
1 Introduction

Exercises and outline solutions

1. Y has a pack of 4 cards (Ace and Queen of clubs, Ace and Queen
of Hearts) from which he deals a random of selection 2 to player X.
What is the probability that X receives both Aces conditional on them
receiving at least 1 Ace. Suppose now that Y deals X two cards from
the pack of 4, after which X says “I have an Ace”.

(a) Discuss whether the above information is sufficient to calculate
the conditional probability P(X has 2 Aces | X says “I have an
Ace”).

(b) If it is not, what other information would be required in order to
calculate this conditional probability?

Solution. For the first part we note that there are 6 possible selections
of 2 cards from 4. Five of these selections contain at least one ace.
Therefore P(B) = 5/6, where B is the event ’at least one ace’. If A is
the event ’2 aces’ then P(A) = 1/6. It follows that P (A|B) = 1/5 from
the definition of conditional probability.

You can’t calculate a probability conditional on X saying ’I have an
ace’ since we have not specified the probability of this as an event.
You would need to specify a probabilistic model for what X says when
presented with a given hand.

2. An urn is known to contain n differently coloured balls where n can be
any integer in the set 1, 2, 3. Your prior information tells you that n
is equally likely to be any of these values. A ball is drawn randomly
from the urn - it is red. Alice argues that since the probability of the
red ball being drawn conditional on there being n balls in the urn is
1/n, then

P (n = 1|red ball drawn) =
1
3
× 1

1
1
3
× 1

1
+ 1

3
× 1

2
+ 1

3
× 1

3

and calculates the posterior probabilities of n being 1, 2, and 3 as 6/11,
3/11 and 2/11 respectively. She then expresses her surprise that the
her beliefs regarding N have changed having observed only the colour
of a single draw from the urn.
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(a) Explain the fallacy in her argument and why the above informa-
tion alone does not define a posterior probability for n.

Solution. Alice needs to be able to calculate the probability of the
event ’n balls in the urn and a red ball drawn’ in order to define
the conditional probability. This is equal to

P (n)× P (red ball in the urn|n)× 1

n

She has omitted the middle factor (which has not been defined)
in her argument.

(b) Bertie assumes that the n balls placed in the urn are drawn uni-
formly at random from a large stock of differently coloured balls.
Calculate Bertie’s posterior probabilities for n = 1, 2, 3.

Solution In this case we would have that

P (red ball in the urn|n) ∝ n.

This implies that P (n and red) ∝ P (n) and we see that the poste-
rior probability for n must be the same as the prior (1/3 for each
value).

(c) Under what circumstances would Alice’s posterior probabilities be
correct?

Solution. This would be true if P (red ball in the urn|n) was
independent of n, e.g. if a red ball was always put in the urn first.

3. Suppose now in the situation of question 2, two balls are drawn from
the urn with replacement and the event that both are the same colour
is observed. Calculate the posterior probabilities for n = 1, 2, 3 in this
case.

Solution. Now P (n|both balls same) ∝ P (n)×P (both balls same|n) =
1/n, n = 1, 2, 3. Hence, posterior probabilities of n = 1, 2, 3 are 6/11,
3/11 and 2/11 respectively.

4. (Yet more balls and urns) Five balls are drawn uniformly randomly
from a very large population of black and white balls where the pro-
portion of black balls is 1/3. You do not know the colours of the balls
selected.

2



(a) Give suitable prior probabilities for the number of black balls in
the urn.

Solution The natural choice would be Bin(5, 1/3).

(b) You now select two balls uniformly at random from the urn with
replacement. They are both white. Calculate the posterior prob-
abilities for the number of black balls in the urn.

Solution. Since they are drawn with replacement, then the prob-
ability that they are both white given the number of black balls
n, is (5−n

5
)2. We can write

π(n|both white) ∝
(

5

n

)
(1/3)n(2/3)5−n(

5− n
5

)2

Note that this is zero for n = 5. Calculate and normalise to get
the probabilities.

(c) Suppose that the two balls were selected from the urn without
replacement and were both white. Calculate your posterior prob-
abilities for the number of black balls in the urn for this case.

Solution. Same approach as above, but now the probability that
both balls are white given n, is 5−n

5
× 5−n−1

4
since sampling is

without replacement. Note that this is zero for n = 5 and n = 4.

5. A fair coin is tossed n times where n can take the values 1, 2, ..., 5 with
equal probability. Suppose that 2 heads result from the n tosses.

Determine the posterior distribution (i.e. work out the probability
function) of n and identify the value of n that is a posteriori most
likely.

Solution. Clearly the posterior probability is non-zero for values of n
greater than 1. For n ≥ 2 we obtain

π(n|2 heads) ∝ 1

5
×
(
n

2

)
(1/2)5.

Thus for n = 2, 3, 4, 5, the posterior probabilities are in the ratio 1/4,
3/8, 6/16, 10/32, respectively. Actually from this we see that both 3
and 4 are a posteriori equally likely.
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Suppose now the coin is to be tossed repeatedly until m tails are ob-
tained where the value m is first selected from a Geometric(1/3) dis-
tribution. Suppose that 2 heads are obtained in the sequence. What is
the posterior distribution of m given this information? (It is sufficient
to write an expression involving infinite sums!)

Solution. Given m, the number of heads, X, obtained in achieving m
tails has a negative binomial distribution with probability function

P (x|m) =

(
x+m− 1

x

)
1

2x+m
.

It follows that for m ≥ 1 the posterior probability of m satisfies

π(m|X = 2) ∝ π(m)P (2|m) =
2m−1

3m

(
m+ 1

2

)
1

22+m
∝ m(m+ 1)

3m
.

To obtain these probabilities numerically, you need to sum this quantity
over all values of m, to get the normalising constant. This can be done
analytically. You need to spot that

∑∞
m=1

m(m+1)
3m

is the 2nd derivative

(w.r.t. x) of
∑∞

m=1
xm+1

3m
evaluated at x = 1. Now the latter series is

geometric and its sum is defined in a neighbourhood of x = 1.

However, you can quickly get a feel for the relative posterior probabil-
ities by evaluating the right hand side of the above. (According to my
calculations) the posterior probabilities are for m = 1, 2, 3, 4, 5 are in
the ratio 2/3, 2/3, 4/9, 20/81, 10/81, ...

4



2 Bayesian Inference

Exercises

1. Let X = (X1, X2, . . . , Xn) be a random sample from the Poisson distri-
bution with mean µ. Show that the conjugate prior is Gamma. Using
µ ∼ Gamma(α, β) as the prior, determine the posterior distribution of
µ.

Solution You need to show that if you start with a Gamma prior, you
end up with a Gamma posterior. Suppose that the prior isGamma(α, β).
Then given observations x1, x2, ..., xn the likelihood is

L(µ) = e−nµµ
∑
xi/
∏

xi!.

Now it follows that the posterior density satisfies

π(µ|x) ∝ e−(n+β)µµα+
∑
xi−1

for µ > 0. This marks it out as a Gamma(α +
∑
xi, β + n) density.

Suppose you specify µ ∼ Gamma(1, 0.5), n = 5 and observe
∑
xi =

15.0. Calculate an equal-tailed 95% credible region for µ in this case.

Solution. Now the posterior for µ is Γ(16, 5.5). It follows that 11µ ∼
χ2

32. We obtain the limits for our credible region by reading off the
97.5%- and 2.5%- critical values of the χ2

32 - 18.29 and 49.48, respec-
tively - and then divide by 11 to get the interval (1.66, 4.50).

2. Let X be a random sample from the Exponential distribution Exp(λ)
with mean 1/λ, i.e. Γ(1, λ). Show that the conjugate prior is Gamma.
In particular, if X is a single observation, show that the prior Γ(α, β)
leads to a posterior density for λ being Γ(α + 1, β +X).

Solution. The likelihood is L(λ) = λe−λX . From this we see that the
posterior is

π(λ|X) ∝ λαe−λ(β+X)

and is therefore Gamma(α + 1, X).

An important consequence of the conjugacy property is that if obser-
vations arrive sequentially then updating the posterior distribution is
simple. Suppose that the prior distribution is Gamma(α, β) and that
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x1 is observed. Obtain the posterior distribution. Now suppose that
x2 is observed. Find the new posterior distribution by updating the
existing posterior. Finally, show that this posterior distribution is the
same as that obtained from the original prior if we observe a random
sample of size 2 consisting of (x1, x2).

Solution. For a random sample (x1, x2) and prior Gamma(α, β) we get
a posterior that is Gamma(α + 2, β + x1 + x2) and the result follows.

3. The lifetime of a component, T , (measured in days) follows an Exp(λ)
distribution where a priori λ ∼ Γ(1, 2). You select a random sample of 5
components for which

∑
ti = 3.0/days. Find the posterior distribution

of λ.

Solution. From question 2, we know that the posterior distribution of
λ is Γ(6, 5).

A component of this kind forms part of certain system which is required
to function continuously for a period of 6 hrs. What is the probability
that the component fails before the end of 6 hrs? (You will have to work
out the posterior predictive distribution of the lifetime of a component.)

Solution. Let Z denote the lifetime of the component. You have to
work out the predictive density, f(z) by integrating the Exp(λ) density
weighted by this posterior density. Thus:

f(z) =
56

5!

∫ ∞
0

λ5e−5λλe−λzdλ =
566

(5 + z)7

You want P (Z > 1/4). Now P (Z > z) = 56

(5+z)6 giving a probability of
around 0.75.

4. Let x = (x1, x2, . . . , xn) be a random sample from the Pareto distri-
bution with p.d.f. f(x) = θ(1 + x)−(θ+1), 0 < x < ∞. Show that
the Gamma distribution is the conjugate prior for this distribution by
proving that if the prior distribution of θ is Gamma(α, β), then the
posterior is G(α + n, β + t(x)), where t(x) =

∑
i log(1 + xi).

Solution. As per usual we get from prior × likelihood

π(θ|x) ∝ θα−1e−βθθn
∏

(1 + xi)
−(θ−1)

The result follows after some algebra (writing (1 + xi) as elog(1+xi)).
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5. [1997 Statistical Inference Exam, Q4] In a raid on a coffee shop,
Bayesian trading inspectors take a random sample of n packets of coffee,
each of nominal weight 125 g. They model these data as independent
values X1, . . . , Xn from a Normal N(µ, σ2) distribution. They take σ2

to be known, while for µ they assume a prior distribution of N(µ0, σ
2
0),

where µ0 and σ2
0 are specified values.

(a) Show that the inspectors’ posterior distribution is also Normal,
and find its mean and variance.

Solution. ‘Posterior ∝ Prior × Likelihood’, so the posterior p.d.f.
is

∝ exp(−1

2
(
µ− µ0

σ0

)2) exp(−1

2
(
x̄− µ
σ/
√
n

)2)

= exp(−1

2
(µ2(

1

σ2
0

+
n

σ2
)− µ(

2µ0

σ2
0

+
2nx̄

σ2
) + constant))

∝ exp(−1

2
(µ− (µ0w + x̄(1− w)))2/σ2

1)

∝ p.d.f. of N(µ1, σ
2
1)

so the posterior distribution is N(µ1, σ
2
1), where σ2

1 = (1/σ2
0 +

n/σ2)−1, and µ1 = (µ0w + x̄(1− w)), where w = (1/σ2
0)/(1/σ2

0 +
n/σ2) = σ2

1/σ
2
0.

Show that the mean of this distribution is a weighted average of
the prior mean µ0 and the sample mean x̄.

Here we have already tidied up the answer to indicate that µ1 is
a weighted average of µ0 and x̄, with weights w and 1− w.

(b) The data they obtain are (weights in grams):

105.3, 113.3, 114.5, 121.2, 122.9, 123.7, 124.0, 124.6, 124.9, 124.9,
124.9, 125.1, 125.5, 125.9, 126.8, 127.7, 128.2, 128.3, 128.5, 130.2
(
∑
xi = 2470.4,

∑
x2
i = 305828.98).

The parameter values they assume are µ0 = 126, σ2
0 = 1, σ2 = 4.

The inspectors can impose a fine if their 95% credible interval falls
wholly below the claimed value of µ = 125 g.

i. Show that the inspectors’ 95% credible interval for µ for these
data does lie wholly below 125 g; they therefore impose a fine
on the owners of the coffee shop.

7



Solution For these data we have x̄ = 123.52. The inspectors’
value of w is 1/(1+20/4) = 1/6, so their posterior distribution
is N(µ1, σ

2
1), where µ1 = (1/6)µ0 + (5/6)x̄ = 123.93. Their

value for σ2
1 is 1/(1 + 20/4) = 1/6, whence their posterior is

N(123.93, 1/6), which gives a 95% credible interval of µ1 ±
1.96∗σ1 = [123.1, 124.7]. This is wholly below 125 g., so they
are entitled to levy a fine.

ii. Sketch the data (a dotplot or similar), and calculate their
sample median and sample variance.
Solution. Any rough plot of the data should indicate that
normality is suspect, with the three lowest values giving a
pronounced left tail to the data. The median is 124.9, much
closer to the desired 125 g. than the mean. Finally, the sample
variance is 36.1, much greater than the inspectors’ assumed
value of 4 (if we omit the 3 lowest values, this reduces to 5.3).

iii. Comment briefly as to whether the inspectors are justified in
imposing a fine on the basis of this sample.
Solution. The coffee packets vary much more than the in-
spectors assumed, perhaps representable as a Normal distri-
bution contaminated with occasional outliers. The substan-
dard mean weight can be accounted for by these outliers (3
in this sample). While the inspectors’ modelling is revealed
as less than ideal for their job, they are probably correct in
fining a shop with such poor quality (?sic - quantity might be
the more appropriate word here!) control.
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3 Bayesian Inference Continued

Exercises

1. Suppose that x1, x2, ..., xn is a random sample of observations from an
Exp(λ) distribution where λ is unknown.

(a) Show that the Jeffreys’ prior for λ in this case satisfies π(λ) ∝ λ−1.

Solution First you need to calculate the Fisher information

F (λ) = −E(
∂2

∂λ2
log(L(λ;X))

Now,

log(L(λ;X)) = n log(λ)− λ
∑

Xi

and its second derivative w.r.t. λ is −n
λ2 . It follows that the F (λ) =

n
λ2 and the Jeffreys prior satisfies

π(λ) ∝ F (λ)
1
2 ∝ 1

λ
.

(b) For n = 5 and
∑
xi = 10 calculate a 95% equal-tailed credible

interval for λ using the Jeffreys prior.

Solution: A posteriori we have λ ∼ Γ(5, 10). Therefore 20λ ∼ χ2
10.

We can read off the 97.5% and 2.5% values of 20λ from tables to
be 3.247 and 20.48 respectively giving (0.16, 1.02) as the credible
interval.

2. Show that if x1, x2, ..., xn is a random sample from a Poisson(λ) distri-
bution, then the Jeffrey’s prior for λ is given by π(λ) ∝ λ−1/2. Com-
ment on this in the light of the connection between the Exp(λ) and the
Poisson(λ) distribution.

Solution. This time we have

log(L(λ;X)) = −nλ+ log λ
∑

Xi − log(
∏

Xi!)

and its second derivative w.r.t. λ is equal to −
∑
Xi
λ2 . Taking the ex-

pectation we find that F (λ) = n
λ

(since E(
∑
Xi) = nλ). This gives a

Jeffreys prior proportional to λ−1/2.
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This is unsatisfactory from the following point of view. Consider a
Poisson process with rate λ. One observer measures the intra-arrival
times of n events. The other counts the number of arrivals in n disjoint
time windows of length 1, to estimate λ. These are experiments on the
same process and λ has the same interpretation in each experiment,
yet the Jeffreys formulation leads to different priors for λ for the 2
experiments.

3. An educationalist is interested in the distribution of the number of
exam attempts required by individuals to qualify in a certain profession.
They believe that it follows a negative binomial distribution with p.m.f.

fX(x) =

(
x− 1

r − 1

)
pr(1− p)x−r

for x = r, r+1, r+2, ..., where r is a positive integer and p a probability
between 0 and 1. Suppose that they place a Uniform(0, 1) prior on p, an
improper prior on r proportional to 1/r and assume that the parameters
are a priori independent of each other. They select a random sample
of 5 qualified individuals and count their exam attempts. These are in
order: 4, 4, 6, 8, 12

(a) Construct the likelihood L(r, p) for these data.

Solution. The likelihood looks like

L(r, p) =
5∏
i=1

(

(
xi − 1

r − 1

)
pr(1− p)xi−r)

∝ p5r(1− p)5(x̄−r)

(r − 1)!5
∏

i(xi − r)!
,

ignoring terms not involving r or p.

(b) Show that the marginal posterior probability mass function of r
satisfies

p(r|x) ∝ 1

r

(5r)!(5(x̄− r))!
((r − 1)!)5

∏
i(xi − r)!

for r = 1, 2, 3, 4 and is zero for larger values of r.
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Solution. Since the range of the distribution is the set r, r + 1, . . .
we see that the data cannot arise for values of r greater than 4.
This implies that the likelihood is zero for such values of r and,
hence, so is the posterior.

To get the the marginal posterior for r = 1, 2, 3, 4 we must inte-
grate the joint posterior of r and p with respect to p. Now

p(r, p|x) ∝ 1

r

p5r(1− p)5(x̄−r)

(r − 1)!5
∏

i(xi − r)!
.

On integrating it with respect to p we obtain:

p(r|x) ∝ 1

r

Beta(5r + 1, 5(x̄− r) + 1)

((r − 1)!)5
∏

i(xi − r)!

∝ 1

r

(5r)!(5(x̄− r))!
((r − 1)!)5

∏
i(xi − r)!

.

(c) Calculate (using a computer) the r.h.s. of the above expression
for r = 1, 2, 3, 4 and use the calculated values to make inference
on the value of r.

Solution. Not got round to doing this yet!

4. Suppose that a random sample of size 8 from a normally distributed
population of mean µ and variance φ results in the values

3.1, 3.3, 3.6, 4.2, 4.3, 4.8, 5.4, 5.7.

Assuming that you take independent priors, constant for µ and pro-
portional to φ−1 for φ, calculate:

(a) the posterior probability that µ exceeds 5.0;

(b) the posterior probability that φ is less than 1.

Solution. From lecture notes, with this choice of prior, we know that a
posteriori

x̄− µ
s/
√

8
∼ t7,
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and that

7
s2

φ
∼ χ2

7,

where x̄ = 4.3 and s2 = 0.91 are the sample mean and variance respectively.
It follows that a posteriori

P (µ > 5.0) = P (t7 <
x̄− 5.0

s/
√

8
) = P (t7 < −2.08) = 0.038.

Furthermore we have that

P (φ < 1) = P (χ2
7 > 7s2) = 1− P (χ2

7 < 6.36) = 0.5.
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4 Introduction to simulation techniques

Exercises

1. Simulating from the Cauchy distribution. The Cauchy distribution is
defined by the density

fX(x) =
1

π

1

1 + x2
,−∞ < x <∞

(a) By first deriving the c.d.f. of X and its inverse function, describe
how samples from a U(0, 1) random number generator could be
transformed to give samples from the Cauchy distribution.

Solution The c.d.f. is

FX(x) =

∫ x

−∞
fX(s)ds

1

π
(tan−1x+

π

2
).

It follows that if u = FX(x) then x = tan(π(u− 0.5)). This gives
the necessary transformation to a Cauchy random variable X from
a U(0, 1) random variable.

(b) By appealing to the circular symmetry of the standard bivariate
normal distribution, show how samples from a Cauchy distribution
could be generated from independent N(0, 1) samples.

Solution. From circular symmetry it follows that if (X, Y ) repre-
sent a sample from the bivariate normal, then tan−1X

Y
∼ U(−π

2
, π

2
) ∼

π(U − 0.5) where U ∼ U(0, 1).

It follows from the first part that X
Y

must follow a Cauchy distri-
bution.

(Comment. The Cauchy distribution is the same as the t1 distri-
bution.)

2. Simulating from the Beta distribution.

(a) Show how U(0, 1) random variates can be transformed by inver-
sion of the c.d.f. to generate samples from a Beta(n, 1) distribu-
tion.

Solution. The p.d.f. of the Beta(n, 1) distribution is

fX(x) = nxn−1,
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and the c.d.f. is therefore FX(x) = xn. It follows that if U =

FX(X) then X = U
1
n . Therefore if U ∼ U(0, 1) then X = U

1
n ∼

Beta(n, 1).

(b) How would you generate samples from a Beta(2, 2) distribution
by inversion of the c.d.f.?

Solution For the Beta(2, 2) distribution the pdf is fX(x) = 6x(1−
x) = x− x2, 0 < x < 1 and the cdf is 3x2 − 2x3. Now if FX(x) =
u, 0 < u < 1 then 3x2 − 2x3 − u = 0. We need to find the root of
this equation that lies between 0 and 1. It has 2 other real roots
lying outside this region. Since cubics can be solved by radicals
(see method of Cardano and Tartaglia) then the root r ∈ (0, 1)
could be calculated.

(c) Given that if X ∼ Gamma(n, 1) and Y ∼ Gamma(m, 1) are
independent where n and m are positive integers then X

X+Y
∼

Beta(n,m), describe an algorithm for simulating samples with a
Beta( m, n) distribution from independent samples from a U(0,
1) random number generator.

Solution. Note that we can generate a Gamma(n, 1) random vari-
able by summing n i.i.d. Exp(1) random variables. If follows that
if U1, ...., Un+m are i.i.d. U(0, 1). Then

Z =

∑n
1 logUi∑n+m

1 logUi
∼ Beta(n,m).

3. Simulating from the Beta distribution using rejection sampling. De-
sign an algorithm to simulate samples from the Beta(α, β) distribution
where α, β > 1, using the U(0, 1) as the density q(x),

(a) Derive an expression for the probability that a value generated
from the U(0, 1) is accepted for your algorithm.

Solution. The beta density is defined on (0, 1) as

p(x) =
1

B(α, β)
xα−1(1− x)β−1

<
1

B(α, β)
(α− 1)α−1(β − 1)β−1(α + β − 2)2−α−β = C(α, β),

where the r.h.s. is obtained by maximisation.
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It follows that the probability that a value is accepted is equal to

pa =

∫ 1

0

q(x)
p(x)

C(α, β)
dx

=
1

C(α, β)

(b) How does this expression behave as α and β become large?

Solution. If we fix the value of α
β

and let α become large then we
can show that the acceptance probability tends to zero. That is
the rejection algorithm becomes increasingly inefficient.
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