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Part (A): Review of Probability [Statistics I revision]

1 Definition of Probability

1.1 Experiment

An experiment is any procedure whose outcome is uncertain

� toss a coin

� throw a die

� buy a lottery ticket

� measure an individual’s height h
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1.2 Sample Space

A sample space, S, is the set of all possible outcomes of a random experiment

� S = fH;Tg

� S = f1; 2; 3; 4; 5; 6g

� S = fWIN, LOSEg

� S = fh : h � 0g

1.3 Events

An event, A, is an element, or appropriate subset of S

e.g. roll a die, S = f1; 2; 3; 4; 5; 6g

� event A, that an even number is obtained is given by A = f2; 4; 6g
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� event B, that a number no greater than 4 is obtained is described by
B = f1; 2; 3; 4g

S can be discrete (e.g. coin, die, lottery), or continuous (e.g. height).

In the first part of this course we will deal with the discrete case (as in Stats 1).

Set operations

If A;B are events, according to Set Theory, we define the operations:

� A [B: union, ‘A or B happening’

� A \B: intersection, ‘A and B happening’

� Ac (or A0; �A): complement of A wrt S, ‘not A’

Notice that: A [Ac = S, A \Ac = ;
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1.4 Probability mass function

A probability function, P (s), is a real-valued function of a collection of events from

a sample space, S, attaching a value in [0; 1] to each event, satisfying the axioms:

A1. P (A) � 0 for any event A
A2. P (S) = 1

A3. If A1; A2; A3; : : : is a countable collection of mutually exclusive events

(Ai \Aj = ; for i 6= j, i.e. they have no common elements), then

P ([iAi) =
P

i P (Ai)
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Important properties of P (s)

� P (;) = 0

� P (A [B) = P (A) + P (B)� P (A \B)

This can be generalised for n events, e.g. for n = 3:

P (A1 [A2 [A3) = P (A1) + P (A2) + P (A3)� P (A1 \A2)�

P (A1 \A3)� P (A2 \A3) + P (A1 \A2 \A3).

Notice: P (A [B) = P (A) + P (B) not always true!

It only holds for disjoint (mutually exclusive) events.

� P (Ac) = 1� P (A)

Proof: A;Ac are disjoint, and A [Ac = S

) P (A [Ac) = P (S) = 1

) P (A) + P (Ac) = 1

In many practical situations it is easier to calculate P (Ac) first and use this

property to calculate P (A).
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1.5 Independence and Conditional Probability

For any event A with P (A) > 0 we can define

P (B=A) =
P (A \B)

P (A)

(1)

If A and B are independent then by definition P (A \B) = P (A)� P (B) and

therefore

P (B=A) =
P (A)P (B)

P (A)

= P (B):

Note that rearrangement of (1) gives the chain (multiplication) rule:

P (A \B) = P (A)P (B=A) = P (B)P (A=B): (2)

This can also be generalised for n events.
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1.6 Total Probability Rule

If A1; A2; : : : ; Ak are mutually exclusive events and form a partition of a sample

space S (i.e. [k
i=1Ai = S), with P (Ai) > 0 8i,

then for an event B 2 S:

P (B) =

kX
i=1

P (B \Ai) =

kX
i=1

P (Ai)P (B=Ai) (3)
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Example:

An insurance company covers claims from 4 different motor portfolios, A1; A2; A3

and A4. Portfolio A1 covers 4000 policy holders; A2 covers 7000; A3 covers

13000; and A4 covers 6000 of the total 30000 policy holders insured by the

company. It is estimated that the proportions of policies that will result in a claim in

the following year in each of the portfolios are 8%; 5%; 2% and 4% respectively.

What is the probability that a policy chosen randomly from one of the portfolios will

result in a claim in the following year?

Solution ...
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1.7 Bayes Theorem

If P (A) > 0 and P (B) > 0, from (1)

P (A=B) =
P (A \B)

P (B)

=
P (A)P (B=A)

P (B)

(4)

or, if A1; A2; : : : ; Ak form a partition of a sample space S with

P (Ai) > 0 8i, and P (B) > 0, then from (3)

P (Aj=B) =

P (Aj)P (B=Aj)Pk
i=1 P (Ai)P (B=Ai)

; j = 1; 2; : : : ; k: (5)

Example: (previous cont.)

If a claim rises from a policy in the year concerned, what is the probability that the

policy belongs to portfolio A3?

Solution ...
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1.8 Random variables

Until now we have associated probabilities with events in a sample space. We will

now review the concept of random variables.

Definition:

A random variable (r.v.) X is a function from a sample space S to R (the

real numbers).

That is, to any outcome, s, we associate a real number X(s).

The range of a r.v. X , denoted as Sx, is the set

fr 2 R : r = X(s) for some s 2 Sg.

[i.e. the set of all real numbers r which are equal to X(s) for some outcome s.]

We will usually denote random variables using capital letters, e.g. X , and their

realisations (values) using small letters, e.g. x.
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If S is finite or countable then the range of X is a set of discrete numbers. We say
X is a discrete random variable.

Some simple examples:

(i) Experiment: Toss a balanced coin 3 times.

Sample space S: All possible sequences of T;H of length 3.

Let X(s) = no. of Heads in outcome (sequence) s. Then

X is a discrete random variable.

(ii) Experiment: Toss a balanced coin until a ‘H ’ is thrown.

Sample space: S = fH;TH; TTH; : : :g.

Let X(s) = no. of throws (i.e. length of s). Then

X is a discrete random variable.
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1.9 Probability function of a discrete r.v.

Any probability function on S leads naturally to a probability function on the range

of X , defined by

fX(x) = P (X = x) =

X
s:X(s)=x

P (s):
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In Example (i) before:

s : HHH HHT HTH THH TTT TTH THT HTT

Prob: 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

X : 3 2 2 2 0 1 1 1

Probability of 2 Hs is

P (X = 2) = 1
8
+ 1
8
+ 1
8
= 3
8

.

Usually we consider r.v.’s which describe some useful summary of the outcome of

an experiment, e.g. the total score in a multiple choice test.
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Axioms of probability

For a probability function of a discrete r.v. to satisfy the axioms of probability, it is

sufficient that

i. fX(x) � 0 for all x 2 Sx

ii.

P

all x fX(x) = 1
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1.10 S infinite

Until now in the examples we have only considered cases where the sample space

S consists of a countable and finite number of events. However, there may be also

an infinite number of possibilities involved with the experiment under consideration.

Some results on infinite series ...

Example:

Two (TV show) players (A and B) play a game in which each wins a prize if s/he is

the first to choose the correct screen out of the 6-screen display panel shown to

them. Player A goes first, and the prize is randomly re-allocated to one of the

screens after each player’s choice (so that the probability of either player winning

at a single draw is independently 1=6). What is the probability that A wins?

Solution ...
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2 Some common discrete distributions [Statistics I]

2.1 The binomial distribution: Bin (n; p)

Consider an experiment consisting of n independent trials where the probability of

success is p; 0 < p < 1.

Let X denote the number of successes (S’s). Then

fX(x) = P (X = x) =
�

n
x

�
px(1� p)n�x; x = 0; 1; 2; : : : ; n: (6)

Why? The sample space S consists of all sequences of S and F of length n. For

any such sequence, s, with x S’s and (therefore) (n� x) F’s the probability is

P (s) = px(1� p)n�x

(since the trials are independent so probabilities multiply).

There are

�
n

x
�

such sequences, and therefore (6) follows.
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2.2 The geometric distribution: Geometric (p) [Statistics I revision]

Again consider a sequence of independent trials with probability of ‘success’

P (S) = p. Let X be the number of trials required to achieve the 1st success [e.g.

number of attempts required to pass the driving test].

S = S; FS; FFS; FFFS; : : :

X = 1; 2; 3; 4; : : :

Therefore for x = 1; 2; 3; : : :

fX(x) = P (X = x) = P (

x�1z }| {

FF : : : F S) = (1� p)x�1p: (7)
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The memoryless property

The geometric distribution has the memoryless property. That is, given that there

have already been n trials without success, the probability that x additional trials

will be required for the first success is independent of n:

P (X > x+ n=X > n) = P (X > x) [Show]

[Is the number of attempts required to pass the driving test well described by the

geometric distribution?]

18



'
&

$
%

2.3 [NEW!] The negative binomial distribution: NBin (r; p)

This is a generalisation of the geometric distribution.

Consider the same sequence of independent trials as in (2.2) and let X denote the

number of trials required to achieve r successes, where r can be any positive

integer. Clearly the range of X is r; r + 1; r + 2; : : :.

What is fX(x) = P (X = x); x � r?

Let s be an outcome for which X(s) = x. Then s is a sequence of S’s and F’s

such that:

(i) s has length x

(ii) s has r S’s and x� r F’s

(iii) the last entry is S

From (ii), P (s) = (1� p)x�rpr (independence of trials!!).
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How many such outcomes are there?

Trial: 1 2 3 : : : x� 1 x

Result: ? ? ? : : : ? S

(r � 1)S0s& (x� r)F 0s

There are

�
x�1

r�1
�

ways of assigning the S’s to position 1; 2; : : : ; x� 1.

Therefore

fX(x) = P (X = x) =
�

x� 1

r � 1
�

(1� p)x�rpr; x = r; r + 1; : : : (8)
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Relationship to geometric distribution

1. NBin(1; p) � Geometric(p)

2. If X1;X2; : : : ;Xr are independent Geometric(p) r.v.’s, then

Y = X1 +X2 + : : :+Xr � NBin(r; p).

To summarise:

In a sequence of independent ‘trials’, each with probability of ‘success’ p:

� the number of successes in n trials follows a bin(n; p) distribution

� the number of trials until the first success follows a geometric(p) distribution

� the number of trials until the rth success follows a NBin(r; p) distribution.
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2.4 [NEW!] The Poisson distribution: Poisson (�)

This is a distribution which is often used to describe the outcomes of experiments

that involve counting objects or events (e.g. the number of road accidents occurring

on a stretch of road in a 1-month period).

Its range is f0; 1; 2; 3; : : :g, and its probability function is given by

fX(x) = P (X = x) =
e���x

x!

; x = 0; 1; 2; 3; : : : ; � > 0: (9)

It has connections with the Bin(n; p) distribution, and also the Exponential

distribution (see later).
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3 Expectation, variance and independence [Statistics I]

3.1 Mathematical Expectation of a discrete r.v. X

(Also referred to as expected value or mean of X .)

The expectation of a r.v. X is a weighted average of all possible values of X , with

weights determined by the probability distribution of X . It measures where the

centre of the distribution lies.

Definition:

Let X be a discrete r.v. with probability mass function fX(x). Then its expected

value is

E(X) =

X
x2Sx

xfX(x) = �x (mean of X) (10)

Notice that if the above sum does not converge for an infinite set Sx, then E(X)

is not defined.
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Properties of expectation:

If X;Y are r.v.’s and a; b 2 R are constants:

(i) E(X + Y ) = E(X) + E(Y )

(ii) E(a) = a; E(aX + b) = aE(X) + b

(iii) If X � 0, then E(X) � 0
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3.2 Expectation of a function of a discrete r.v.

Let X be a r.v. with probability function fX(x), and Y = g(X) a real-valued

function of it. Then Y is also a r.v., and its expectation is given by

E(Y ) =

X
x2Sx

g(x)fX(x) =
X

y

yfY (y):

Example :

An individual invests an amount of$105k on a financial product. The (total) return

of his investment at the end of the following year is given in the table:

Return (in $1000’s) x : 118 113 110 107

Probability fX(x) : 3
20

7
20

7
20

3
20

If the profit of the investment, Y , is given (as a function of the total return X) by

the formula Y = X0:99 � 105, find the expected profit of the investor.
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Solution :
E(Y ) =

X
x

g(x)fX(x)

= (1180:99 � 105)�

3
20
+ (1130:99 � 105)�

7
20

+ (1100:99 � 105)�

7
20
+ (1070:99 � 105)�

3
20

= 7:5�

3
20
+ 2:8�

7
20
� 0:1�

7
20
� 2:9�

3
20
= 1:6

[An expected profit of$1600. However, notice that with probability 1=2 the

investor will lose money! Is this a ‘good’ investment?]
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3.3 Variance of a discrete r.v. X

The variance of a random variable x (var(X), also �2x) is defined as the

expectation of the deviation (squared) of X from its mean (expected value), i.e.

var(X) = EfX � E(X)g2 (11)

and for a discrete r.v. is calculated as

var(X) =

X
x2Sx
fx� E(X)g2fX(x) (12)

It measures the ‘spread’ of the r.v. X , i.e. the extent to which the distribution of X

is dispersed around its mean �x.

It can also be calculated as

var(X) = E(X2)� EfXg2: (13)
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The positive square root of the variance is called the standard deviation (s.d.) of X ,

�x =
p

var(X)

Properties of variance

(i) var(X) � 0

with equality if and only if X is a constant.

(ii) If a; b 2 R are constants, then

var(a+ bX) = b2 var(X).
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3.4 Independence of r.v.’s

Definition

The discrete r.v.’s X;Y are said to be independent of each other iff
P (X = x \ Y = y) = P (X = x)� P (Y = y)

8x 2 Sx;8y 2 Sy .

Properties

If X;Y are independent r.v.’s, then

(i) E(XY ) = E(X)E(Y )

(ii) var(X + Y ) = var(X) + var(Y ) [Prove]
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Counter example for property (ii):

If X = Y (NOT independent), then

var(X + Y ) = var(2X)

= 4var(X) 6= var(X) + var(Y )
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