
1 Inference, probability and estimators

The rest of the module is concerned with statistical inference and, in partic-
ular the classical approach. We will cover the following topics over the next
few weeks.

• What is statistical inference, what is the classical approach and how
does it differ from other approaches?

• Estimators and their properties.

• The method of moments for estimation.

• Likelihood and maximum likelihood estimation.

Therefore we begin with a summary of the essential elements of statistical
inference and a brief description of the classical approach.

1.1 Statistical Inference

If you look in the literature you can find many different definitions for statis-
tics and the process of statistical inference. For example, Barnett (Compar-
ative Statistical Inference, John Wiley & Sons, Chichester, 1982) suggests
defining statistics as:

... the study of how information should be employed to reflect on,
and give guidance for action in, a practical situation involving
uncertainty

We first consider examples of the kind of situations where we expect
statistical inference to be important.

Example 1. Suppose you are a farmer who has to choose between two fertil-
izers (A and B). before placing a large order for either you obtain samples of
each and apply A to 5 ’test’ plots and B to 5 plots of a certain crop. Then at
the end of the season you measure the yield of the crop in kgs in each plot.
The results are:

Fertiliser A: 12.5, 14.4, 15.1, 11.9, 13.1

Fertiliser B: 12.6, 13.2, 10.4, 10.9, 12.8

1



Now for fertilisers A and B the average yields are 13.4 and 11.98, respec-
tively. Does this tell us that A is better than B and that we should place
a large order for A? Well, it might suggest this but the data also tell us
that ’yield’ is something that varies from plot to plot even if the same fertil-
izer is used. If we repeated the experiment we would surely obtain different
measurements and, plausibly, could come to a different conclusion regarding
which was better. Thus it is possible that B may be better. If we decide to
choose A then we may be making the wrong decision.

Statistical inference is the process whereby we will quantify how strong
the evidence is that A is really better than B. Having done this we can
then decide whether to order A, or whether, perhaps, we should do further
experiments before making a decision.

It’s not difficult to think of all kinds of scenarios that are analogous to
example 1: testing effectiveness of different drugs, comparing lifetimes of
different brands of a component. Every day we have to make potentially
important decisions in the face of limited evidence and statistics gives us a
set of tools for trying to do this.

See lectures for the ’Monty Hall’ game.

1.2 The concept of probability

A key element of statistical inference is probability theory. Probability theory
is used to construct the models from which observations are assumed to arise
(see later) but also to express the degree of certainty in the conclusions. In
example 1 can we associate a probability with the conclusion “A is better
than B”?

You should recall from Statistics II the notion of confidence interval (e.g
a 95% confidence interval). Suppose, in the context of example 1, we knew
that the measurements for fertilizer B follow a N(µB, 1) distribution, where
µ is unknown. Then we could have calculated a 95% CI as

(11.98 - 1.96 1√
5
,11.98 - 1.96 1√

5
)

i.e. (11.1, 12.8). This is an example of a probability being used to express
the degree of certainty one might have in a conclusion regarding the range
of values which µB could plausibly take.

Exercise. Revise Stats II notes on how to calculate a 95% CI for the difference
µA − µB assuming that the observations for A and B are distributed as
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N(µA, σ
2) and N(µB, σ

2) when σ2 = 1 and when σ2 is unknown. (Later in
Statistics VI we cover this material again in detail.) How can you use the CI
to help you decide whether A is really better than B?

The “95%” in the above construction is indeed a probability. But of what
event? In the next section we examine the interpretation of probabilities and,
in particular, its interpretation in the classical or frequentist philosophy of
inference.

1.3 The intepretations of probability

To a pure frequentist, the only meaningful definition of probability of an event
is the frequency with which it occurs over a long sequence of independent
trials. Thus statements such as:

• the probability that a ’6’ is scored when a fair die is rolled is 1
6

• the probability that a ’H’ is uppermost when a fair coin is tossed is 1
2

would be perfectly meaningful to a frequentist because there is a clearly
defined, repeatable experiment in each case. The probability has an inter-
pretation as a frequency.

A frequentist would not recognize, for example:

• the ’probability’ that I voted Labour in the last election

• the ’probability’ that Lord Lucan is still alive

• the ’probability’ that Celtic will win the Scottish Premier League this
year

as true probabilities. These deal with propositions that must either be true
or false. There is no sequence of identical repeatable experiments for which
these probabilities are frequencies. For the last example, there is only 1 2004-
2005 football season. Even though the SPL is played every year, the teams
and their personnel change from year to year.

Most people would agree that these probabilities - which express the de-
gree of belief in a proposition regarding the world and are known as subjective
probabilities - are meaningful. For example, a bookmaker, when setting the
odds of Celtic winning the SPL this year, must consider his subjective prob-
ability that they will win. Nevertheless, for this course we will use only the
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frequentist interpretation of probability. The role of other interpretations
of probability in inference will be considered in later courses (Statistical In-
ference in 3rd Year).

Let’s go back to example 1, where we calculated a 95% CI for µB to be
(11.1, 12.8). The 95% must be interpretable as the frequency of occurrence
of some event over a sequence of independent trials. Which event? Which
experiment?

Here the repeatable experiment or trial is:

Sow 5 plots with the crop, fertilise them with fertiliser B and
measure the yield of each plot. (We assume that on any exper-
iment the observations Y1, Y2, ..., Y5 are drawn from a N(µB, 1)
where µB is unknown but is identical for all trials).

What is the event whose frequency in a sequence of identical experiments
is 0.95? Is it the event that µB ∈ (11.1, 12.8). No, it can’t be. Since µB never
changes then this event either has frequency 0 or 1. The event that occurs
with frequency 0.95 is:

The observed sample mean lies within ±1.96 1√
5

of the unknown
value µB.

Put another way, the frequency with which the CI we calculate will contain
µB is 0.95. The classical argument then goes that since the there is no
reason to think that our particular experiment is ’atypical’ then we can be
95% confident that CI (11.1, 12.8) contains the value µB. The difficult issue
of interpreting frequentist probabilities in inference will considered next year!

1.4 The main elements of frequentist (classical) infer-
ence

Having motivated things with a specific example, we now introduce the cen-
tral concepts of classical inference and the main terminology that we will use
throughout the rest of the module.

1.4.1 The experiment

At the heart of classical inference is the concept of an experiment. This
is a procedure that can be repeated independently many times where the
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outcome of the experiment is subject to uncertainty. We can usually think
of experiments as measuring some real-valued quantity, and therefore the
outcome of the experiment can be considered to be a random variable, X.
Typical examples of an experiment are:

• Select an individual randomly (with replacement) from a large popu-
lation and determine whether they carry a certain gene.

• Select a component randomly from a large population and measure the
lifetime.

• Observe the night sky and measure the time elapsed before the first
meteor appears.

1.4.2 The statistical model

The statistical model is simply the distribution that we assume for the ob-
servation X. Usually we shall specify the distribution using its probability
density function (p.d.f.) if the experiment yields a continuous measurement
such as a mass, a time, a height etc. or probability mass function (p.m.f.) if
the experiment measures a discrete quantity such as a count. In either case
we shall denote the p.d.f. or p.m.f. by fX(x).

In proposing a sensible statistical model we need to use our physical
intuition and judgement. For the first of the three experiments described
above we should suggest that X ∼ Bernoulli(p) where p is the proportion
of gene carriers in the population. For the second experiment we might
reasonably suggest that X ∼ Γ(α, β). The same choice could be made for the
3rd experiment, although a simpler model, X ∼ Exp(β) might be suggested.

The choice of model is an art in statistics - and data should always be
examined to see if it conforms to the selected model.

See lecture for typical distributions used to model experimental outcomes.
The statistical model is also referred to as the population distribution

of the measurement X. This is because we think of the outcome of the
experiment as a random draw from a very large population over which the
the probability function of X is given by fX(x).

Normally when we carry out an experiment we take more than just a sin-
gle measurement. We would repeat the ’basic’ experiment several times and
generate a sequence of measurements X1, X2, ..., Xn. In the above examples
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we might select n components randomly or measure the intra-arrival times
for n meteors.

When we take multiple measurements we can often (though not always
- see later) assume that the observations are independent random variables
all with distribution fX . We can therefore write down the multivariate p.d.f.
or p.m.f. of X = (X1, X2, ..., Xn) as

fX(x1, x2, ..., xn) = fX(x1)× fX(x2)× ...× fX(xn)

When we have independence of the measurements we refer to them as a
random sample of size n. This is equivalent to X1, X2, ..., Xn being i.i.d.
with probability function fX . In many, but not all, situations we encounter
in this course the experiment will consist of a random sample of size n from
some distribution.

1.4.3 Model parameters

Usually, although we might be sure of the family from which the distribution
of X comes, we don’t know what the distribution’s parameters are (p, α
and β above). The main point of doing the experiment is (usually) to find
out more about the parameters or some other fixed characteristic of the
population distribution such as its mean or variance. We call this process
estimation. In example 1 we wanted to estimate µA − µB to help us choose
between the 2 fertilizers.

Note that the moments of a distribution will be functions of its parame-
ters, so there is a close between estimating parameters and estimating pop-
ulation moments.

Exercise: make sure you know the mean and variance of the Gamma,
Exponential, Normal, Binomial, and Poisson distributions in terms of their
parameters.

We will exploit the relationship between parameters and moments when
we look at method-of-moments estimation later in the course.

1.4.4 Estimation

Now let’s consider the general situation where we carry out an experiment
that yields a random sample X1, ..., Xn from some population distribution
and we wish to use the data to estimate a quantity θ which could be a pop-
ulation moment (e.g. mean or variance) or a parameter. Since our estimate
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depends on the data, it must be some function of the random sample and we
can write it as

θ̂ = g(X1, ..., Xn)

We refer to θ̂ as an estimator of θ. The key thing to note is that, being a
function of X1, ..., Xn (which are all random variables) θ̂ is itself a random
variable (and will therefore vary from experiment to experiment).

Sometimes there will be a very natural choice for the function g. Suppose
we wish to estimate the population mean (usually called µ) from a random
sample X1, ..., Xn. Then a natural choice is the sample mean

µ̂ = g(X1, ..., Xn) = X̄ =

∑
Xi

n
.

Suppose we were asked to estimate the population variance σ2 from the
random sample. Then a natural estimator to use here would be the sample
variance:

σ̂2 = g(X1, ..., Xn) = S2 =
1

n− 1
{
∑

x2
i −

(
∑
xi)

2

n
}

What are the properties of X̄ and S2 that make them sensible choices
as estimators for µ and σ2 respectively? We examine this in the following
section.
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2 Properties of Estimators

We retain the notation of the last chapter. We conduct an experiment which
yields a random sample X1, ..., Xn from a population. We wish to estimate
some population quantity θ using an estimator θ̂ = g(X). How can we
decide whether this choice of estimator is sensible? In the next two sections
we consider two important properties that we can use.

2.1 Bias of an estimator

Remember that an estimator θ̂ = g(X) is a random variable. We refer to its
distribution as its sampling distribution. The sampling distribution of g(X)
tells us how g will vary over a large number of independent experiments,
and its properties will determine whether g(X) is a sensible estimator to
use. Thus it’s going to be important to be able to derive properties of the
distribution g from the population distribution FX .

Now if g(X) is a sensible estimator for θ then the values it typically takes
should be close to θ in some sense. If we conduct a number of identical
experiments and generate an estimate g(X) for each then the values should
be scattered around the true value of θ if the estimator is going to be any
use.

One measure used to characterise a ’typical’ or central value from a dis-
tribution is the expectation. If E(g(X)) were close to θ this might be seen
as a favourable property. This leads naturally the concept of bias. We define
the bias of an estimator (for θ) g(X) to be:

Bias(g(X)) = E(g(X)− θ).

We see that bias measures the difference between the expectation of g and
the thing it is meant to be estimating, θ. Bias can be negative or positive.
If Bias(g) = 0 then this means that the expectation of g is precisely θ and
we say that g is unbiased.

Example 2.1 Let us return to the estimation of the population mean µ
from random sample X1, ..., Xn. What is the bias of the estimator g(X) = X̄?
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Solution:

Note that this is true so long as the population mean µ exists - it doesn’t
matter what the precise form of the distribution FX is. A harder problem is to
show that the sample variance, S2 is an unbiased estimator of the population
variance σ2. This is a question on the tutorial sheets.

Sometimes we know more about the distribution of the sample mean than
merely its expectation. If the values in our random sample have a normal
distribution, Xi ∼ N(µ, σ2) then the sample mean X̄ ∼ N(µ, σ

2

n
).

Suppose now our observations X1, ..., Xn were a random sample from a
Γ(α, β) distribution. (This could arise if our observations were lifetimes of
components or survival times of individuals.) Can you identify the precise
form of the distribution of X̄ in this case? (Hint: It’s another Gamma
distribution, but what are the parameters.)

Bias is not the whole story. Just because an estimator is unbiased it
doesn’t have to be useful. Consider the following picture that shows the
values of 10 independent estimates of θ, for each of 3 different estimators
g1(X), g2(X), g3(X).
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Rank the estimators in order of usefulness.
It follows that an estimator that is unbiased could be of little value while

one that is biased could actually be very useful. We need to consider other
characteristics of estimators that are a better guide to how useful they are
in practice.

2.2 Mean square error and efficiency

Whenever we use calculate an estimate g(X) of the θ there will be some
random error (equal to g(X) − θ). For a good estimator the magnitude
of this random error should be small on average. We could quantify how
accurate g(X) is by looking at E(|g(X) − θ)|) but the modulus function is
not particularly nice to work with when trying to calculate expectations. A
better measure to work with is the mean square error (MSE) of g(X). This
is defined to be

MSE(g(X)) = E((g(X)− θ)2)

Note that if g(X) is unbiased then E(g(X)) = θ so that MSE(g(X)) =
V ar(g(X)). There is a particular instance of a general rule that states that

MSE(g(X)) = Bias2(g(X)) + V ar((g(X)).

You are asked to prove this in the tutorial sheets.
Example. We have seen that sample mean X̄ is an unbiased estimator

of the population mean µ. What is its MSE? It follows from the equation
above that MSE(X̄) = V ar(X̄) = σ2

n
. (You should be able to prove this!!)

Can we work out the mean-square error of S2 as an estimator for σ2. Yes,
but we require to know something about higher order population moments
(see Tutorials.)

We can use the MSE as a measure to compare different estimators. If
g1(X) and g2(X) are estimators of θ then we say that g1 is more efficient that
g2 if MSE(g1) ≤ MSE(g2) for all θ. To illustrate the concept of efficiency
consider a random sample (X1, X2) from a population with mean µ and
variance σ2. Now consider the following two estimators g1(X1, X2) = X̄ and
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g2(X1, X2) = X1

3
+ 2X2

3
as estimators of µ. Clearly both of these are unbiased

(E(g1) = E(g2) = µ.) It follows that MSE(g1) = V ar(g1) = σ2

2
. What

about MSE(g2)?

MSE(g2) = V ar(g2) =
σ2

9
+

4σ2

6
=

5σ2

9
> MSE(g1).

From this we see that g1 is more efficient that g2. This is not always the case.

2.2.1 Example

In an experiment a bacteriologist must measure the temperature, θ of a
growth chamber. He has two thermometers of differing quality. The first
returns a random quantity T1 = θ + E1 where E1 is a random error with
mean zero and variance σ2

1. The second returns T2 = θ + E2 where E2 has
zero mean and variance σ2

2. Suppose further that E1 and E2 are independent.
He decides to combine the two measurements via the estimator:

θ̂ = aT1 + (1− a)T2

where a ≥ 0. How should a be chosen to give the most efficient estimator of
this form?

Solution. We need to calculate the MSE of θ̂ as a function of a. Now, for
all a, E(θ̂) = θ (check this!!). Therefore (using MSE = Bias2 + V ar) we
have that

MSE(θ̂) = V ar(θ̂) = a2σ2
1 + (1− a)2σ2

2

= a2(σ2
1 + σ2

2)− 2σ2
2a+ σ2

2.

This is a quadratic in a and is minimised when

a =
σ2

2

σ2
1 + σ2

2

.

Therefore, as σ2
2 increases relative to σ2

1 the weight assigned to T1 in our
estimate increases.

Suppose now that the bacteriologist considers a more general estimator
of the form θ̂ = aT1 + bT2, where a + b doesn’t have to be equal to unity.
This means that θ̂ might be biased. Find:

• the bias of θ̂ as a function of a and b;
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• the MSE of θ̂ as a function of a and b;

• the values of a and b which minimise the MSE.

Solution. It is straightforward to show that

Bias(θ̂(a, b)) = θ(a+ b− 1)

and that
V ar(θ̂(a, b)) = a2σ2

1 + b2σ2
2

Using MSE = Bias2 + V ar we can show that

MSE(θ̂(a, b)) = a2σ2
1 + b2σ2

2 + θ2(a+ b− 1)2.

This is a quadratic function of a and b. We can use standard techniques from
multivariate calculus to show that it has a mimimum value at

a∗ =
θ2σ2

2

(σ2
1σ

2
2 + θ2(σ2

1 + σ2
2))

b∗ =
θ2σ2

1

σ2
1σ

2
2 + θ2(σ2

1 + σ2
2)

Note that this solution gives us a biased estimator since a∗ + b∗ < 1 for any
value of θ. This choice of a and b will give a smaller MSE than the optimal
unbiased estimator. There are two things to note here:

• the values a∗ and b∗ depend on θ which is unknown (that’s why you’re
doing the experiment!)

• if θ is large in comparison to σ2
1 and σ2

2 then there will be little differ-
ence between the optimal estimator (defined by a∗, b∗) and the optimal
unbiased estimator. (See tutorial sheets for further discussion of this.)

Note: The second derivative test in 2 dimensions
Suppose that f : R2 → R is a twice continuously differentiable function

and that f(x, y) has a critical point at (x0, y0).

• (1) If

d2

dx2
f(x0, y0)

d2

dy2
f(x0, y0)−

(
d2

dxdy
f(x0, y0)

)2

> 0

then either d2

dx2f(x0, y0) and d2

dy2f(x0, y0) are both positive or both nega-
tive.
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• Furthermore, if d2

dx2f(x0, y0) > 0 (or d2

dy2f(x0, y0) > 0) then f(x, y) has a

LOCAL MINIMUM at (x0, y0). If d2

dx2f(x0, y0) < 0 (or d2

dy2f(x0, y0) < 0)

then f(x, y) has a LOCAL MAXIMUM at (x0, y0).

• (2) If

d2

dx2
f(x0, y0)

d2

dy2
f(x0, y0)−

(
d2

dxdy
f(x0, y0)

)2

< 0

then f(x, y) has a SADDLE POINT at (x0, y0).

• (3) If

d2

dx2
f(x0, y0)

d2

dy2
f(x0, y0)−

(
d2

dxdy
f(x0, y0)

)2

= 0

then the test is inconclusive

2.3 Consistency

In essence, an estimator is consistent if the larger the size of the random
sample, the better the estimate is. However, we need to express this idea
mathematically. Suppose X is a random sample of size n ang g(X) is an
estimator of θ. Then we say that g is consistent if, for all δ,

lim
n→∞

P (|g(X)− θ| > δ) = 0.

Put another way this means that as n increases the probability that the
modulus of your error is bigger than δ tends to 0 (for any δ). Clearly, the
smaller you make δ then the larger n would need to be to ensure, say, 99%
probability of having an error smaller than δ.

To show that an estimator is consistent from the above definition looks a
but tricky. However we can use Tchebychev’s inequality to relate consistency
to the MSE.

Since

P (|g(X̄)− θ| > δ) <
E(g(X)− θ)2)

δ2
=
MSE(g(X))

δ2

by T’s Inequality, it follows that g is consistent if we can show thatMSE(g(X)))→
0 as n→∞. Equivalently (since MSE = V ar+Bias2) we just need to check
that the bias and variance of an estimator both tend to zero as the sample
size increases.
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2.3.1 Example

For a random sample X of size n from a population with mean µ and variance
σ2 the sample mean X̄ is a consistent estimator of µ. Why?

.

2.4 Most efficient estimators and the Cramer-Rao Lower
Bound (CRLB)

How can we decide whether or not a give estimator g(X) is the most efficient
possible (i.e. the one with the smallest MSE)? In general this is very difficult
to do. However, we are sometimes able to do this for the particular case of
an unbiased estimator.

2.4.1 The Cramer-Rao Lower Bound

Let X be a random sample of size n from a distribution with pmf or pdf
fX(x; θ), parameterised by θ. Suppose that:

• g(X) is an unbiased estimator for θ;

• the range of X does not depend on θ.

Then

V ar(g(X)) ≥ 1

nE[(∂ log(fX(X;θ)
∂θ

)2]
= − 1

nE[∂
2 log(fX(X;θ)

∂θ2 ]

This gives a way of testing whether or not a given unbiased estimator
might be the most efficient unbiased estimator. Its proof will be encountered
later in 3rd year. In the meantime we illustrate its use with a simple example.
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2.4.2 Estimating a bionomial proportion

A gambler is concerned that a coin may not be fair and conducts an ex-
periment to estimate the probability p ∈ (0, 1) of obtaining a head (H) in
which he tosses the coin m times. He considers the outcome of this experi-
ment as a random sample X = (X1, X2, ..., Xn) of size m from a Bernoulli(p)
distribution where Xi = 1 if the ith toss results in ’H’ and is 0 otherwise.

Is there an obvious estimator for p? Yes, let p̂ = g(X) =
∑
Xi
m

(i.e. the
number of heads over the total number of tosses). We now consider the
following questions.

• Find the bias, variance and MSE of p̂.

• Is p̂ a consistent estimator?

• is p̂ the most efficient estimator of p?

See lectures for solutions:

2.5 Simple random samples from finite populations

Up until now we’ve looked at mainly random samples where the observations
are i.i.d.. Independence of measurements cannot always be guaranteed. One
situation where dependence naturally arises is when our experiment involves
taking a simple random sample of size n without replacement from a popu-
lation of size N , and measuring some property of each Y . We assume that
all subsets of size n are equiprobable to be chosen. Suppose the n values are
Y1, Y2, ..., Yn. Now, the Yi all have the same marginal distribution. (What
is this?) Why are they not independent random variables?

Suppose that we wish to use the sample to estimate the population mean:

µ =
1

N

n∑
1

yi

Then a natural estimator to consider is Ȳ = 1
n

∑
Yi. Since E(Yi) = µ it

follows (check this!) that Ȳ is unbiased. However, as we see, its MSE is not
equal to σ2

n
where

σ2 = V ar(Yi) =
1

N

N∑
1

(yi − µ)2.
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To work out the MSE we need to be able to calculate the variance of Ȳ over
repeated sampling. This is done as follows.

V ar(Ȳ ) = E((Ȳ − µ)2)

=
1

n2
E[(

n∑
j=1

(Yj − µ))2]

=
1

n2
(
n∑
j=1

V ar(Y1) +
∑
j1 6=j2

∑
Cov(Yj1 , Yj2))

=
1

n2
(nV ar(Y1) + n(n− 1)Cov(Y1, Y2))

Now

Cov(Y1, Y2) =
1

N(N − 1)

∑
j1 6=j2

∑
(yj1 − µ)(yj2 − µ)

Note that
N∑
i1=1

N∑
i2=1

(yi1 − µ)(yi2 − µ) = 0

This implies that

Cov(Y1, Y2) =
1

N(N − 1)

∑
j1 6=j2

∑
(yj1 − µ)(yj2 − µ) = − 1

N − 1
V ar(Y1).

It follows that

V ar(Ȳ ) =
1

n
(1− n− 1

N − 1
)V ar(Y1)

= (1− n− 1

N − 1
)
σ2

n

=
(N − n)

(N − 1)

σ2

n

Since Ȳ is unbiased this gives us the MSE also. We can see that MSE is
less than that which we would get if we carried out random sampling with
replacement. If we replace then the observations are independent and the
MSE is σ2

n
as before. Note.

• The factor N−n
N−1

is sometimes referred to as the finite population correc-
tion factor.
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• If N is very large compared to n then this factor is close to 1. Moreover,
Cov(Y1, Y2) is close to 0 in this case. When we are taking a sample from
a very large population, then we can treat the observations as being
independent.

A good example of where this arises is in opinion polls. Suppose we se-
lect 1000 people randomly without replacement from a population of several
million and ask them whether they intend to vote Conservative in the next
election. Let the observations be Y1, ..., Y1000 where Yi = 1 if they intend to
vote Conservative and 0 otherwise. Then, Yi ∼ Bernoulli(p) where p is the
proportion of Conservative voters in the whole population. Since N is large
compared to n we can assume that the Yi are independent in which case
the sum of the Yi (i.e. the number of Conservative voters in the sample) is
Bin(1000, p).
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3 Constructing estimators

We’ve looked at properties of some estimators without describing a system-
atic approach to constructing them. In this section we will look at some
ways of constructing estimators. The first of these has been met before (if
you did Statistics II!). This is what we call method of moments estimation.
The second approach is very different (even though it may lead to the same
estimator in some situations) and is called maximum likelihood estimation.

3.1 Method of moments estimation (MME)

Consider an experiment that yields an i.i.d. set of observations X1, ..., Xn

from a distribution with density or mass function fX(x; θ), where θ is un-
known. We will often consider cases where θ is a 1-dimensional vector. Some-
times it will be a vector that has more than a single component. For example
if X ∼ Γ(α, β) then the dimension of θ = (α, β) is 2. How does MME operate
in order to come up with an estimate for θ? Put simply it estimates θ so
as to make the moments for the values in the sample match the ’theoretical’
moments of the population distribution. It is best seen by example.

3.1.1 Estimating p for the coin-tossing experiment

Recall that the results of the experiment in which a coin was tossed n times
gives a random sample X1, ..., Xn from a Bernoulli(p) distribution (where a

’H’ is signified by Xi = 1. The obvious estimator is p̂ = g(X) =
∑
Xi
n

. How
could we have derived this systematically using MME. For the Bernoulli(p)
distribution, the first moment is:

E(X) = µ(p) = p.

We equate this ’population’ moment to the sample mean, X̄ =
∑
Xi
n

and
solve for the parameter p to obtain the estimator

p̂ = X̄

More generally the method of moments estimator for a 1-dimensional
parameter θ is found by solving the equation

µ(θ) = X̄
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3.1.2 MME for λ in Exp(λ) distribution

You believe that the lifetime of a certain kind of lightbulb follows an Exp(λ)
distribution, where λ is unknown. To estimate λ you randomly select n
lightbulbs and measure their lifetimes. Call these X1, ..., Xn. What is the
MME for λ. To obtain the MME we must identify the population mean, set
it equal to the sample mean and solve for λ. This gives

µ(λ) =
1

λ
= X̄.

From this it follows that the MME for λ is given by

λ̂ =
1

X̄

In the two examples above we have constructed the method-of-moments
estimator for a parameter. In other words it is a random variable which
can be expressed as a function of the values in the random sample. When
we carry out the experiment, we obtain the observed values x1, . . . , xn and
plug these values into the expression for the MME to obtain the estimate for
our experiment. In classical statistics it is vital to recognise the distinction
between random variables that vary from experiment to experiment, and
the realised values for a particular experiment. The former are denoted
by upper case letters (Xi), and the latter by lower case (xi). All frequentist
probabilities relate to the former and are not to be considered as probabilities
conditional on the realised values.

3.1.3 MME for more than a single unknown parameter

When there is more than a single unknown parameter we can still do method
of moments estimation. However it cannot be done by just solving a single
equation. Suppose that instead of the Exp(λ) distribution, you believe that
the light-bulb lifetimes are distributed as a Γ(α, β) distribution. (N.B. This
is a generalisation of the exponential case since Exp(λ) ∼ Γ(1, λ).) We can
do this by MME but we need to find two simultaneous equations in α and β
to solve. To do this we will need to consider moments of higher order than
just the 1st. For the Gamma distribution we have:

E(X) = µ(α, β) =
α

β

V ar(X) = σ2(α, β) =
α

β2
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We can generate equations for the MME estimators (α̂, β̂) using the sample
mean and variance X̄ and S2. That is, we solve

X̄ =
α

β

S2 =
α

β2

for α and β.
You can check (see tutorial sheet) that this give MMEs

α̂ =
X̄2

S2

β̂ =
X̄

S2

More generally we can do method-of-moments estimation for distributions
that have arbitrarily many parameters. Suppose our unknown parameters
are θ = (θ1, θ2, . . . , θk). Then we would need k simultaneous equations in
order to solve for the parameters. Therefore we consider all moments up to
order k and equate the kth sample moment with the kth population moment.
This generates k simulataneous equations of the form

1

n

∑
Xr
i = µr = E(Xr), r = 1, . . . , k

which we then solve to get the estimators. Equivalently we could work with
central moments E(X − µ)r equated with their sample values. In ths course
we shall not consider k greater than 2, in which case it is sufficient to work
with the sample mean and variance as above.

3.1.4 Disadvantages of method of moments

While the method of moments has many advantages (it’s generally simple to
apply) it also has some disadvantages. In particular, in some circumstances it
can give results that are clearly nonsensical. Consider the following example.
Example Suppose that you conduct an experiment in which you observe
X1, ..., Xn where the Xi are i.i.d. from a U(0, θ), where θ > 0. Find the
MME of θ.
Solution. Since we know that E(X) = θ

2
it’s straightforward to obtain the

MME as θ̂ = 2X̄. Now suppose that for the particular experiment n = 3
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and (X1, X2, X3) = (0.1, 0.2, 0.9). Then in this case we would obtain θ̂ =
2x̄ = 0.8. However, the data are not consistent with this value of θ. In
particular, we cannot have a value of 0.9 as an observation from the U(0, 0.8)
distribution.

It is also the case that MME’s may not always be particularly efficient.
For θ̂ = 2X̄ we can show (you should do this for yourself!) that MSE(θ̂) =
θ2

3n
. It follows that the MSE decreases like n−1 as the sample size n increases.

Later we will discuss an alternative approach that gives an estimator whose
MSE decreases more rapidly with n.

A discrete example Suppose that an insurance company records the numbers
of claims made on a given class of policy over a number of years. For the data
the sample mean and variance are 12.5 and 10.0 respectively. You believe
that the number of claims varies from year to year as a Bin(n, p) with n and
p unknown.

To estimate n and p using MME we equate the sample mean and variance
with the binomial mean and variance to obtain:

np = 12.5

np(1− p) = 10.0.

Solving these gives p̂ = 5
25

and n̂ = 62.5. Of course we should round the
latter estimate to 62 or 63 since n is constrained to be an integer.

What would have happened if the sample mean and variance had been
12.5 and 16.0 respectively? In this case when you solve the equations you
will get nonsensical answers (p̂ = −0.28)! Since the variance of the binomial
cannot be greater than the mean, then when we apply MME to data where
the sample variance is bigger than the sample mean we come unstuck! When-
ever you come across discrete data where this is the case then it probably
does not come from a binomial distribution. If the sample mean and sample
variance are approximately equal then the Poisson distribution is a possible
choice.
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3.2 Likelihood and Maximum Likelihood Estimation

In this section we introduce one of the key concepts in statistics - the like-
lihood. We illustrate it with an example. Suppose I have 2 biased dice.
For die number 1, the frequencies with which the numbers 1 to 6 arise are,
respectively:

0.1, 0.1, 0.1, 0.1, 0.1, 0.5.

For die number 2, the frequencies are:

0.5, 0.1, 0.1, 0.1, 0.1, 0.1.

I roll one of the dice and score a 6. Which die do you think I rolled?
This is an example of estimating an unknown parameter (the number of

die rolled) from data (the score on the roll). Most people would guess that
the die rolled was number 1, since that yields a 6 with probability 0.5, while
the other die only yields a 6 with probability 0.1. Put another way, the score
6 is much more likely if the chosen die is number 1, compared with number
2. This in essence is the idea underlying maximum likelihood estimation of a
parameter θ from an experiment. We estimate θ to be the value that makes
the data most likely.

3.2.1 The likelihood.

We introduce the ideas in a very general way before illustrating them for
particular examples. Suppose we carry out an experiment which can give
various outcomes with probabilities governed by an unknown parameter θ.
Suppose in our particular experiment we observe data y. Then the likelihood
is a function which takes all the possible parameter values θ and is defined
to be:

L(θ; y) = Pr(y|θ).

In other words is tells us how ’likely’ the data are for different values of
θ. It is important to stress that we will be interest in how L(θ; y) varies
with θ - the experimental observations y will typically be fixed. Calculating
likelihoods will require you to be familiar with the rules of probability, the
use of probability functions and cumulative distribution functions. Having
constructed a likelihood, we obtain the maximum likelihood estimate of θ as
the value of θ that maximises the likelihood.
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3.2.2 Likelihood for i.i.d. observations from a discrete distribu-
tion

We begin with the case where our experiment produces observations Y1, ..., Yn
where the Yi are i.i.d. samples from as discrete distribution with probability
mass function fY (y; θ). Suppose the realised values in the experiment are
y1, . . . yn. The construction of the likelihood is straightforward here. We
have

L(θ; y) = Pr(Y1 = y1, Y2 = y2, . . . , Yn = yn|θ)
= fY (y1; θ)× fY (y2; θ)× · · · × fY (yn; θ)

=
n∏
i=1

fY (yi; θ)

The above joint probability decomposes as a product since the observations
are all independent of each other. Having obtained the likelihood we obtain
the MLE by maximising L(θ) with respect to θ. This will require us to use
basic calculus. Often it is more convenient to maximise the logarithm of the
likelihood

l(θ; y) = log(L(θ; y) =
n∑
i=1

log(fY (yi; θ)).

Note that since log is a monotonic increasing function, the value of θ that
maximises l(θ) also maximises L(θ) and vice versa.

We illustrate this now for some basic examples.
Example. A gambler tosses a coin n times and records the outcome of each
toss in order to estimate the unknown probability of a H, p ∈ (0, 1). Suppose
that r of the tosses results in ’H’. He supposes that the results of the tosses are
independent events and that the probability of ’H’ is the same for each toss.
Let y denote the observations, so that y is sequence of length n consisting of
r H’s and n− r T’s. It follows that

L(p; y) = pr(1− p)n−r.

Now the log-likelihood is given by

l(p; y) = r log p+ (n− r) log(1− p).

Differentiating with respect to p and equating to zero gives

dl

dp
=
r

p
− n− r

1− p
= 0.
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When we solve for p we obtain

p̂ =
r

n
.

You should also check that this value of p gives a maximum of the log-
likelihood. This can be done by evaluating the 2nd derivative with respect
to p:

d2l

dp2
= − r

p2
− n− r

(1− p)2
< 0,∀p ∈ (0, 1).

This means that p̂ = r
n

is indeed the maximum likelihood estimate of p.
Note. The maximum likelihood estimator is R/n where R is the random

variable denoting the number of H’s in n trials. R follows a Bin(n, p) dis-
tribution and we can use this fact to work out its sampling properties (e.g.
bias and MSE).

We see that for this example, the MLE is exactly the same as the MME
calculated earlier.
Example. An astronomer counts the number of meteors in a section of the
night sky for n consecutive nights obtaining data x1, . . . , xn. She believes
that these values are a random sample (i.i.d.) from a Poisson(λ) distribution
where λ is unknown. What is the MLE of λ?
Solution It is again simple to construct the likelihood since the observations
are assumed to be i.i.d.. We have

L(λ) =
n∏
i=1

fX(xi) =
n∏
i=1

e−λλxi

xi!
=
e−nλλ

∑
xi∏

xi!

Taking the log, differentiating, equating to zero and solving for λ, we obtain

λ̂ =

∑
xi
n

= x̄.

We again see that the MLE of λ is the same as we would obtain using method
of moments. This is not always the case (see later examples).
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3.2.3 Likelihood for i.i.d. observations from a continuous distri-
bution

Suppose now our experiment consists of i.i.d. observations X1, . . . , Xn from
a continuous distribution with density function fX(x; θ). This would be the
case if our experiment involved measuring lifetimes of people or components,
weights, event times etc. etc.. How do we construct the likelihood in this
case. At first sight there is a problem. If we assume that our observations are
measured to arbitrary high precision (an infinite number of decimal places),
then the ’probability of the data’ is equal to zero for any θ. However let’s
suppose that we can only measure a physical quantity to some finite precision
(i.e. within ± δ

2
) for some δ and that we observe the values x1, . . . , xn. Then

we consider this event as A = A1 ∩ A2 ∩ · · · ∩ An, where Ai is the event
Xi ∈ (xi − δ

2
, xi + δ

2
). Since the Xi are independent random variables then

the Ai are a set of pairwise independent events. Moreover we have

P (Ai) ≈ fX(xi; θ)δ.

It follows that, since the likelihood as the probability of the data given θ,

L(θ;x) ≈ Pr(A|θ) =
n∏
i=1

fX(xi; θ)δ
n,

with the approximation becoming increasingly accurate as δ decreases (i.e.
the precision increases). Now, the positive factor δn does not depend on θ
and has no bearing on the value of θ that maximises L(θ). Therefore, we can
omit it from the the above expression and define our likelihood to be

L(θ;x) =
n∏
i=1

fX(xi; θ).

3.2.4 MLE for the λ in Exp(λ)

Suppose we observe X1, ..., Xn i.i.d. from an Exp(λ). What is the MLE of
λ? The p.d.f. is fX(x;λ) = λe−λx. For given x = (x1, ..., xn), the likelihood
is

L(λ) =
n∏
i=1

fX(xi;λ) = λne−λ
∑
xi

Taking logs and maximising you should find that the maximum likelihood
estimate is λ̂ = 1

x̄
. This is a question in the tutorials. How does this estimate

compare with the method-of-moments estimate?
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3.3 Calculus won’t always help you.

Up until now we’ve looked at likelihoods that can be maximised using meth-
ods from calculus. However, in some situations alternative approaches are
necessary. Consider the case where we observe X1, ..., Xn from a Uniform(0,
θ) distribution, where θ > 0. What is the MLE of θ? Well, we know that
f(x; θ) = 1

θ
,if 0 < x < θ, and is 0, otherwise. Now the likelihood function is

given by

L(θ) =
n∏
i=1

f(xi; θ).

So long as θ > xi for all i then the right-hand-side of this equation will be
equal to 1

θn
. However, if xi ≥ θ then the factor fX(xi; θ) vanishes in the

likelihood in which case the whole product is zero.
It is easy to find the value of θ that maximises L if we graph the likelihood

function:

It follows that the maximum likelihood estimator of θ is

θ̂ = X(n) = max{X1, X2, ..., Xn}.

Problem: Find the Bias and MSE of the MLE for θ. Compare your results
with the corresponding ones for the MME. Which estimator do you think is
better?

Solution: The main steps are

• Find the sampling distribution of θ̂ = X(n) = max{X1, X2, ..., Xn}.

• Then obtain its mean and variance to calculate the Bias and MSE.
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4 Likelihood estimation continued

4.1 Practical sampling situations

Maximum likelihood estimation is very flexible as we can use it whenever we
can construct a likelihood for the observations we obtain in our experiment.
Remember that we can think of the likelihood L(θ;x) (loosely) as being the
probability of the obervations, x as a function of the parameter(s) θ.

In the examples we’ve seen so far the observations have taken the form of
random samples X1, ..., Xn where the Xi are discrete or continuous random
variables. There are many practical situations that do not conform to such
a simple sampling model and we need to use our skills in probability to
construct likelihoods in these cases also.

4.1.1 An example of censored observations.

The lifetimes (in months) of a certain brand of lightbulbs are believed to
follow an Exp(λ) distribution where λ is unknown. To estimate λ you take a
random sample of 20 bulbs and set them in continuous operation at t = 0.0
and subsequently measure the times at which each bulb fails. You have
promised to give your estimate of λ no later than 2 months after the start
of the experiment. At the end of the 2 month period, 10 bulbs have failed
at times t1, t2, ..., t10 with

∑10
i=1 ti = 7.3. The remaining 10 bulbs are still

operational. Can we construct a likelihood and estimate λ?

Solution. We assume that the lifetimes of bulbs in the sample are independent
of each other. Therefore, ’the probability of the data given λ’ naturally can
be represented as a product of factors - one corresponding to the experimental
result for each of the 20 bulbs. For the bulbs failing at ti < 2 months,1 ≤
i ≤ 10, the probability is fX(ti;λ)δ = λe−λtiδ. Here δ represents the finite
precision to which the times are measured. It can be omitted from the
likelihood since it doesn’t depend on λ.

Now for a bulb which doesn’t fail, the probability of the observation is
the probability that a lifetime exceeds 2 months, i.e.:

P (X > 2) = 1− FX(2;λ) = 1− (1− e−2λ) = e−2λ

27



Each bulb surviving the 2-month period contributes a similar factor to the
likelihood. Therefore we obtain as our likelihood:

L(λ) =
10∏
i=1

λe−λti ×
20∏
i=11

e−2λ = λ10e−λ(20+
∑
ti)

Taking logs we obtain the log-likelihood:

l(λ) = 10 log(λ)− λ(20 +
∑

ti).

Differentiating and equating to zero (you should be able to do this!!) we find
that this is maximised by

λ̂ =
10

(20 +
∑
ti)
.

This answer is intuitively plausible. The denominator is the total number
of months for which bulbs were operational during the experiment. There-
fore the estimate of λ has the form (number of failures)/(total months of
operation) and seems a natural estimator of a failure ’rate’.

4.2 Invariance of MLEs under 1-1 transformations

There is a very useful property of maximum likelihood estimators that we can
sometimes exploit to simplify the problem of finding the MLE of a parameter.
Let φ = h(θ) be a 1-1 mapping. Then we could parameterise our model in
terms of φ instead of θ. (For example, sometimes you will see the exponential
distribution parameterised using the mean µ = 1

λ
.) Now if θ̂ is the MLE of

θ then it follows that the MLE of φ satisfies

φ̂ = h(θ̂).

How can this simplify things? Well let’s go back to the light bulb ex-
periment of the last section and suppose that you don’t measureany times
precisely but only whether each bulb is operational at t = 2, noting that 10
out of the 20 have failed before this time. For this experiment, the oberva-
tions can be considered to be a random sample from a Bernoulli(p) distribu-
tion (with ’1’ denoting the event that a given bulb survives beyond t = 2).
The parameter p is related to λ by p = e−2λ, this being the probability of a
random lifetime exceeding 2 months.
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Now it is easy to check that the MLE of p is p̂ = 1
2
. By the invariance

of MLEs under 1-1 transformation, we have that p̂ = e−2λ̂ in which case we
have that λ̂ = − log p

2
.

4.3 MLEs for parameters in Normal distribution.

Suppose that X is a random sample of size n from N(µ, σ2). What are the
MLEs for µ and σ2?

The likelihood function is given by

L(µ, σ2) =

(
1√

2πσ2

)n
exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)

logL(µ, σ2) = −n log(
√

2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

Differentiate the log-likelihood function with respect to µ and σ2 to get
the following system of equations:

d

dµ
logL(µ, σ2) =

1

σ2

n∑
i=1

(xi − µ) = 0 (1)

d

dσ2
logL(µ, σ2) =

−n
2σ2

+
1

2σ4

n∑
i=1

(xi − µ)2 = 0. (2)

The first of these equations can be solved to get µ̂ = X̄.
Next, substitute the estimate X̄ for µ into the second equation, and solve

for σ2.
We get σ̂2 = 1

n

∑n
i=1(Xi − X̄)2.

Q. Is logL(µ, σ2) maximized at µ̂ = X̄, σ̂2 = n−1
n
S2?

Since logL(µ, σ2) is a function of two variables, we have to check various
conditions of the 2-dimensional 2nd derivative test: We now apply this test.
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Note that:

d2

dµ2
logL(µ̂, σ̂2) =

−n
σ̂2

< 0

d2

d(σ2)2
logL(µ̂, σ̂2) =

n

2σ̂4
− 1

σ̂6

n∑
i=1

(xi − x̄)2 =
n

2σ̂4
− nσ̂2

σ̂6
=
−n
2σ̂4

< 0

d2

dµdσ2
logL(µ̂, σ̂2) = − 1

σ̂4

n∑
i=1

(xi − x̄) = 0

Therefore,

d2

dµ2
logL(µ̂, σ̂2) · d2

d(σ2)2
logL(µ̂, σ̂2)−

(
d2

dµdσ2
logL(µ̂, σ̂2)

)2

=
n2

2σ̂6
> 0.

So, L(µ, σ2) is maximized at µ̂ = X̄, σ̂2 = n−1
n
S2, and this is an absolute

maximum (since there is only one critical point).
Note that the MLE of σ2 is biased (since E(S2) = σ2).

4.3.1 Another example with censored observations

Suppose that a random sample of size n is taken from the normal distribution,
N(µ, 1), but only the signs of the observations are recorded.

Q. If k observations are negative (and n− k are positive), what is the MLE
for µ?

We can find the MLE provided we can write down the likelihood function.
If x ∼ N(µ, 1), then the probability that X is negative is given by

P (X < 0) = P (
X − µ

1
< −µ) = P (Z < −µ) = Φ(−µ)

where Z ∼ N(0, 1) and Φ(x) is the distribution function for the standard
normal distribution. Therefore,

L(µ) = L(µ;x1, x2, ..., xn) = (Φ(−µ))k(1− Φ(−µ))n−k

l(µ) = k log(Φ(−µ)) + (n− k) log(1− Φ(−µ))

d

dµ
l(µ) =

−kφ(−µ)

Φ(−µ)
+

(n− k)φ(−µ)

1− Φ(−µ)
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Solve d
dµ
l(µ) = 0 to get Φ(−µ) = k

n
.

Therefore, µ̂ = −Φ−1( k
n
). (Need to check that logL(µ) is maximized at

µ̂ = k/n.)

To actually find the numerical value of µ̂ you need to use tables.

Example: If n = 10, k = 4, then µ̂ = 0.25.

4.4 Numerical methods

For the examples that we’ve seen likelihoods and log-likelihoods can be max-
imised using analytic methods - (calculus, or considering graphs etc.). How-
ever this won’t always work. Consider the following (highly artificial) exam-
ple.

Consider a population of sealed boxes each containing a random number
of lead weights, X, where X ∼ Poisson(λ). If a box contains 2 or more
weights it will sink in water. Otherwise it will float. You select a random
sample of 10 boxes, 5 of which float. What is the MLE of λ?

Solution. The MLE satisfies then equation

2(1 + λ̂)e−λ̂ − 1 = 0.

See lecture notes for a derivation of this.
Now this equation cannot be solved analytically. We require to use a

numerical algorithm to obtain the solution.

4.4.1 Newton-Raphson algorithm

The Newton-Raphson algorithm is a simple way of finding the root of an
equation of the form f(x) = 0 where f is differentiable, given an initial guess
of the root, x0. The idea is to suppose that the graph of f approximates to
a straight line in a neighbourhood of the root and use this to come up with
an improved guess x1. It is best understood from the following diagram:
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From the diagram we have that

x1 = x0 −
f(x0)

f ′(x0)
.

Now we can apply the same procedure to x1 to obtain an even better guess.
In this way we can generate a sequence of estimates x1, x2, . . . , xi, . . . where

xi+1 = xi −
f(xi)

f ′(xi)
.

We repeat the process until the values of xi converge.
Now let’s do this for the ’boxes’ example. We need to solve f(λ) = 0

where f(λ) = 2(1 + λ)e−λ − 1. Now f ′(λ) = −2λe−λ and we obtain the
recursion:

λi+1 = λi +
2(1 + λi)e

−λi − 1

2λie−λi
.

We also need an initial guess. Now since 5 of the observed values of X
are less than or equal to 1, and the other 5 are greater than or equal to 2
we could guess that the mean is around 1.5. Since the mean of the Poisson
is λ then λ0 = 1.5 might not be a bad guess. This gives the sequence of
estimates:
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The Newton-Raphson algorithm is fairly flexible. So long as the initial
guess is sufficiently close to the root it will ultimately find it. There are
several tutorial problems where the algorithm is used.

4.5 Important properties of likelihood.

Here we summarise some of the important properties of likelihood that make
a very useful tool for constructing estimators.

1. If there exists a most efficient unbiased estimator for a parameter θ that
attains the Cramer-Rao lower bound, then it must be the Maximum
Likelihood Estimator (MLE). Therefore if we are trying to find a ’good’
estimator for θ then it makes sense to try and find the MLE.

2. Maximum likelihood estimation can be applied whenever we are able
to write down the likelihood (i.e. ’the probability of the observations
given θ’). It is in the construction of likelihoods that your skills in
probability theory are vital!

3. When the equation
dl

dθ
= 0

cannot be solved analytically we can nevertheless use numerical meth-
ods to solve it and identify the maximum likelihood estimates.

4. MLEs are invariant under 1-1 transformations. That is to say if h is a
1-1 mapping and θ̂ is the MLE of θ then h(θ̂) is the MLE of h(θ).

5. Asymptotic distribution of the MLE. Suppose the data X1, ..., Xn are
a random sample from a distribution whose range does not depend on
the parameter θ. Then it is (usually) the case that θ̂ is approximately
normally distributed with mean θ, and variance equal to the Cramer-
Rao Lower Bound, so long as the sample size n is large. This means
that MLEs are asymptotically normal, unbiased and most efficient.
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