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Abstract: We consider continuous-time stochastic compartmental models which
can be applied in veterinary epidemiology to model the within-herd dynamics of
infectious diseases. We focus on an extension of Markovian epidemic models, al-
lowing the infectious period of an individual to follow a Weibull distribution,
resulting in more flexible modelling for many diseases. Following a Bayesian ap-
proach we show how approximation methods can be applied to design efficient
MCMC algorithms with high acceptance ratios for fitting non-Markovian models
to partial observations of epidemic processes. A simulation study is conducted
to assess the effects of the frequency and accuracy of diagnostic tests on the
information yielded on the epidemic process.
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1 Introduction

The use of stochastic compartmental models in the statistical analysis of in-
fectious diseases is becoming more widespread thanks to the extensive avail-
ability of computing power, and the development of sophisticated compu-
tational techniques such as Markov chain Monte Carlo (MCMC) (Gelfand
and Smith, 1990; Tierney, 1994). These models represent populations of
individuals as being partitioned in disjoint subsets - e.g. susceptible, in-
fectious and removed, or recovered, in the case of the general epidemic or
SIR model (e.g. Bailey, 1975) - and represent the transitions of individuals
between compartments as stochastic processes.
In practical situations, inference for such models is complicated because
the processes involved are only partially observed. For example, observa-
tions of an epidemic of an infectious disease in a population of humans
or animals may record only the time of the appearance of symptoms, with
precise infection times of individuals being unobserved. Furthermore, times
of those events which are observed may be censored in some way, e.g. due
to sporadic or infrequent testing regimes. Several authors have used the
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aforementioned advances in stochastic integration methods to tackle simi-
lar problems within a Bayesian framework (e.g. Gibson and Renshaw, 1998;
O’Neill and Roberts, 1999).
Following the same approach, we first note that for many diseases the time
for which an individual remains infectious follows a distribution that is
clustered around some central modal value, making the exponential dis-
tribution implausible. We therefore consider the Weibull distribution for
sojourn times. We remark that an alternative generalisation of the ex-
ponential distribution, the gamma distribution, has been considered by
O’Neill and Becker (2001). Our distributional assumptions and the incom-
plete nature of the observed data raise the issue of developing appropriate
MCMC methods for estimation. We employ an approximation to full con-
ditional distributions of non-closed form, to obtain high acceptance ratios
in a Metropolis–Hastings algorithm.
Finally, when studying epidemics, the timing and frequency of applying di-
agnostic tests to a population has an important bearing on the information
yielded on the epidemic process, as does the sensitivity and specificity of the
tests themselves. To gain some initial understanding of the effects of these
factors on the resulting information, we conduct a study using simulated
epidemics and diagnostic tests of various efficiency and frequency.

2 Non-Markovian SIR model

We consider a population of fixed size N , in which an epidemic is tak-
ing place. We assume that one infectious individual initiates the epidemic
and thereafter secondary (animal to animal) transmissions of the disease
take place according to a stochastic SIR model. That is, at time t each
individual is characterised by its current state (susceptible, infectious or
removed), and therefore belongs to the S, I or R compartment, with S(t)
and I(t) giving the number of individuals in the S and I class respectively
(prior to the occurrence of any event at time t). Under the assumption of
constant infectiousness over time, transitions from compartment S to I in
the infinitesimal time increment [t, t+dt), occur according to a probability
given by

Pr{S(t + dt) = S(t)− 1} = βS(t)I(t)dt

with β denoting the rate of infection per possible susceptible-infectious
contact. In a departure from the standard Markovian SIR model we assume
that individuals remain in the I compartment for a time drawn randomly
from a Weibull(ν, λ) distribution with density function given by

f(x) = νλxν−1 exp (−λxν) , x, ν, λ > 0.

This has previously been applied in simulation studies of veterinary epi-
demic processes for bovine tuberculosis. It implies that our model no longer
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retains the Markovian (lack-of-memory) property. We cannot therefore
characterise the system at time t merely by the numbers of individuals
in each compartment. This poses problems for carrying out inference with
such models. In the case that we are able to observe the precise times of
all infections and removals in the population during the observation period
in a Markovian model (e.g. Becker, 1983), it is sufficient in the statistical
sense to know the times and nature of all events occurring in the course
of an epidemic. Knowledge of the individuals to which each event applies
would not change the parameter likelihood.
However, in a non-Markovian model the explicit history of each individual
must be represented in the model, since the absence of the lack-of-memory
property implies that removal times of specific individuals now depend on
the time of their infection, with the infectious periods modelled as random
variables from a Weibull(ν, λ) distribution. Removed individuals play no
further role in the spread of the epidemic. We set t1 = 0 as the time of the
first infection of a susceptible individual and we observe the population for
a time period of length T . We let nI and nR denote the number of infected
and removed individuals respectively, and define t = (t1, . . . , tnI+nR

) as
the ordered set of all events. Then, by associating each individual j with
an infection time sj ∈ s and, if appropriate, a removal time rj ∈ r, and
defining I,R as the sets of individuals respectively infected or removed at
the end of the observation period T , the likelihood for the model parameters
can be written as

L(β, ν, λ; s, r) =
∏

j∈I∗
{βI(sj)} exp

{
−

nI+nR∑
i=2

{βS(ti)I(ti)(ti − ti−1)

}

×
∏
j∈R

[
νλ(rj − sj)ν−1 exp {−λ(rj − sj)ν}] ∏

j∈I∩R̄
exp {−λ(T − sj)ν} ,

(1)

where I∗ denotes set I with the initially infectious individual omitted, and
R̄ is the complement of set R. The last term in (1) is associated with
infected individuals whose removal time has been censored, and therefore
vanishes in the case of a complete epidemic.
Perfect knowledge of the infection and removal times would allow direct
use of the likelihood function (1) to obtain estimates for the parameters of
interest, e.g. by the method of maximum likelihood. However, epidemics
are only partially observed, with the precise infection times sj ∈ s of indi-
viduals being unknown. In such cases the data consist of the removal times
rj ∈ r and possibly diagnostic test results. The latter allow the unobserved
infection times to be restricted within intervals between successive testing
times. Nevertheless, inferences using (1) require the exact values sj ∈ s to
be known or estimated.
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3 Bayesian formulation and MCMC method

In the Bayesian approach, the hidden aspects of the epidemic process are
treated as additional unknown parameters. The joint posterior density of
these parameters and the model parameters (given the observations) is then
investigated. Inferences on the parameters of interest are made by consider-
ing the corresponding marginal densities. To formulate the Bayesian model
we need to assume prior distributions for the contact parameter β and the
shape and scale parameters, ν and λ respectively, of the Weibull distribu-
tion of the infectious periods. We choose the independent gamma priors
π(β) ∼ Ga(a, b); π(ν) ∼ Ga(c, d); and π(λ) ∼ Ga(m,φ). Combining the
likelihood function in (1) with these prior distributions, we obtain the pos-
terior density

p(β, ν, λ|s, r) ∝ L(β, ν, λ; s, r) βa−1 νc−1 λm−1 exp{−bβ − dν − φλ}. (2)

As this is given in a non-closed form, estimation involves intractable inte-
grations and therefore we will employ MCMC techniques.
We suggest a single-component Metropolis–Hastings algorithm. Each model
parameter is updated separately in a single step by first generating a can-
didate value from a proposal distribution. The new value is then accepted
with a probability involving the ratio of the full conditional and the pro-
posal distribution. The full conditional distributions of the parameters β
and λ are given from (2) as

β|a, b, r, s ∼ Ga

(
nI + a− 1, b +

nI+nR∑
i=2

S(ti)I(ti)(ti − ti−1)

)

λ|ν,m, φ, r, s ∼ Ga


nR + m,

∑
j∈R

(rj − sj)ν +
∑

j∈I∩R̄
(T − sj)ν + φ


 .

These full conditionals can serve as the proposal distributions, leading to
Gibbs sampling steps with acceptance probability α = 1. However, the
density of the full conditional of the parameter ν takes the non-closed form

p(ν|λ, c, d, r, s) ∝ νnR+c−1
∏
j∈R

(rj − sj)ν−1

× exp


−λ




∑
j∈R

(rj − sj)ν +
∑

j∈I∩R̄
(T − sj)ν


− dν


 . (3)

We update ν employing a proposal distribution q(·) in a Metropolis–Hastings
step with acceptance probability given by

α = min
{

1,
p(ν(new)|λ, c, d, r, s)/q(ν(new)|λ, c, d, r, s)
p(ν(old)|λ, c, d, r, s)/q(ν(old)|λ, c, d, r, s)

}
. (4)
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If the new candidate value is not accepted, the value from the previous
iteration is retained. The proposal distribution in (4) is not conditional
on the value of ν, thus forming an independence-type Metropolis–Hastings
algorithm (Tierney, 1994). This implies that we can choose the proposal
distribution to be as close to the full conditional as possible, in order to
obtain an efficient algorithm in terms of acceptance rate.

3.1 Approximation to full conditional distribution of ν

We use a gamma proposal distribution to approximate p(ν|λ, c, d, r, s). Its
parameters are determined in a way such that the first two moments of
the proposal are approximately equal to the corresponding moments of
the full conditional distribution. As the latter is fairly symmetrical, we
employ its mode and information function as appropriate values for the
mean and variance of the gamma approximation. This involves maximising
(3) once, and is easily embedded in the MCMC iterative scheme without
bearing a prohibitive computational cost. The resulting approximation is
illustrated in Figure 1, where the true full conditional was computed from
(3) using numerical integration. The suggested method produced accurate
approximations, and therefore provided remarkably high acceptance rates
(96%− 98%) for the Metropolis–Hastings algorithm.

3.2 Updating the infection times

To update the unobserved infection times the algorithm also needs to take
account of the unknown number of infections nI , proposing feasible moves
between subspaces of different dimension and adjusting the acceptance
probabilities accordingly. At each MCMC cycle we choose an integer j
from (1, 2, . . . , N). If j corresponds to an infected but not removed individ-
ual, we either remove its infection time sj from the set of infection times s
with probability p = 1

2 , or we move sj randomly in (0, T ) equally likely. In
the first case, the new vector s is accepted with probability

α = min
{

1,
1

2T

L(β, ν, λ; r, s(new))
L(β, ν, λ; r, s(old))

}
, (5)

while in the latter case it is given by (5) with 1
2T omitted. If the jth

individual has been removed from the population, we move its infection
time randomly in (0, rj). The acceptance probability is again the same
as in the second case of the previous step. Finally, if j indicates a non-
infected individual, we randomly add an infection time sj ∈ (0, T ) to the
set of infection times s. The acceptance probability is now given by (5)
with 1

2T replaced by T
2 .

The incomplete nature of the data will be reflected in the parameter esti-
mation process both through the precision of the estimates and the per-
formance of the MCMC algorithm. In epidemics where diagnostic testing
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FIGURE 1. Gamma approximation (dotted line) to full conditional distribution
(solid line) of ν.

is carried out, the additional information results in better estimation in a
degree that depends on the frequency and accuracy (sensitivity and speci-
ficity) of the diagnostic tests. In the MCMC algorithm the updating scheme
is easily modified to incorporate the additional information, by restricting
the individual infection times in appropriate intervals, while also taking
account of the test sensitivity and specificity.

4 Application

We use a simulated epidemic to illustrate the described method. A closed
population of N = 100 individuals is considered and the rate of infection per
possible contact is set to β = 0.003. The infectious periods are drawn from
a Weibull distribution with ν = 1.1 and λ = 0.08. The simulation process
produced 91 removals out of 92 infected cases over an observation period
of 60 days. Several sets of diagnostic test results were also generated, with
varying frequency and accuracy, to investigate their effect on the estimation
process.
In the Bayesian model the parameters of the gamma prior distributions
considered in Section 3 were assumed to be a = 10−4, b = 0.1, c = 1, d =
10,m = 1, φ = 10. The use of highly vague priors resulted in MCMC con-
vergence difficulties in cases of very infrequent (or no) diagnostic testing,
due to the lack of information in the model. The convergence of the algo-
rithm was improved by more frequent updating of the vector of infection
times s (to facilitate the movement of the sampler through the likelihood
support), and also by thinning the post-convergence sample to reduce the
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autocorrelation in the simulated sequence.
Table 1 presents the posterior estimates of the model parameters, when
only removal data are considered and when results of diagnostic tests (of
assumed sensitivity and specificity of 85%) are included in the analysis.
The posterior density of the transmission parameter β is plotted in Figure
2. Clearly, the posterior distribution is more concentrated around its mean
as more information becomes available through diagnostic testing. This
is also illustrated in Figure 3, which shows the decrease of the posterior
standard deviation of β when the number of conducted tests increases.
The improvement is slower for less accurate tests.

TABLE 1. Posterior mean and standard deviation of the model parameters when
only removal data are considered and when 2 or 60 (daily) tests are conducted.
The sensitivity and specificity of the tests were assumed to be equal to 85%.

Removal data 2 tests 60 tests
mean sd mean sd mean sd

β 4× 10−3 6× 10−4 3× 10−3 5× 10−4 3× 10−3 3× 10−4

ν 1.140 0.123 1.140 0.107 1.110 0.080
λ 0.098 0.030 0.083 0.025 0.082 0.018

5 Discussion

We considered a non-Markovian compartmental model with Weibull in-
fectious periods for flexibility in biologically realistic situations in veteri-
nary epidemiology. An efficient independence-type Metropolis–Hastings al-
gorithm was developed to tackle parameter estimation within a Bayesian
framework, when the precise times of infection are not observed. Where
needed, the MCMC technique makes use of appropriate gamma approxi-
mations to the full conditional distributions of the parameters, resulting
in a particularly high acceptance rate of at least 96% in our applications.
Other approximations may also considered (based e.g. on the Laplacian
technique), but their computational cost should be taken into account when
incorporated in a MCMC iterative scheme.
The methods were adapted to enable diagnostic test data to be used in the
analysis. Availability of such data reduces the uncertainty in the unobserved
infection times and therefore improves the precision of the estimates. The
potential gain depends on the number of tests conducted, as well as on
their effectiveness as expressed through their sensitivity and specificity.
Future work includes application to field data, with possible adaptation of
the model to the characteristics of a specific disease, and development of
suitable methods for model assessment and selection.
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FIGURE 2. Posterior density of β with-
out diagnostic test data (solid line),
and when 2 tests (dashed line), or 60
tests (dotted line) are conducted. The
sensitivity and specificity of the tests
are both assumed to be equal to 85%.
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FIGURE 3. Posterior standard devia-
tion of β against the number of tests.
Each curve corresponds to a given sen-
sitivity and specificity level. The hori-
zontal dotted line represents complete
knowledge of the infection times.

References

Bailey, N.T.J. (1975). The Mathematical Theory of Infectious Diseases and
its Applications, 2nd ed. London: Griffin.

Becker, N. G. (1983). Analysis of data from a single epidemic. Austral. J.
Statist. 25, 191–197.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to
calculating marginal densities. J. Amer. Statist. Assoc. 85, 398–409.

Gibson, G.J. and Renshaw, E. (1998). Estimating parameters in stochas-
tic compartmental models using Markov chain Monte Carlo methods.
IMA J. Math. Appl. Med. & Biol. 15, 19–40.

O’Neill, P.D. and Roberts, G.O. (1999). Bayesian inference for partially ob-
served stochastic epidemics. J. Roy. Statist. Soc. Ser. A 162, 121–129.

O’Neill, P.D. and Becker, N.G. (2001). Inference for an epidemic when sus-
ceptibility varies. Biostatistics 2, 99–108.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with
discussion). Annals of Statistics 22, 1701–1762.


