.

Repeat this many times to generate many different realisations and build up a

picture of the distribution of �X .

If we can understand the distribution of �X then we can begin to quantify how

accurate �x is likely to be as an estimate of the population mean.
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Notice that:

a) values of �x cluster around the population mean, 5

b) values of �x are less variable than individual observations.
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14 The distribution of �X and the Central Limit Theorem

Again, let X1;X2; : : : ;Xn be a random sample of size n. The population

distribution is not completely specified, but we assume that X has

E(X) = �; var(X) = �2 (both finite):

What can we say about the distribution of �X = 1
n
Pn

1 Xi?
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14.1 Mean and variance of �X

We have the following results:

E(�X) = E
�

1
n
(X1 +X2 + : : :+Xn)
�

=

1
n
fE(X1) + E(X2) + : : :+E(Xn)g

=

1
n
(�+ �+ : : :+ �)

=

1
n
� n� = �

) The average of �X over many experiments is the ‘true’ population mean.
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var(�X) = var
�

1
n
(X1 +X2 + : : :+Xn)
�

=

1
n2
fvar(X1) + var(X2) + : : :+ var(Xn)g (Xi0sindependent)

=

1
n2
� n�2 =
�2

n

) The variance of �X is inversely proportional to the sample size n.h

s.d. of �X = �p
n
i
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14.2 The Central Limit Theorem (CLT)

(Reading: Wild & Seber, 7.2, Freund, 8.2)

Although we have not specified exactly the population distribution (X), we can say

a lot more about the distribution of �X .

Theorem (CLT):

The distribution of �X (the sample mean as a r.v.) is approximately Normal with

mean � and variance �2
n

h
) s.d. = �p

n
i

.

Remarks:

i) If the population is N(�; �2) then �X � N(�; �
2

n
) exactly.

ii) Otherwise the quality of the approximation increases with the sample size n.
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We illustrate this result with a simulation study:

Case 1

Population distribution is U(0; 1). [Recall E(X) = 0:5; var(X) = 1
12

.]

Simulate random sample X1;X2; : : : ;Xn.

Look at distribution of �X by forming a histogram from 1000 such samples of size n.

Do this for n = 1; 2; 5; 10; 25.
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Sample mean of U(0; 1) distribution
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Case 2

Same as before with population distribution Exp(1). [E(X) = 1; var(X) = 1]

Sample mean of Exp (1) distribution
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Note how the histograms of the sample mean appear to look ‘Normal’ as

n increases.

iii) The CLT also tells us what the distribution of

Pn
i Xi looks like:

nX
i

Xi = n �X
approx� N(n�; n�2)

[To see this, recall that �X � N(�; �
2

n
)].

Example

The weight of a certain variety of apple (in grams) has a distribution with mean

� = 150 and variance �2 = 100. A box is packed with 40 randomly selected

apples. What is the probability that the total weight of apples exceeds 6.1 kg?

Solution...
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Application (Normal approximation to binomial)

Show that if the r.v. X � bin(n; p), then

X
approx� N(np; np(1� p))

as n!1.

Proof...

Example

A gambler plays 99 times at roulette and always bets on red. What is the

probability that he wins at least 50 times?

[Roulette: P(red) = 18
37

= 0:4865]

Solution...
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15 Constructing confidence intervals

Let X1;X2; : : : ;Xn denote a random sample (i.i.d.) from a population with

unknown mean �. We assume for the moment that the population variance �2 is

known.

From the CLT we know that

�X � N(�;
�2

n
)

which implies that

�X � �

�=
p

n
� N(0; 1)

The left hand side is a random variable, given as a function of the data and

involving the unknown parameter �.
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We can use it as a ‘pivotal’ quantity to derive the probability statement

P
�

�X � z�=2
�p

n
< � < �X + z�=2
�p

n
�

= 1� �

where z�
2

is the ‘percentage’ point of the N(0; 1) distribution such that
P
�

Z > z�=2
�

= 1� �
�

z�=2
�

=
�

2
:

For example, z0:025 = 1:96, since

P (Z > 1:96) = 1� �(1:96) = 0:025:

(Table 5, Lindley & Scott, p.35, also see picture).
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In the case of z0:025 we say that there is a (1� �)100% = 95% chance that the

random interval �
�X � 1:96

�p
n
; �X + 1:96

�p
n

�

‘covers’ or contains the true population mean �.

We call the above interval a 95% confidence interval (C.I) for the mean �.

[Note that in general, and for different z�=2, we can determine appropriate

(1� �)100% confidence intervals.]

For a particular realisation (i.e. a set of observations)

x1; x2; : : : xn

we say that the interval�
�x� 1:96

�p
n
; �x+ 1:96

�p
n

�

is the observed 95% CI.
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A subtle but important point:

Given a particular realisation it would be wrong to state that

P
�

�x� 1:96

�p
n
< � < �x+ 1:96

�p
n

�
= 0:95

No random variables involved!

We really mean:

The interval

�
�x� 1:96 �p

n
; �x+ 1:96 �p

n
�

is a realisation from a population of

intervals, 95% of which contain the true value �.

Or:

If we obtain a large number of such intervals (with a different independent sample

each time), we expect 95% of them to contain the true value of �.

Therefore we are fairly confident that a single such interval contains �.

(But if we have been ‘unlucky’, then it doesn’t contain �.)
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Simulation study

Recall our simulation study for the case of n = 25, X � N(5; 22).

Let’s look at the 95% CIs over 10 realisations. (We suppose that we don’t know

� = 5, but we do know �2 = 4.) Then given the sample mean �X we obtain�
�X � 1:96
2

5
; �X + 1:96
2

5
�

as our 95% CI. [Roughly ( �X � 0:8; �X + 0:8)]
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Here we have been ‘unlucky’ twice, as 2 out of the 10 CIs do not contain the true

value of � = 5.

In the long run we would find that 1
20

of the realisations (CIs) did not contain �.
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Example

The times (in seconds) of a certain chemical reaction is known to be distributed as

N(�; 0:52), where � is unknown. The times of a random sample of 10 such

reactions are measured to be:

3:9; 4:7; 6:1; 5:2; 5:4; 4:8; 4:5; 5:0; 4:7; 4:9

Calculate 50%; 90% and 99% CIs for �.

Solution...
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16 Constructing CIs when � is unknown

In many practical situations we don’t know the population variance �2. However,

given the observations x1; x2; : : : ; xn, we can calculate the sample variance

s2 =

1

(n� 1)
8<

:
nX

i=1
x2i �
1

n
 

nX
i=1

xi
!2
9=

; :

and the standard deviation s =
p

s2.

We can use s instead of � to construct a CI, using the following distribution.
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The t� distribution

The t distribution (or Student’s t – named after the pseudonym ‘Student’ that W.S.

Gosset used) is a continuous distribution, with shape similar to that of the N(0; 1)

distribution.

The distribution is characterised by a parameter �, called the degrees of freedom

of the distribution, and we denote it by t� .
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Its probability density function is plotted in the graph below.

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

 fu
nc

tio
n

t with 1 df
t with 9 df
N(0,1)

Remarks

1. The t distribution is symmetric around zero, with longer tails than the N(0; 1).

2. As � !1, the t distribution approaches the N(0; 1) distribution.

3. The values of its cdf are tabulated (e.g. see NCST p42–45).
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Theorem:

If the population distribution is N(�; �2) and the sample size is n, then

�X � �

S=
p

n
� tn�1:

This is the t-distribution with n� 1 degrees of freedom. As before, �X and S

denote the sample mean and sample s.d. and n is the sample size.

Remark:

This result holds approximately for non-normal distributions. This is important

because in practice we can never know that the data come from (exactly) a Normal

population.
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To calculate a CI for � (e.g. a 95% CI) from �X and S we need to find t such that

P
�

�t <
�X � �

S=
p

n
< t
�

= 0:95

, P
�

�X � t
Sp

n
< � < �X + t
Sp

n
�

= 0:95

where t is ‘percentage’ the point of the tn�1 distribution such that

P (T > t) = 0:025; with T � tn�1:

156



'
&

$
%

We usually denote this point by tn�1;0:025.
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These values can be obtained from Table 10 (Lindley & Scott, p.45)
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Note : The percentage points decrease as � (no. of degrees of freedom) increases

(t-distribution becomes narrower).

Also, as � !1, t-distribution approaches the Normal distribution.

Example

Recall the chemical reaction times example. Data:

3:9; 4:7; 6:1; 5:2; 5:4; 4:8; 4:5; 5:0; 4:7; 4:9

Suppose we don’t know �2. Find a 90% CI for the population mean �.

Solution...

158

'
&

$
%

Example

Return to the plant-yield example. Here we had 100 measured yields with

sample mean �x = 1:56 and sample variance s2 = 0:26.

We can quantify the accuracy of our estimate ^� = �x = 1:56 by calculating e.g. a

95% CI for � as�
1:56� t99;0:025

sp
100
; 1:56 + t99;0:025

sp
100

�

Now t99;0:025 � 2:0; s =
p

0:26 = 0:51.

Therefore our 95% CI is

(1:458; 1:662)

‘We are 95% confident that the value of � lies in the interval calculated.’ On 95%

of times that we carry out the experiment we will be correct.
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17 Comparison of two populations

In many practical situations we are interested in comparing the means of 2

populations to investigate whether or not they are different.

To do this we can calculate a CI for �1 � �2 where �1; �2 are the unknown

means of the 2 populations. We then consider whether the value 0 lies in the CI.

[�1 � �2 = 0, means are equal]

We consider 2 cases.
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17.1 �
2

1 and �22 known

Let X11;X12; : : : ;X1n1 and X21;X22; : : : ;X2n2 be the random samples from

the two populations with unknown means �1; �2 and known variances �21; �
2

2 .

The sample means are

�X1 =

1
n1

n1X
i=1

X1i; �X2 =

1
n2

n2X
i=1

X2i

Now, assuming the populations are Normal we have

�X1 � N
�

�1;
�21

n1
�

; �X2 � N
�

�2;
�22

n2
�

and further assuming that the two samples are independent of each other we have

�X1 � �X2 � N
�

�1 � �2;
�21

n1
+
�22

n2
�

:
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We can construct e.g. a 95% CI for �1 � �2 using

P
0

@ �X1 �

�X2 � 1:96
s

�2
1

n1
+

�2
2

n2
< �1 � �2 <

�X1 �

�X2 + 1:96
s

�2
1

n1
+

�2
2

n2
1

A

= 0:95

i.e. the 95% CI is0
@ �X1 � �X2 � 1:96

s
�21

n1
+
�22

n2
; �X1 � �X2 + 1:96

s
�21

n1
+
�22

n2
1

A
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Example

The heights (in ft) of two species of plant are known to be normally distributed with

unknown means �1 and �2 and variances �21 = 0:25; �22 = 0:36. Independent

samples of size n1 = 20; n2 = 25 are drawn from the two populations. The

observed sample means are �x1 = 4:4 and �x2 = 5:2. Calculate a 95% CI for the

difference in the means �1 � �2.

Solution...
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17.2 �
2

1 and �22 unknown

If we don’t know the population variances �21 and �22 but both samples are large

(say n1; n2 � 30) then we can use the sample standard deviations s1 and s2 to

substitute for �1 and �2 and construct a CI as for the case where the variances are

known.

If either or both samples are small, then things are more complicated:

If we can assume that �21 = �22 (i.e. the unknown population variances are equal)

then we can proceed as follows.

Let S2
1 and S2
2 denote the 2 sample variances. These can be combined to give a

pooled estimator of �2:

S2
p =
(n1 � 1)S2
1 + (n2 � 1)S2
2

n1 + n2 � 2
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Our (1� �)100% CI for �1 � �2 can be constructed as�
�X1 � �X2 � t Sp
r

1
n1
+

1
n2
; �X1 � �X2 + t Sp
r

1
n1
+

1
n2

�

where Sp =
q

S2
p is the pooled sample standard deviation (estimator of �) and

t = tn1+n2�2; �=2

is the point of the tn1+n2�2 distribution such that

P (T > tn1+n2�2; �=2) =
�

2
; with T � tn1+n2�2:
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Example

A random sample of 10 cigarettes of type 1 had an average nicotine content of 3:1

milligrams with a standard deviation of 0:5 mg. A sample of 8 cigarettes of type 2

had mean and s.d. 2:7 mg and 0:7 mg respectively.

Assuming that the two sets of data are independent random samples from normal

populations with the same variance, construct a 95% CI for the difference between

the mean nicotine contents of the brands.

Solution...
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18 Confidence intervals for unknown proportions

Assume that we want to estimate a proportion of a population

having a specific characteristic.

This can be expressed as a probability (e.g. probability of a car failing a safety

check), percentage (e.g. percentage of votes in a YES/NO referendum), or rate

(e.g. mortality rate of a disease).

In many cases, we can express the above quantities as the probability p in a

binomial distribution.
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Recall that if X � Bin(n; p), then CLT gives

X
approx� N(np; np(1� p))

This also implies that

X
n

approx� N
�

p;
p(1� p)

n

�

But notice that X
n

is an estimate of the unknown probability (proportion) p, and we

write

X
n
= ^P :

Then we also have that

^P � pq
p(1�p)

n

� N(0; 1)
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It follows that we can construct a (1� �)100% CI for p, based on:

P
0

@�z�=2 < ^P � pq
p(1�p)

n

< z�=2
1

A = 1� �

, P
 

^P � z�=2
r

p(1� p)

n

< p < ^P + z�=2
r

p(1� p)

n

!
= 1� �

Now, as this expression involves the unknown true proportion p, we can further

approximate it by using the estimate ^P to obtain the (1� �)100% CI:0
@ ^P � z�=2

s
^P (1� ^P )

n

; ^P + z�=2
s

^P (1� ^P )

n

1
A
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19 CIs for differences between proportions

Suppose now that we want to estimate the difference between two proportions p1

and p2 based on two samples of size n1 and n2 from two binomial populations.

For large samples, we can use the approximation

Z =
( ^P1 � ^P2)� (p1 � p2)q

p1(1�p1)

n1

+ p2(1�p2)

n2

approx� N(0; 1)

to obtain a a (1� �)100% CI for the difference p1 � p2 of the form

( ^P1 � ^P2)� z�=2
s

^P1(1� ^P1)

n1

+

^P2(1� ^P2)

n2

Notice that, as before, the unknown proportions p1 and p2 have been substituted

in the variance with their estimates ^P1 and ^P2, to give the above approximate CI.

170

'
&

$
%

Example

(a) A poll was taken of University students before a student election. Of the 78

male students contacted, 33 said they would vote for candidate A. Obtain a 95%

CI for the proportion of male voters in the University population in favour of this

candidate.

(b) Consider now a second sample of 86 female students, of which 26 said they

would vote for candidate A. By obtaining an appropriate 95% CI, can you support

the view that the percentage of voters for candidate A is the same among male and

female students?

Solution ...
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