
Spring 2005
Actuarial Mathematics and Statistics

Statistics 5 Part 2: Statistical Inference
Tutorial Solutions

1. (a) Can interpreted as a frequency. Repeatable expt: Repeatedly
roll the die and record the sequence of score.

(b) Can interpreted as a frequency. Repeatable expt: Select individ-
ual randomly from all 20-yr-old males then record lifespan. Note that
this interpretation assumes an infinite pool of people to choose from -
not entirely realistic.

(c) Cannot be interpreted as a frequency. There’s only one Wayne
Rooney.

(d) Cannot be interpreted as a frequency.

(e) Can be interpreted as a frequency if you regard the next pint as
a random draw from the population of pints of milk in supermarkets.

2. (a) Bin(10, p) form some unknown p.

(b) Geometric(p) might be plausible if results of throws are in-
dependent and probability of success p is constant over throws. Not
entirely realistic given p might increase with practice.

(c) Poisson(λ) might be appropriate here.

(d) A normal distribution: N(µ, σ2).

(e) Possibly a Γ(α, β) distribution or a normal distribution would
be appropriate.

3. (a)

MSE(g(X)) = E((g(X)− θ)2)

= E((g(X))2)− 2E(g(X))θ + θ2

= [E((g(X))2)− (E(g(X)))2] + [(E(g(X)))2 − 2E(g(X))θ + θ2]

= Var(g(X)) + [E(g(X))− θ]2

= Var(g(X)) + (bias(g(X)))2.

(b)
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(i) X̄ = 1
n

∑n
i=1 Xi, so E(X̄) = 1

n

∑n
i=1 E(Xi) = 1

n

∑n
i=1 µ = µ.

(ii) Var(X̄) = 1
n2 Var(

∑n
i=1 Xi) = 1

n2

∑n
i=1 Var(Xi) = 1

n2

∑n
i=1 σ

2 =
σ2/n.

(iii)

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

=
1

n− 1

n∑
i=1

X2
i −

2

n− 1
X̄

n∑
i=1

Xi +
n

n− 1
(X̄)2

=
1

n− 1

n∑
i=1

X2
i −

2n

n− 1
(X̄)2 +

n

n− 1
(X̄)2

=
1

n− 1

n∑
i=1

X2
i −

n

n− 1
(X̄)2.

Recall that E(X2) = V ar(X) + (E(X))2 = σ2 + µ2 and E(X̄2) =
V ar(X̄) + (E(X̄))2 = σ2

n
+ µ2. So

E(S2) =
1

n− 1

n∑
i=1

E(X2
i )− n

n− 1
E(X̄2)

=
n

n− 1
(σ2 + µ2)− n

n− 1
(
σ2

n
+ µ2)

= σ2.
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4. (a) Yes. E(X̄) = E(X) = λ, therefore Bias(X̄) = 0.

(b) MSE = Var(X̄) = λ
n
, since V ar(X) = λ.

(c) For Poisson(λ), fX(x, λ) = e−λλx

x!
for x = 0, 1, . . . , so that log(fX(X,λ) =

X log(λ)− λ− log(X!) and hence,

∂

∂λ
log(fX(X;λ)) =

X − λ
λ

.

It follows that

E((
∂

∂λ
log(fX(X;λ))2) = E(

(X − λ)2

λ2
)

=
Var(X)

λ2

=
1

λ
.

From the definition (see lecture notes!) it follows that the CRLB is
equal to λ

n
= MSE(X̄), so that X̄ is indeed the most efficient unbiased

estimator.

(d) We have that

MSE(aX̄) = Bias2aX̄ + Var(aX̄)

= (a− 1)2λ2 +
a2λ

n

This is a quadratic in a which can easily be shown to be minimised by
a = nλ

nλ+1
. Note that we would need to know λ in order to obtain the

optimal a and that the optimal value of a → 1 as the sample size n
increases.

5. (a) Let

f(a, b) = MSE(a, b) = a2σ2
1 + b2σ2

2 + θ2(a+ b− 1)2

then

∂f

∂a
= 2σ2

1a+ 2θ2(a+ b− 1)

∂f

∂a
= 2σ2

2b+ 2θ2(a+ b− 1).
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Setting these equal to zero we obtain the simultaneous linear equations.

(σ2
1 + θ2)a+ θ2b = θ2

θ2a+ (σ2
2 + θ2)b = θ2.

These can be solved to obtain the expressions for a∗ and b∗ given in the
lectures. To check we its a maximum we apply the second derivative
test to the matrix of 2nd derivatives. Note that ∂2f

∂a2 = σ2
1 + θ2, ∂2f

∂b2
=

σ2
2 + θ2, ∂2f

∂a∂b
= θ2. Application of the test is straightforward.

(b) The MSE for the optimal unbiased estimator is 0.5. For the optimal
estimator a∗ = 0.49998 and b∗ = 0.49998 and we obtain an MSE of
0.49998. Clearly there is little difference between the optimal unbiased
and the optimal estimators in this case.

6. (a)

From the results in question 3, we have that E(X̄) = µ = θ, Var(X̄) =
σ2

n
= θ2

n
, and MSE(X̄) = θ2

n
.

(b) Now consider the estimator Y = aX̄. E(Y ) = E(aX̄) = aθ, so
bias(Y )=E(Y )− θ = (a− 1)θ, and Var(Y )= Var(aX̄)= a2 · θ2

n
. Thus,

MSE(Y ) = a2 · θ
2

n
+ (a− 1)2θ2 =

θ2

n
(a2 + n(a− 1)2).

To minimize MSE(Y ), we must solve

d

da
MSE(Y ) =

θ2

n
(2a+ 2n(a− 1)) = 0.

We get the solution a = n
n+1

. Note: You must check that MSE(Y ) is

minimized at this value of a. Argue directly, or check that d2

da2 MSE > 0.

Let Y ∗ = n
n+1

X̄, then

MSE(Y ∗) =
θ2

n

((
n

n+ 1

)2

+ n

(
−1

n+ 1

)2
)

=
θ2

n+ 1
<
θ2

n
= MSE(X̄).

Thus, Y ∗ is more efficient than X̄. For small values of n this difference,
proportionally, is quite substantial, but as n → ∞, X̄ becomes nearly
as efficient as Y ∗.

4



(c) Using Chebyshev’s inequality we obtain

P (|X̄ − θ| > 0.1θ) ≤ MSE(X̄)

0.01θ2
=

1

2
.

.

7. Suppose the population distribution is exp(1/θ) and the size of the
random sample is n.

Then f(x; θ) = 1
θ
e−x/θ and log f(x; θ) = − log θ − x

θ
.

Differentiate to get d
dθ

log f(x; θ) = −1
θ

+ x
θ2 = 1

θ2 (x− θ).

So ( d
dθ

log f(x; θ))2 = (x−θ)2

θ4 and

E((
d

dθ
log f(x; θ))2) =

1

θ2
E((X − θ)2) =

Var(X)

θ4
=

1

θ2
.

Thus the Cramer-Rao lower bound is given by 1
n· 1
θ2

= θ2

n
. Since X̄ is

unbiased and Var(X̄) = θ2/n, X̄ is the most efficient unbiased estimator
BUT it is NOT the most efficient estimator (cf question 6.)

8. We need to check that the MSE→ 0 as n→∞. It is easily shown that
E(X

n
) = p and Var(X

n
) = p(1−p)

n
. Hence X

n
is unbaised and its MSE is

equal to its variance. Clearly the variance tends to zero as n→∞ and
it follows that X

n
is a consistent estimator for p.

9. (a) The density for the N(0, σ2) distribution is given by f(x;σ2) =
1√

2πσ2
exp(− x2

2σ2 ). The parameter is θ = σ2. Now we compute the
Cramer-Rao lower bound.

log f(x; θ) = log(1/
√

2π)− 1

2
log(θ)− 1

2

x2

θ
d

dθ
log f(x; θ) = − 1

2θ
+

x2

2θ2

d2

dθ2
log f(x; θ) =

1

2θ2
− x2

θ3

E(
d2

dθ2
log f(x; θ)) =

1

2θ2
− E(X2)

θ3
.
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Since µ = 0, E(X2) = Var(X) = σ2 = θ. Thus

E(
d2

dθ2
log f(x; θ)) =

1

2θ2
− θ

θ3
=
−1

2θ2
=
−1

2σ4
.

So the Cramer-Rao lower bound is given by 2σ4

n
.

(b) Since E(S2) = σ2 (see question 2, above), S2 is an unbiased
estimator for σ2. However, Var(S2) = 2σ4

n−1
. So S2 is not the most

efficient unbiased estimator, although, as n → ∞, it ‘becomes’ most
efficient.

In the special case when X is a random sample from N(0, σ2), we have
E(X2) = Var(X) = σ2. Thus, another unbiased estimator of σ2 is
given by S2

n = 1
n

∑n
i=1 X

2
i , with E(S2

n) = 1
n

∑n
i=1 E(X2

i ) = σ2.

Now we compute the MSE(S2
n) = Var(S2

n): First note that

Var(S2
n) =

1

n2

n∑
i=1

Var(X2
i ) =

1

n2

n∑
i=1

2σ4 =
2σ4

n
.

Since Var(S2
n) attains the Cramer-Rao lower bound and S2

n is an un-
biased estimator of σ2, we conclude that S2

n is the most efficient
unbiased estimator of σ2.

Now consider S2
n+2 = 1

n+2

∑n
i=1 X

2
i = n

n+2
S2
n. We have E(S2

n+2) =
n
n+2

E(S2
n) = n

n+2
σ2, so S2

n+2 is biased with

bias(S2
n+2) =

n

n+ 2
σ2 − σ2 = − 2

n+ 2
σ2.

Next, Var(S2
n+2) = n2

(n+2)2
2σ2

n
, so

MSE(S2
n+2) = Var(S2

n+2) + (bias(S2
n+2))2 =

2σ4

n+ 2
.

Therefore, although S2
n is the most efficient unbiased estimator, it is

not the most efficient estimator as S2
n+2 is more efficient.
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10. (a) Since the n individuals are chosen randomly without replacement
the ith individual selected is equally likely to be any one of the 100
individuals in the populaton. Thus P (Yi = 1) = p, so that Yi ∼
Bernoulli(p) as required.

(b) The Yi are not independent since we are selecting without replace-
ment. Thus, for example, if i 6= j, P (Yi = 1|Yj = 0) > p.

(c) Note that p̂ is unbiased since E(p̂) = p. From the formula given in
the lecture notes we have that

Var(p̂) =
(N − n)

(N − 1)

Var(Yi)

n
=

50

99

p(1− p)
50

= 0.0024

(d) P (|p̂− p| > 0.05) < MSE
0.052 = 0.0024

0.0025
= 0.96.

This suggests that Chebyshev’s inequality is giving a fairly loose upper
bound. In reality the frequency will be considerably less than this.
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11. (a) Since observations are independent we have that

L(λ) =
e−λλ3

3!
× e−λλ6

6!
× e−λλ2

2!
=
e−3λλ11

8640

The log of the likelihood is given by

l(λ) = 11 log λ− 3λ− log 8640.

(b) Differentiate, equate to zero, solve + check maximised to obtain
the MLE of λ as λ̂ = 11

3
= 3.67.

(c) For the Poisson(λ) model the population mean is equal to λ. We
obtain the method of moments estimate by equating the sample mean
to population mean and solving for λ. This gives the same estimate as
(b).

12. (a) First, µ = np, so set X̄ = X1 = np and solve to get p̃ = X1/n=MME.
To find the MLE, maximize the log-likelihood function:

L(p) =

(
n

x

)
px(1− p)n−x

logL(p) = log

(
n

x

)
+ x log p+ (n− x) log(1− p)

d

dp
logL(p) =

x

p
− n− x

1− p
=

x− np
p(1− p)

.

Solve d
dp

logL(p) = x−np
p(1−p) = 0 to get p̂ = X1/n=MLE.

Note: You should check that the maximum occurs at p̂, i.e. compute
the 2ndderivative of logL(p).

(b) For the exponential distribution, exp(λ), we have the equation
µ = 1/λ. So to find the MME, set X̄ = 1/λ and solve for λ to get
λ̃ = 1/X̄ = MME.

8



To find the MLE, maximize the log-likelihood function:

L(λ) =
n∏
i=1

λe−λxi

= λne−λΣxi

logL(λ) = n log λ− λ
n∑
i=1

xi

d

dλ
logL(λ) =

n

λ
−

n∑
i=1

xi.

Solve d
dλ

logL(λ) = n
λ
−
∑n

i=1 xi = 0 to get λ̂ = n
Σxi

= 1/X̄=MLE.

Note: d2

dλ2 logL(λ) = −n/λ2 < 0, so log-likelihood is maximized at λ̂.

(c) To find the MME, note that µ = θ
θ+1

(check this by computing the

expectation directly). Therefore, set X̄ = θ
θ+1

and solve for θ to get

θ̃ = X̄/(1− X̄) = MME.

To find the MLE, maximze the log-likelihood function:

L(θ) =
n∏
i=1

θxθ−1
i = θn(

n∏
i=1

xi)
θ−1

logL(θ) = n log θ + (θ − 1) log(Πxi)

d

dθ
logL(θ) = n

θ
+ log(Πxi).

Solve d
dθ

logL(θ) = 0 to get θ̂ = −n/(log(ΠXi)) = −n/Σ log(Xi) =
−1/ ¯logX=MLE.

Log-likelihood is maximized at θ̂, since d
dθ

logL(θ) = −n/θ2 < 0.

13. (a) There must be at least 2 and at most 8 black balls in the bag
(i.e. 2 ≤ r ≤ 8).

(b)

L(r) =

(
r
2

)
×
(

10−r
2

)(
10
4

) ∝ r(r − 1)(10− r)(10− r − 1).
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(c) L(r) is maximised for r = 5 when r(r−1)(10− r)(10− r−1) =
400. This is not surprising given that half the balls in the sample were
black.

14. To find the MLE, first determine the likelihood function:

L(θ) =
4

θ2

(
1− x1

θ

)(
1− x2

θ

)
,

for θ ≥ max{x1, x2} and is equal to 0, otherwise. Check a plot of L(θ).

The MLE should be one of the critical points for the full function
G(θ) = 4

θ2

(
1− x1

θ

) (
1− x2

θ

)
. So find the critical points of G(θ) and

then work out which one is the MLE θ̂.

G(θ) = 4

(
1

θ2
− (x1 + x2)

θ3
+
x1x2

θ

)
d

dθ
G(θ) = 4

(
− 2

θ3
+

3(x1 + x2)

θ4
− 4x1x2

θ5

)
= − 4

θ5

(
2θ2 − 3(x1 + x2)θ + 4x1x2

)
.

Note that d
dθ
G(θ) = 0 iff 2θ2 − 3(x1 + x2)θ + 4x1x2 = 0. Using the

quadratic formula, we get:

θ =
3(x1 + x2)+

√
9(x1 + x2)2 − 32x1x2

4
.

Which root is the MLE?

Consider the graph of the full function G(θ) = 4
θ2

(
1− x1

θ

) (
1− x2

θ

)
(you

should sketch this - see tutorial). Note that G(θ) = 0 at θ = x(1), x(2).

Since the minimum occurs in the interval (x(1), x(2)) and G has a maxi-
mum at some value greater than x(2), the MLE must be the larger root
of the quadratic. So

θ̂ =
3(x1 + x2) +

√
9(x1 + x2)2 − 32x1x2

4
.

10



The MME is much easier to find! First find the theoretical mean of the
population:

µ = E(X) =

∫ θ

0

x
2

θ

(
1− x

θ

)
dx =

2

θ

∫ θ

0

(x− x2

θ
)dx =

θ

3
.

Solve X̄ = θ/3 to get θ = 3X̄=MME.

15. (a) It is the region

{(a, b)|a ≤ x(1), b ≥ x(n)}.

(b) For (a, b) in this region we have that

L(a, b) =
1

(b− a)n
.

It is maximised by selecting the values of a and b that minimise |b− a|
over this region i.e. at (â, b̂) = (x(1), x(n).

(b) No - in the particular case when n = 1, â = b̂ for any sample so
they are certainly not independent in this (rather artificial) case. Let
n = 2, a = 0 and b = 1 and let Y = (X(1), X(2)). Then the range of Y
is {(y1, y2)|0 ≤ y1 ≤ y2 ≤ 1}. If you look at the solution to Qu. 3 in
Tutorial 7 of Statistics IV last term you will see that the density of Y
is constant over this region and that Cov(Y1, Y2) = 1

36
.
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16. (a) The probability that there are no cars speeding cars on a given day
is given by e−λ. It follows that

L(λ) = e−4λ(1− e−λ)6.

Taking logs, differentiating and equating to 0, we find that the MLE of
λ is given by

λ̂ = − log 0.4 = 0.916.

(b)It follows a Bin(10, p) distribution where p = e−λ.

(c) We can find the MLE of λ by using the invariance of MLE’s under 1-

1 transformations. We know that the MLE of p is 4
10

so that e−λ̂ = 0.4.

17. The probability that a player loses is q = (1− p)3 (a 1-1 function of p,
note). It is clear that the MLE of q is q̂ = 1

2
. From this it follows from

invariance property that 1− p̂ = q̂
1
3 so that

p̂ = 1− 1

2
1
3

= 0.206.

18. (a) Let X denote the diameter of a tuber. Then the probability that a
tuber goes through both grids is P (X < 3) = 1−e−3λ. The probability
that it goes through neither is P (X > 6) = e−6λ while the probability
that it goes through the 1st but not the second is P (3 < X < 6) =
e−3λ − e−6λ = e−3λ(1− e−3λ). These probabilities define the factors in
the likelihood for each of the tubers in the sample. n the three groups
listed above there are 50, 20 and 30. This gives a likelihood

L(λ) = (1− e−3λ)50(e−6λ)20(e−3λ(1− e−3λ))30

giving the likelihood given in the question.

(b) The likelihood can we written as p70(1− p)80 this is maximised by
p̂ = 7

15
. Using the invariance property we obtain the MLE of λ as

λ̂ =
(log 15− log 7)

3
= 0.254
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19. For the Poisson distribution with parameter µ, we have P (X = 0) =
e−µ, P (X = 1) = µe−µ, and P (X > 1) = 1 − (1 + µ)e−µ. So the
likelihood for our data is given by:

L(µ) = (e−µ)n0(µe−µ)n1(1− (1 + µ)e−µ)n−n0−n1

logL(µ) = −n0µ+ n1 log µ− n1µ+ (n− n0 − n1) log(1− (1 + µ)e−µ)

d

dµ
logL(µ) = −(n0 + n1) +

n1

µ
+ (n− n0 − n1)

(1 + µ)e−µ − e−µ

1− (1 + µ)e−µ
.

Solving d
dµ

log  L(µ) = 0 is equivalent to solving

−(n0+n1)µ(1−(1+µ)e−µ)+n1(1−(1+µ)e−µ)+(n−n0−n1)µ2e−µ = 0,

which reduces to

n1 − (n0 + n1)µ+ e−µ(nµ2 + n0µ− n1) = 0.

Substituting in n = 20, n0 = 8, n1 = 7 we get

7− 15µ+ e−µ(20µ2 + 8µ− 7) = 0.

So the problem reduces to that of finding the solution to f(µ) = 0
where f(µ) = 7− 15µ+ e−µ(20µ2 − 8µ− 7). Use the Newton-Raphson
method: Start with a value µ0, and generate iterations using

µr+1 = µr −
f(µr)

f ′(µr)
, r = 0, 1, 2..

To choose a starting value, note that n0

n
= 0.4 and n0+n1

n
= 0.75.

According to the Poisson tables, if X ∼ Po(0.95) then P (X = 0) =
0.3867 and P (X ≤ 1) = 0.7541, so start with µ0 = 0.95. Iterating, we
get µ̂ = 0.9415, to 4 decimal places.

20. First step, find the likelihood function:

L(t, λ) =
n∏
i=1

λt

Γ(t)
xt−1
i e−λxi =

λnt

(Γ(t))n
(
n∏
i=1

xi)
t−1e−λΣxi

logL(t, λ) = nt log λ− n log Γ(t) + (t− 1) log(Πxi)− λΣxi.
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Therefore, we must solve the following equations simultaneously:

d

dt
logL(t, λ) = n log λ− nΓ′(t)

Γ(t)
+ log(Πxi) = 0

d

dλ
logL(t, λ) =

nt

λ
−

n∑
i=1

xi = 0.

The second equation yields: λ = nt/Σxi = t/x̄, which can be substitued
into the first equation to get

n log(t/x̄)− nΓ′(t)

Γ(t)
+ log(Πxi) = 0.

This equation must be solved numerically for t̂, then set λ̂ = t̂/x̄.

To find the MME, first note that µ = t
λ

and σ2 = t
λ2 . So we need to

solve the following equations simultaneously:

x̄ =
t

λ

s2 =
t

λ2
.

We get λ = t/x̄ from the first equation, and substituting this into
the second equation yields t = x̄2/s2. So the MME’s for t and λ,
respectively, are X̄2/S2 and X̄/S2.

The MME’s are much simpler to obtain than the MLE’s. The values
of the MME’s could be used as the starting values for the numerical
evaluation of the MLE’s.

21. To find the MLE’s, first determine the likelihood function:

L(µ1, µ2, σ
2) =

n1∏
i=1

1√
2πσ2

exp(−1

2

(
x1i − µ1

σ

)2

) ·
n2∏
i=1

1√
2πσ2

exp(−1

2

(
x2i − µ2

σ

)2

)

logL(µ1, µ2, σ
2) = (n1 + n2)

(
log(

1√
2π

)− 1

2
log(σ2)

)
− 1

2σ2

n1∑
i=1

(x1i − µ1)2 − 1

2σ2

n2∑
i=1

(x2i − µ2)2.
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Then simultaneously solve the following equations:

d

dµ1

logL =
1

σ2

n1∑
i=1

(x1i − µ1) = 0

d

dµ2

logL =
1

σ2

n2∑
i=1

(x2i − µ2) = 0

d

dσ2
logL = −1

2
(n1 + n2)

1

σ2
+

1

2σ4

(
n1∑
i=1

(x1i − µ1)2 +

n2∑
i=1

(x2i − µ2)2

)
= 0.

Solve the first two equations to get µ̂1 = X̄1 and µ̂2 = X̄2. Substitute
these solutions into the third equation to get σ̂2 = 1

n1+n2
((n1 − 1)S2

1 + (n2 − 1)S2
2)

22. To find the MLE, first determine the likelihood function:

L(µ) =
n∏
i=1

(
1

1− Φ(−µ)

)
1√
2π

exp(−1

2
(xi − µ)2)

= (2π)−n/2(1− Φ(−µ))−n exp(−1

2

n∑
i=1

(xi − µ)2)

logL(µ) = −n
2

log(2π)− 1

2

n∑
i=1

(xi − µ)2 − n log(1− Φ(−µ)).

Therefore, we must solve

d

dµ
logL(µ) =

n∑
i=1

(xi − µ)− n φ(−µ)

1− Φ(−µ)
= 0,

which is equivalent (divide both sides by n) to solving

x̄− µ− φ(−µ)

1− Φ(−µ)
= 0.

In order to find the MME, we need to find an equation for E(X) in
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terms of the parameter µ. So compute E(X) first:

E(X) =
1

1− Φ(−µ)

∫ ∞
0

x√
2π
e−

1
2

(x−µ)2

dx

=
1

1− Φ(−µ)

∫ ∞
−µ

(z + µ)e−z
2/2dz (change of variables z = x− µ)

=
1

1− Φ(−µ)

(∫ ∞
−µ

z√
2π
e−z

2/2dz + µ

∫ ∞
−µ

e−z
2/2

√
2π

dz

)

=
1

1− Φ(−µ)
((
−e−z2/2

√
2π

)|∞−µ + µ(1− Φ(−µ))

= µ+
φ(−µ)

1− Φ(−µ)
.

So the MME is given by the solution to x̄ = µ+ φ(−µ)
1−Φ(−µ)

, (and MLE=MME).

We can use the normal tables to find µ̂ when x̄ = 1.42, i.e. try to find
a value for µ from the tables so that µ+ φ(−µ)

1−Φ(−µ)
= 1.42. By inspection,

we see that µ̂ = 1.2 works!
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23. (a) The probability that a patient doesn’t relapse in the 6-month trial
is given by

1−
∫ 6

0

β2te−βtdt = (1 + 6β)e−6β.

Use integration by parts!

(b) Each patient who does not relapse contributes a factor to the like-
lihood given by the probability in (a). Each patient whose relapse time
is less that 6 months (and is therefore precisely measured contributes
a factor equal to the p.d.f. β2tie

−βti .

This leads naturally to the likelihood

L(β) ∝ β12(1 + 6β)4e−37.2β

(c) To find the MLE of β, we take the log of the likelihood:

l(β) = 12 log β + 4 log(1 + 6β)− 37.2β

Now differentiate and equate to zero to give

12

β
+

24

1 + 6β
− 37.2 = 0.

On multiplying through by −β(1 + 6β) we obtain

223.2β2 − 58.8β − 12 = 0.

This is solved by β = −0.13, 0.40. Since β must be positive the MLE
is 0.40.
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