F71SB2 Statistics II Handout 1

1 Definition of Probability [Statistics I review]

1.1 Experiment

An experiment is any procedure whose outcome is uncertain

- toss a coin
- throw a die
- buy a lottery ticket
- measure an individual's height h

1.2 Sample Space

A sample space, S, is the set of all possible outcomes of a random experiment

- $S=\{H, T\}$
- $S=\{1,2,3,4,5,6\}$
- $S=\{$ WIN, LOSE $\}$
- $S=\{h: h \geq 0\}$

1.3 Events

An event, A, is an element, or appropriate subset of S
e.g. roll a die, $S=\{1,2,3,4,5,6\}$

- event A, that an even number is obtained is given by $A=\{2,4,6\}$
- event B, that a number no greater than 4 is obtained is described by $B=\{1,2,3,4\}$
S can be discrete (e.g. coin, die, lottery), or continuous (e.g. height).

Set operations

If A, B are events, according to Set Theory, we define the operations:

- $A \cup B$: union, ' A or B happening'
- $A \cap B$: intersection, ' A and B happening'
- $A^{c}\left(\right.$ or $\left.A^{\prime}, \bar{A}\right)$: complement of A wrt S, 'not A '

Notice that: $\quad A \cup A^{c}=S, \quad A \cap A^{c}=\emptyset$

1.4 Probability function

A probability function, $P(s)$, is a real-valued function of a collection of events from a sample space, S, attaching a value in $[0,1]$ to each event, satisfying the axioms:

A1. $P(A) \geq 0$ for any event A
A2. $P(S)=1$
A3. If $A_{1}, A_{2}, A_{3}, \ldots$ is a countable collection of mutually exclusive events $\left(A_{i} \cap A_{j}=\right.$ \emptyset for $i \neq j$, i.e. they have no common elements), then

$$
P\left(\cup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

Important properties of $P(s)$

- $P(\emptyset)=0$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

This can be generalised for n events.
Notice: $P(A \cup B)=P(A)+P(B)$ not always true!
It only holds for disjoint (mutually exclusive) events.

- $P\left(A^{c}\right)=1-P(A)$

In many practical situations it is easier to calculate $P\left(A^{c}\right)$ first and use this property to calculate $P(A)$.

1.5 Independence and Conditional Probability

For any event A with $P(A)>0$ we can define the conditional probability

$$
\begin{equation*}
P(B / A)=\frac{P(A \cap B)}{P(A)} \tag{1}
\end{equation*}
$$

If A and B are independent then by definition $P(A \cap B)=P(A) \times P(B)$ and therefore

$$
P(B / A)=\frac{P(A) P(B)}{P(A)}=P(B)
$$

Note that rearrangement of (1) gives the chain (multiplication) rule:

$$
\begin{equation*}
P(A \cap B)=P(A) P(B / A)=P(B) P(A / B) \tag{2}
\end{equation*}
$$

This can also be generalised for n events.

1.6 Total Probability Rule

If $A_{1}, A_{2}, \ldots, A_{k}$ are mutually exclusive events and form a partition of a sample space S (i.e. $\cup_{i=1}^{k} A_{i}=S$), with $P\left(A_{i}\right)>0 \quad \forall i$,
then for an event $B \in S$:

$$
\begin{equation*}
P(B)=\sum_{i=1}^{k} P\left(B \cap A_{i}\right)=\sum_{i=1}^{k} P\left(A_{i}\right) P\left(B / A_{i}\right) \tag{3}
\end{equation*}
$$

Example:

An insurance company covers claims from 4 different motor portfolios, A_{1}, A_{2}, A_{3} and A_{4}. Portfolio A_{1} covers 4000 policy holders; A_{2} covers $7000 ; A_{3}$ covers 13000 ; and A_{4} covers 6000 of the total 30000 policy holders insured by the company. It is estimated that the proportions of policies that will result in a claim in the following year in each of the portfolios are $8 \%, 5 \%, 2 \%$ and 4% respectively.
What is the probability that a policy chosen randomly from one of the portfolios will result in a claim in the following year?

Solution ...

1.7 Bayes Theorem

If $P(A)>0$ and $P(B)>0$, from (1)

$$
\begin{equation*}
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B / A)}{P(B)} \tag{4}
\end{equation*}
$$

or, if $A_{1}, A_{2}, \ldots, A_{k}$ form a partition of a sample space S with $P\left(A_{i}\right)>0, \forall i$, and $P(B)>0$, then from (3)

$$
\begin{equation*}
P\left(A_{j} / B\right)=\frac{P\left(A_{j}\right) P\left(B / A_{j}\right)}{\sum_{i=1}^{k} P\left(A_{i}\right) P\left(B / A_{i}\right)}, \quad j=1,2, \ldots, k . \tag{5}
\end{equation*}
$$

Example: (previous cont.)
If a claim rises from a policy in the year concerned, what is the probability that the policy belongs to portfolio A_{3} ?

Solution ...

1.8 Random variables

A random variable (r.v.) X is a function from a sample space S to \mathbb{R} (the real numbers). That is, to any outcome, s, we associate a real number $X(s)$.
The range of a r.v. X, denoted as S_{x}, is the set $\{r \in \mathbb{R}: r=X(s)$ for some $s \in S\}$, i.e. the set of all real numbers r which are equal to $X(s)$ for some outcome s.
We will usually denote random variables using capital letters, e.g. X, and their realisations (values) using small letters, e.g. x.
If S is finite or countable then the range of X is a set of discrete numbers. We say X is a discrete random variable.

Some simple examples:

(i) Experiment: Toss a balanced coin 3 times.

Sample space S : All possible sequences of T, H of length 3 .
Let $X(s)=$ no. of Heads in outcome (sequence) s. Then \underline{X} is a discrete random variable.
(ii) Experiment: Toss a balanced coin until a ' H ' is thrown.

Sample space: $S=\{H, T H, T T H, \ldots\}$.
$\overline{\text { Let } X(s)}=$ no. of throws (i.e. length of s). Then \underline{X} is a discrete random variable.

1.9 Probability function of a discrete r.v.

Any probability function on S leads naturally to a probability function on the range of X, defined by

$$
f_{X}(x)=P(X=x)=\sum_{s: X(s)=x} P(s) .
$$

Axioms of probability

For a probability function of a discrete r.v. to satisfy the axioms of probability, it is sufficient that
i. $f_{X}(x) \geq 0$ for all $x \in S_{x}$
ii. $\sum_{\text {all } x} f_{X}(x)=1$

