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We present numerical schemes for the strong solution of linear stochastic differen-
tial equations driven by two Wiener processes and with non-commutative vector
fields. These schemes are based on the Neumann and Magnus expansions. We prove
that for a sufficiently small stepsize, the half order Magnus and a new modified
order one Magnus integrator are globally more accurate than classical stochastic
numerical schemes or Neumann integrators of the corresponding order. These Mag-
nus methods will therefore always be preferable provided the cost of computing
the matrix exponential is not significant. Further, for small stepsizes the accurate
representation of the Lévy area between the two driving processes dominates the
computational cost for all methods of order one and higher. As a consequence,
we show that the accuracy of all stochastic integrators asymptotically scales like
the square-root of the computational cost. This has profound implications on the
effectiveness of higher order integrators. In particular in terms of efficiency, there
are generic scenarios where order one Magnus methods compete with and even
outperform higher order methods. We consider the consequences in applications
such as linear-quadratic optimal control, filtering problems and the pricing of path-
dependent financial derivatives.
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1. Introduction

We are interested in designing efficient numerical schemes for the strong approxi-
mation of linear Stratonovich stochastic differential equations of the form

S(t) = I +
d∑

i=0

∫ t

0

ai(τ)S(τ) dWi(τ) , (1.1)

or more succinctly,
S = I + K ◦ S , (1.2)

where W0(t) ≡ t and Wi(t), for i = 1, . . . , d, are independent scalar Wiener pro-
cesses and a0(t) and ai(t) are given n × n coefficient matrices. In the abbreviated
form (1.2), we set

K ≡ K0 + K1 + · · · + Kd ,
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where the Ki, i = 0, . . . , d, are the linear integral operators

(Ki ◦ S)(t) ≡
∫ t

0

ai(τ)S(τ) dWi(τ) .

We can think of S(t) as the fundamental matrix solution or flow-map associated
with a linear stochastic differential equation of exactly the same form as (1.1),
except for an n-vector of unknowns Y (t) starting with initial data Y0 at time t = 0
(rather than the identity matrix I) so that Y (t) = S(t)Y0. In this paper we are
specifically interested in the case of more than one Wiener process; later on for ease
of exposition, we take d = 2.

The solution of the integral equation for S is known as the Peano–Baker series,
Feynman–Dyson path ordered exponential, Chen-Fleiss series or Neumann series

S(t) = (I − K)−1 ◦ I ≡ (I + K + K
2 + K

3 + K
4 + · · · ) ◦ I .

The logarithm of the Neumann expansion is known as the Magnus expansion (Mag-
nus 1954), i.e. we can write

S(t) = exp (σ(t)) ,

where
σ(t) = K ◦ I + K

2 ◦ I − 1
2 (K ◦ I)2 + · · · , (1.3)

See Kunita (1980), Ben Arous (1989), Castel (1993) and Burrage (1999) for the
derivation and convergence of the stochastic Magnus expansion; Iserles et al. (2000)
for a deterministic review; Lyons (1998) and Sipiläinen (1993) for extensions to
rough signals; Lyons & Victoir (2004) for a recent application to probabilistic meth-
ods for solving PDEs; and Sussmann (1988) for a related product expansion.

In the case when the coefficient matrices ai(t) = ai, i = 0, . . . , d are constant and
non-commutative, the solution to the linear problem (1.1) is non-trivial and given
by the Neumann series (we adopt the standard notation for multiple Stratonovich
integrals Jα1···αm

(t)—see Kloeden & Platen 1999)

Sneu(t) =
∞∑

m=0

∑

α∈Pm

aαm
· · · aα1

Jα1···αm
(t) . (1.4)

Here Pm is the set of all combinations of multi-indices α = (α1, . . . , αm) of length
m with αi ∈ {0, 1, . . . , d}. There are some special non-commutative cases when we
can write down an explicit analytical solution. For example when there are only
two independent scalar Wiener processes, the stochastic differential equation

S(t) = I + a1 ·
∫ t

0

S(τ) dW1(τ) +

∫ t

0

S(τ) dW2(τ) · a2 ,

has the explicit analytical solution S(t) = exp
(
a1W1(t)

)
· exp

(
a2W2(t)

)
. Here the

underlying vector fields a1 and a2 are respectively, separately integrable left and
right actions with respect to W1 and W2. However, in general we cannot express
the Neumann solution series (1.4) in such a closed form.

Classical numerical schemes such as the Euler-Maruyama and Milstein meth-
ods correspond to truncating the stochastic Taylor expansion to generate global
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strong order 1/2 and order 1 schemes, respectively. Numerical schemes based on
deterministic Runge–Kutta methods have also been derived—see Kloeden & Platen
(1999) and Talay (1995). At the linear level, the Neumann, stochastic Taylor and
Runge–Kutta type methods are equivalent. In the stochastic context, Magnus in-
tegrators have been considered by Castell & Gaines (1995), Burrage (1999) and
Misawa (2001).

We present numerical schemes based on truncated Neumann and Magnus expan-
sions. Higher order multiple Stratonovich integrals are approximated across each
time-step by their expectations conditioned on the increments of the Wiener pro-
cesses on suitable subdivisions (see Gaines & Lyons 1997). In this context, our goal
in this paper is to prove that for linear stochastic differential equations driven by
two Wiener processes:

1. Superior accuracy is provided by order 1/2 and a modified class of order 1
Magnus integrators, over the corresponding Neumann integrators.

2. Accuracy of all stochastic integrators asymptotically scales like the square-
root of the computational cost for small stepsizes.

Statement 1 reflects that the exponential of the Magnus series is a natural solution
ansatz for linear stochastic differential equations. As a result the remainder for a
Magnus integrator contains relatively fewer terms compared to the corresponding
Neumann remainder. Statement 2 naturally arises in the time-ordered integration
of information generated at infinitesimally small scales by the two driving Wiener
signals. In particular, for small stepsizes the accurate representation of the Lévy area
(or chordal area process) 1

2 (J12−J21) between the two Wiener processes dominates
the computational cost for all methods of order one and higher. Coincidentally,
half-order methods, which do not require the Lévy area, also naturally obey this
square-root scaling.

There are several potential sources of cost contributing to the overall computa-
tional effort of a stochastic numerical integration scheme. The main ones are the
efforts associated with:

• Evaluation: computing (and combining) the individual terms and special func-
tions such as the matrix exponential;

• Quadrature: the accurate representation of multiple Stratonovich integrals.

The evaluation effort is mostly much smaller for the Magnus integrators than for the
Neumann integrators. This is because there are usually fewer terms in the Magnus
expansion compared to the corresponding Neumann expansion to the same order.
For Magnus integrators though, there is the additional computational expense asso-
ciated with computing the matrix exponential. However when the cost of computing
the matrix exponential is not significant, we expect Magnus integrators to be prefer-
able to classical stochastic numerical integrators (using Statement 1). This will be
the case for systems that are small or sparse or systems with underlying symme-
tries for which the matrix exponential is simplified and computed cheaply. This is
also true when using higher order integrators (applied to non-sparse systems of any
size) when high accuracies are required. This is because in this scenario, quadrature
computational cost dominates integrator effort.
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When two or more Wiener processes are present, to obtain a higher order
stochastic integrator we need to include the Lévy area or equivalently, the multiple
Stratonovich integral J12. In the variable time-step scenario, order 1/2 integrators
do not necessarily converge to the correct solution (see Gaines & Lyons 1997) and a
successful integrator must include the Lévy area (see Lyons 1998, who proves that
the solution is continuously controlled by the driving processes and the Lévy area).

Unfortunately, for high accuracy pathwise integrators of order 1 or more, the
overall computational effort of the integrator is dominated by the quadrature effort
associated with evaluating the Lévy area. Indeed evaluating the Lévy area to high
orders of accuracy is computationally more expensive than evaluating even higher
order multiple Stratonovich integrals. This is the well-known bottleneck problem as-
sociated with high order stochastic pathwise integration schemes that traditionally
limits their application (see Kloeden & Platen 1999 page 367, and Schurz 2002).

While Gaines & Lyons (1994) and more recently Wiktorsson (2001) and Stump
& Hill (2005) provide methods for efficiently sampling the Lévy area across a given
time-step, we choose to approximate the Lévy area and all higher order integrals
over a given time step by their expectations conditioned on the increments of the
Wiener processes on suitable subdivisions. This is important for variable time-step
schemes (Gaines & Lyons 1997) and filtering problems where the driving processes
(say W1 and W2) are observed signals. In such a scenario, it is computationally
cheaper to collect a set of sample data over a given time interval and then evaluate
the solution (conditioned on that sample data), than it is to evaluate the solution
frequently, say at every sample time (see Gaines & Lyons 1997).

For pathwise integrators, the accurate representation of the Lévy area implies
Statement 2. The consequences are startling. For small stepsizes, numerical methods
of differing orders are only distinguished by the multiplicative constants (in the
scaling law) which are proportional to the global error coefficients. The global error
coefficients depend on linear combinations of products of the underlying vector
fields. Hence for some generic scenarios, such as when the global error coefficients
for methods of different orders do not differ by an order of magnitude, then in terms
of efficiency, order one Magnus methods compete with and even outperform higher
order methods. If methods of order 3/2 or higher are slightly more accurate the
simplicity of implementing the order 1 method might still make it preferable.

Other potential sources of computational effort might be path generation and
memory access. Path generation effort depends on the application context. This
cost is at worst proportional to the quadrature effort where we could subsume it.
Memory access efforts depend on the processing and access memory environment.
To reveal higher order methods (which typically require more path information) in
the best light possible, we have ignored this effect.

Our paper is outlined as follows. We start in §2 by proving that the exponential
of every truncation of the Magnus series converges to the solution of our linear
stochastic differential equation (1.1). In §3 we define the strong error measures we
use and how to compute them. Using these, we explicitly compare the local and
then global errors for the Magnus and Neumann integrators in §4. We prove that
for a sufficiently small stepsize, the order 1/2 Magnus integrator and a new mod-
ified order 1 Magnus integrator are globally more accurate than their Neumann
counterparts. We then turn our attention in §5 to the method of approximating
multiple Stratonovich integrals by their conditional expectations (as proposed in
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Gaines & Lyons 1997). We show that the accurate representation of the Lévy area
dominates the quadrature effort for all methods of order 1 and higher, causing the
bottleneck. We prove in §6 that this implies the square-root scaling law between
the global error and computational effort. In §7 we present numerical experiments
that reflect our theoretical results, and in particular illustrate the superior accu-
racy of Magnus methods (already observed by Sipiläinen 1993 and Burrage 1999).
Also in §7, we apply Neumann and Magnus integrators to a stochastic Riccati dif-
ferential system that can be linearized. Since for the linearized system, expensive
matrix-matrix multiplications can be achieved independent of the path, the Magnus
and Neumann methods perform better than an explicit Runge–Kutta type method
applied directly to the nonlinear Riccati system. Lastly in §8, we outline further
applications.

2. Strong convergence of truncated Magnus series

We consider here the case when the stochastic differential equation (1.1) is driven
by d Wiener processes with constant coefficient matrices ai(t) = ai, i = 0, 1, . . . , d.
The Neumann expansion has the form shown in (1.4). We construct the Magnus
expansion by taking the logarithm of this Neumann series as in (1.3). In Appendix A
we explicitly give the Neumann and Magnus expansions for two Wiener processes
up to terms with L2-norm of order 2. Let σm(t) denote the truncated Magnus series

σm(t) =
∑

α∈Qm

cαJα , (2.1)

where Qm denotes the finite set of multi-indices α for which ‖Jα‖L2 is of order up to
and including tm. Note that here m is a half-integer index, m = 1/2, 1, 3/2, . . .. The
terms cα are linear combinations of finitely many (more precisely exactly length α)
products of the ai, i = 0, 1, . . . , d. Let |Qm| denote the cardinality of Qm.

Theorem 2.1 (Convergence). For any t 6 1, the exponential of the truncated
Magnus series, exp

(
σm(t)

)
, is square-integrable. Further, if S(t) is the solution of

the stochastic differential equation (1.1), there exists a constant C(m) such that
∥
∥S(t) − exp

(
σm(t)

)∥
∥

L2 6 C(m) tm+1/2 . (2.2)

Proof. First we show that exp
(
σm(t)

)
∈ L2. Using the expression (2.1) for σm(t),

we see that for any number k, (σm(t))k is a sum of |Qm|k terms, each of which is
a k-multiple product of terms cαJα. It follows that

∥
∥(σm(t))k

∥
∥

L2 6

(

max
α∈Qm

‖cα‖op

)k

·
∑

αi∈Qm

i=1,...,k

‖Jα1
Jα2

· · · Jαk
‖L2 . (2.3)

Note that the maximum of the operator norm of the coefficient matrices is taken
over a finite set. Repeated application of the product rule reveals that the product
Jαi

Jαj
, where αi and αj are multi-indices of length `(αi) and `(αj), is a linear

combination of 2`(αi)+`(αj)−1 multiple Stratonovich integrals. Since `(αi) 6 2m for
i = 1, . . . , k, each term ‘Jα1

Jα2
· · · Jαk

’ in (2.3) is thus the sum of at most 22mk−1

Stratonovich integrals Jβ . We also note that k 6 `(β) 6 2mk.
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From equation (5.2.34) in Kloeden & Platen, every multiple Stratonovich in-
tegral Jβ can be expressed as a finite sum of at most 2`(β)−1 multiple Itô in-
tegrals Iγ with `(γ) 6 `(β). Further, from Remark 5.2.8 in Kloeden & Platen,
`(γ) + n(γ) > `(β) + n(β), where n(β) and n(γ) denote the number of zeros in β
and γ, respectively. From Lemma 5.7.3 in Kloeden & Platen,

‖Iγ‖L2 6 2`(γ)−n(γ) t(`(γ)+n(γ))/2 .

Noting that `(γ) 6 `(β) 6 2mk and `(γ) + n(γ) > k, it follows that for t 6 1,
‖Jβ‖L2 6 24mk−1 tk/2. Since the right hand side of equation (2.3) consists of
|Qm|k 22mk−1 Stratonovich integrals Jβ , we conclude that,

∥
∥
∥

(
σm(t)

)k
∥
∥
∥

L2
6

(

max
α∈Qm

‖cα‖op · |Qm| · 26m · t1/2
)k

.

Hence exp
(
σm(t)

)
is square-integrable.

Second we prove (2.2). Let Sm(t) denote Neumann series solution (1.4) truncated
to included terms of order up to and including tm. We have
∥
∥S(t) − exp

(
σm(t)

)∥
∥

L2 6
∥
∥S(t) − Sm(t)

∥
∥

L2 +
∥
∥Sm(t) − exp

(
σm(t)

)∥
∥

L2 . (2.4)

We know S(t) ∈ L2 (see Lemma III.2.1 in Gihman & Skorohod 1979). Furthermore,
for any order m, Sm(t) corresponds to the truncated Taylor expansion involving
terms of order up to and including tm. Hence Sm(t) is a strong approximation to S(t)
to that order with the remainder consisting of O(tm+1/2) terms (see Proposition
5.9.1 in Kloeden & Platen 1999). It follows from the definition of the Magnus series
as the logarithm of the Neumann series, that the terms of order up to and including
tm in exp

(
σm(t)

)
correspond with Sm(t); the error consists of O(tm+1/2) terms.

Remark. Ben Arous (1989) and Castell (1993) prove the remainder of the expo-
nential of any truncation of the Magnus series is bounded in probability as t → 0
(in the full nonlinear case). Our result holds in L2 for sufficiently small t. A more
detailed analysis is needed to establish results concerning the convergence radius.
Similar arguments can be used to study the non-autonomous case with suitable
conditions on the coefficient matrices (see Proposition 5.10.1 in Kloeden & Platen).

3. Global and local error

Suppose S(tn, tn+1) is the exact and Ŝ(tn, tn+1) is the approximate fundamental so-
lution across the interval [tn, tn+1] where tn = nh. Let R(tn, tn+1) be the difference
between these exact and approximate fundamental solutions so that

S(tn, tn+1) = Ŝ(tn, tn+1) + R(tn, tn+1) . (3.1)

Definition (Local truncation error). We define the local truncation error as-
sociated with any such approximation as those terms in the remainder R(tn, tn+1)
that contribute at leading order in the stepsize h to the global error.

Remark. The local truncation error is a matrix valued random variable constructed
from the leading order terms in R(tn, tn+1) as well as some higher order terms that
can, as we will see, contribute to the global truncation error at leading order.
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Definition (Local error). We define the local error as

L ≡ sup
‖Y0‖2=1

‖R(tn, tn+1)Y0‖L2 ,

where ‖ · ‖2 is the vector 2-norm.

Definition (Strong global error). We define the strong global error associated
with an approximate solution to the stochastic differential equation (1.1) over the
global interval of integration [0, T ] = ∪N−1

n=0 [tn, tn+1] as

E ≡ sup
‖Y0‖2=1

∥
∥
∥
∥
∥

(
0∏

n=N−1

S(tn, tn+1) −
0∏

n=N−1

Ŝ(tn, tn+1)

)

Y0

∥
∥
∥
∥
∥

L2

.

Remark. The global error can be decomposed additively into two components, the
global truncation error due to truncation of higher order terms, and the global
quadrature error due to the approximation of multiple Stratonovich integrals re-
tained in the approximation.

If we substitute our truncation-remainder decomposition (3.1) for the exact
solution into our definition for the strong global error, we get for small h,

E = sup
‖Y0‖2=1

∥
∥
∥
∥
∥

(
N−1∑

n=0

Ŝ(tn+1, tN )R(tn, tn+1)Ŝ(t0, tn)

)

Y0

∥
∥
∥
∥
∥

L2

, (3.2)

up to higher order terms, in fact O
(
L3/2 h−3/4

)
. By Ŝ(tn, tm) with m > n we

mean the approximate solution across the interval [tn, tm] constructed by composing
Ŝ(tk, tk+1) across the intervening intervals [tk, tk+1] with k = n, . . . ,m − 1.

Definition (Global remainder). We identify the global remainder as the matrix-
valued random variable

R ≡
N−1∑

n=0

Ŝ(tn+1, tN )R(tn, tn+1)Ŝ(t0, tn) .

The square of the global truncation error (3.2) at leading order is therefore

E2 = sup
‖Y0‖2=1

Y T
0 E

(
RTR

)
Y0 .

The local remainder has the following form in the case of constant coefficients
ai, i = 1, . . . , d, (see for example the integrators in Appendix A):

R(tn, tn+1) =
∑

α

AαJα(tn, tn+1) . (3.3)

Here α is a multi-index and the terms Aα represent products or commutations
of the constant matrices ai. The Jα represent Stratonovich integrals (or linear
combinations—of the same order—of products of Stratonovich integrals, including
permutations of α). The global remainder thus has the form

R ≡
N−1∑

n=0

∑

α

(
Ŝ(tn+1, tN )AαŜ(t0, tn)

)
Jα(tn, tn+1) .
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To construct the global truncation error we need to compute

E
(
RTR

)

=
N−1∑

n=0

∑

α,β

E

((
Ŝ(tn+1, tN )AαŜ(t0, tn)

)T (
Ŝ(tn+1, tN )AβŜ(t0, tn)

))

·

· E
(
Jα(tn, tn+1) Jβ(tn, tn+1)

)

+
∑

n6=m

∑

α,β

E

((
Ŝ(tn+1, tN )AαŜ(t0, tn)

)T (
Ŝ(tm+1, tN )AβŜ(t0, tm)

))

·

· E
(
Jα(tn, tn+1)

)
E
(
Jβ(tm, tm+1)

)
. (3.4)

Hence in the global truncation error we distinguish between the diagonal sum con-
sisting of the the first sum on the right-hand side above, and the off-diagonal sum
consisting of the second sum above with n 6= m.

Suppose we include in our integrator all terms AαJα with local L2-norm up
to and including O(hM ). The leading terms in R(tn, tn+1) thus have L2-norm
O(hM+1/2). Those with zero expectation will contribute to the diagonal sum, gener-
ating O(hM ) terms in the global error, consistent with a global order M integrator.
However those with with non-zero expectation contribute to the off-diagonal double
sum. They will generate O(hM−1/2) terms in the global error. We must thus either
include them in the integrator, or more cheaply, only include their expectations (the
corresponding terms of order hM+1/2 in R(tn, tn+1) will then have zero expectation
and only contribute through the diagonal sum).

4. Uniformly accurate Magnus integrators

We can compare the local accuracy of the Neumann and Magnus integrators through
the leading terms of their remainders R(tn, tn+1). Hereafter we only consider the
case of two driving Wiener processes W1(t) and W2(t) and constant coefficient ma-
trices ai, i = 0, 1, 2. At this juncture, the reader might like to re-acquaint themselves
with the explicit Neumann and Magnus integrators presented in Appendix A.

The remainder of an order M Neumann integrator R(tn, tn+1) ≡ Rneu
M (tn, tn+1)

is simply given by the terms not included in the Neumann approximation. For
an order M Magnus integrator, suppose σM (tn, tn+1) is the Magnus expansion on
[tn, tn+1], truncated to include the term sM , and that ρM (tn, tn+1) is the corre-
sponding remainder, i.e.

σ(tn, tn+1) = σM (tn, tn+1) + ρM (tn, tn+1) .

Then the remainder R(tn, tn+1) = Rmag
M (tn, tn+1) associated with the Magnus ap-

proximation on expanding the exponentials is

Rmag
M (tn, tn+1) = exp

(
σ(tn, tn+1)

)
− exp

(
σM (tn, tn+1)

)

= exp
(
σM (tn, tn+1) + ρM (tn, tn+1)

)
− exp

(
σM (tn, tn+1)

)

= ρM (tn, tn+1) + R∗
M (tn, tn+1) + O(σ2

MρM ) , (4.1)

where

R∗
M (tn, tn+1) = 1

2

(
σM (tn, tn+1)ρM (tn, tn+1) + ρM (tn, tn+1)σM (tn, tn+1)

)
, (4.2)
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can contribute to the global error at leading order.

Theorem 4.1 (Local error comparison). For a sufficiently small stepsize h,
the Magnus integrators of global orders 1/2 and 1 have smaller local error than the
corresponding Neumann integrators, i.e.

Lmag
6 Lneu .

Proof. Over one time interval [tn, tn+1], we set

R̂M ≡ Rneu
M − Rmag

M .

For order M = 1/2 integrators, a straightforward calculation shows (up to terms
of higher order that only contribute O(h) terms to the global error)

Rmag
1/2 = 1

2 [a1, a2](J21 − J12) and R̂1/2 = 1
2 (a1a2 + a2a1)(J21 + J12) .

Since these two terms are uncorrelated, we have that

E
(
(Rneu

1/2)T Rneu
1/2

)
= E

(
(Rmag

1/2 )T Rmag
1/2

)
+ E

(
(R̂1/2)

T R̂1/2

)
,

establishing the stated result for the order 1/2 integrators.
For the order M = 1 Neumann and Magnus integrators we have (up to terms

of higher order that only contribute O(h3/2) terms to the global error)

Rmag
1 = 1

2 [a0, a1](J10 − J01) + 1
2 [a0, a2](J20 − J02)

+ [a1, [a1, a2]]
(
J112 − 1

2J1J12 + 1
12J2

1J2

)

+ [a2, [a2, a1]]
(
J221 − 1

2J2J21 + 1
12J2

2J1

)

+ 1
8

(
4a2

0 + a4
1 + a2

2a
2
1 + a2

1a
2
2 + a4

2 + 2(a2
1a0 + a0a

2
1 + a2

2a0 + a0a
2
2)
)
h2 ,

R̂1 = 1
2 (a0a1 + a1a0)J1J0 + 1

2 (a0a2 + a2a0)J2J0

− 1
12

[
a1, [a1, a2]

]
J2

1J2 + 1
2a2

1a2J1J21 + 1
2a2a

2
1J1J12

− 1
12

[
a2, [a2, a1]

]
J2

2J1 + 1
2a2

2a1J2J12 + 1
2a1a

2
2J2J21

+ a3
1J111 + a3

2J222 + 1
12

(
[a1, [a1, a0]] + [a2, [a2, a0]]

)
h2 .

Here R̂1 and Rmag
1 are correlated, however a long but straightforward calculation

shows that

E
(
(Rneu

1 )T Rneu
1

)
= E

(
(Rmag

1 )T Rmag
1

)
+ h3XTBX + O(h7/2) ,

where X is the 12n × n matrix consisting of the n × n blocks

X1 =
[
a1, [a1, a2]

]
, X3 = a2

1a2 , X5 = a2
2a1 , X7 = a3

1 , X9 = a0a1 , X11 = a0a2 ,

X2 =
[
a2, [a2, a1]

]
, X4 = a2a

2
1 , X6 = a1a

2
2 , X8 = a3

2 , X10 = a1a0 , X12 = a2a0 ,
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and B is the 12n × 12n matrix consisting of n × n diagonal blocks of the form
bijIn×n for i, j = 1, . . . , 12 and where b = [bij ] is given by

b =
























1
144 0 − 1

48 − 1
48 0 0 0 0 0 0 0 0

0 1
144 0 0 − 1

48 − 1
48 0 0 0 0 0 0

− 1
48 0 7

24
1
12 0 0 0 1

8 0 0 1
8

1
8

− 1
48 0 1

12
7
24 0 0 0 1

8 0 0 1
8

1
8

0 − 1
48 0 0 7

24
1
12

1
8 0 1

8
1
8 0 0

0 − 1
48 0 0 1

12
7
24

1
8 0 1

8
1
8 0 0

0 0 0 0 1
8

1
8

5
12 0 1

4
1
4 0 0

0 0 1
8

1
8 0 0 0 5

12 0 0 1
4

1
4

0 0 0 0 1
8

1
8

1
4 0 1

4
1
4 0 0

0 0 0 0 1
8

1
8

1
4 0 1

4
1
4 0 0

0 0 1
8

1
8 0 0 0 1

4 0 0 1
4

1
4

0 0 1
8

1
8 0 0 0 1

4 0 0 1
4

1
4
























which has three zero and nine strictly positive eigenvalues, and hence is positive
definite. Hence there exists a non-singular matrix c such that b = cT c. Let C
be the 12n × 12n matrix consisting of n × n diagonal blocks of the form cijIn×n

for i, j = 1, . . . , 12. Then B = CT C and is therefore also positive definite; thus
establishing the stated result for order 1 integrators.

We now introduce two new modified global order 1 Magnus integrators.

Definition (Uniformly accurate Magnus integrator). We define the uni-
formly accurate Magnus integrator by

σumag = a1J1 + a2J2 + a0J0 + 1
2 [a1, a2](J21 − J12)

+ h2

12

(
[a1, [a1, a0]] + [a2, [a2, a0]] + a1[a2, [a2, a1]] + a2[a1, [a1, a2]]

)
.

Definition (Alternative accurate Magnus integrator). We define the alter-
native accurate Magnus integrator by

σamag = a1J1 + a2J2 + a0J0 + 1
2 [a1, a2](J21 − J12)

+ h2

12

(
a1a

2
2a1 + a2a

2
1a2

)
− h2

6

(
a1a0a1 + a2a0a2 + a1a2a1a2 + a2a1a2a1

)
.

Remark. For either modified Magnus integrator, the additional terms are extremely
cheap to compute as they are constant. Therefore they do not significantly add to
the computational burden.

Theorem 4.2 (Global error comparison). For a sufficiently small stepsize h,
the order 1/2 Magnus integrator is globally more accurate than the order 1/2 Neu-
mann integrator. In addition, for the order 1 integrators we have,

Eumag
6 Eamag

6 Eneu ,

i.e. the uniformly accurate Magnus integrator is globally more accurate than the
alternative accurate Magnus integrator which in turn is globally more accurate than
the order 1 Neumann integrator. In addition, the uniformly accurate Magnus inte-
grator is globally more accurate than the order 1 (unmodified) Magnus integrator.
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Efficient stochastic integrators 11

Proof. To compare the global accuracy of the Neumann and Magnus integrators,
we need to consider further contributions to the global truncation error at leading
order from two possible sources, from terms in:

1. ρM with non-zero expectation, a half order higher than the leading terms;

2. R∗
M—the next order term in the Magnus remainder (4.2).

For the Magnus integrator of order 1/2, the terms that might contribute to the
leading order global truncation error from either source have zero expectation,
and so contribute to the global truncation error at higher order. Hence we can
deduce directly from the corresponding local error result, that the order 1/2 Magnus
integrator is globally more accurate than the corresponding Neumann integrator.

For the order 1 Magnus integrator there are additional terms from both sources
that need to be considered. The terms in ρ1 that need to be included are

1
12

(
[a1, [a1, a0]] + [a2, [a2, a0]]

)
h2 . (4.3)

The terms in R∗
1 that need to be included are

1
12

(
a1[a2, [a2, a1]] + a2[a1, [a1, a2]]

)
h2 . (4.4)

In both cases we replaced the terms by their expectations since they only contribute
to the global error at leading order through the off-diagonal sum. Combining (4.3)
and (4.4), the additional terms in the Magnus remainder we need to consider are
the deterministic terms

R
mag = 1

12

(
[a1, [a1, a0]] + [a2, [a2, a0]] + a1[a2, [a2, a1]] + a2[a1, [a1, a2]]

)
h2 .

Further the additional terms in the Neumann remainder we need to consider are

R
neu =

(
1
2a2

0 + 1
4 (a2

1a0 + a0a
2
1 + a2

2a0 + a0a
2
2) + 1

8 (a4
1 + a2

2a
2
1 + a2

1a
2
2 + a4

2)
)
h2 .

If we set

A = a2
1a0 + a0a

2
1 + a2

2a0 + a0a
2
2 ,

B = 2(a1a0a1 + a2a0a2 + a1a2a1a2 + a2a1a2a1) − a1a
2
2a1 − a2a

2
1a2 ,

C = a2
1a

2
2 + a2

2a
2
1 ,

D = a4
1 + a4

2 ,

then

R
mag = 1

12 (A − B + C)h2 and R
neu =

(
1
2a2

0 + 1
4A + 1

8C + 1
8D
)
h2 .

The difference

(Rneu)T
R

neu − (Rmag)T
R

mag

= 1
4 (a2

0)
T a2

0 h4 + 1
16

(
(a2

0)
T (2A + C + D) + (2A + C + D)T a2

0

)
h4

+ 1
18AT Ah4 + 1

144

(
AT B + BT A

)
h4 + 7

288

(
AT C + CT A

)
h4

− 1
144BT B h4 + 1

144

(
BT C + CT B

)
h4 + 5

576CT C h4

+ 1
32

(
AT D + DT A

)
h4 + 1

64

(
CT D + DT C

)
h4 + 1

64DT D h4 ,
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12 Lord, Malham & Wiese

is not in general positive definite (note we can consider this difference in isolation
because all other terms in the remainders have zero expectation). However if we
include the terms R

mag in our order 1 Magnus expansion—as we do in the uni-
formly accurate Magnus integrator—the terms R

mag are consequently not present
in the integrator remainder. This establishes that the uniformly accurate Magnus
integrator is more accurate than the order 1 Neumann expansion as well as the
order 1 (unmodified) Magnus integrator.

We can refine this result further. The term involving BT B is the only nega-
tive definite term. Including this term in the Magnus integrator—as we have done
in the alternative accurate Magnus integrator—establishes its superiority over the
Neumann integrator.

Now comparing the terms left in the remainders of the uniformly accurate Mag-
nus integrator and alternative accurate Magnus integrator, we get for a sufficiently
small stepsize h,

(Eamag)2 = (Eumag)2 + 1
144 sup

‖Y0‖2=1

∥
∥(A + C)Y0

∥
∥

2

2
h4 ,

establishing the first inequality stated in the theorem.

Remark. The alternative accurate Magnus integrator contains the minimum set of
additional terms to ensure its superior accuracy over the order 1 Neumann integra-
tor. Note that the corresponding terms we might think of including in the Neumann
expansion have zero expectation and so contribute to the global truncation error
at a higher order. We could however, improve the order 1 Neumann integrator to
include all the terms in R

neu. But then the uniformly accurate Magnus integrator
would still be globally more accurate than such a modified order 1 Neumann inte-
grator. This is because the terms with zero expectation in the remainders Rmag

1 and
Rneu

1 will be the only terms contributing to the global errors, and the local error
comparison result in Theorem 4.1 guarantees the corresponding global result.

5. Quadrature

We start by emphasizing two inherent scales.

1. Quadrature scale ∆t—the smallest scale on which the discrete Wiener paths
W1(t) and W2(t) are generated.

2. Time-step scale h—on which the stochastic differential equation is stepped
forward.

To evaluate the numerical solution to our stochastic differential equation over
the interval [tn, tn+1] we need to approximate Stratonovich integrals such as J12.
The main idea is to approximate these integrals by their corresponding expectations
conditioned on the filtration representing intervening knowledge of the Wiener paths
(Clark & Cameron 1980; Gaines & Lyons 1997)

FQ = {∆Wi(tn + q ∆t) : i = 1, 2; q = 0, . . . , Q − 1; n = 0, . . . , N − 1} ,

where
∆Wi(tn + q ∆t) ≡ Wi(tn + (q + 1)∆t) − Wi(tn + q ∆t) ,
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Efficient stochastic integrators 13

and Q∆t ≡ h, i.e. Q is the number of discrete Wiener path intervals in each time-
step interval. We can think of having knowledge of the paths W1(t) and W2(t) in
the interval [0, T ] = ∪N−1

n=0 [tn, tn+1] at the points tn + q∆t, q = 0, . . . , Q − 1.
For example the conditional expectation of J12 is (we set τq ≡ tn + q∆t):

Ĵ12(tn, tn+1) = 1
2

Q−1
∑

q=0

((
W1(τq+1) − W1(τ0)

)
+
(
W1(τq) − W1(τ0)

))

∆W2(τq) .

which can be found in Gaines & Lyons (1997). More generally for higher Stratonovich
integrals such as J112, J120 etc. used in our analysis, the conditional expectations
and the corresponding local quadrature errors are derived by approximating the
integrals with their discretizations and using the following formula for the condi-
tional distribution of W (s) − W (u) given W (t) − W (t0) for t0 ≤ u ≤ s ≤ t (see
Arnold 1974)

W (s) − W (u)
∣
∣W (t) − W (t0) ∼ N

(
s − u

t − t0

(
W (t) − W (t0)

)
, s − u − (s − u)2

t − t0

)

.

These conditional expectations are intimately linked to the polygonal area/volume
approximations, where the paths W1(t) and W2(t) are approximated by piecewise
linear interpolations of the filtration set FQ—see Wong & Zakai (1965), Kloeden &
Platen (1999) and Gyöngy & Michaletzky (2004). More precisely, if we substitute
the approximations Wi(τ) ≈ (∆Wi(τq)/∆t) (τ − τq) + Wi(τq) over each subinterval
τq 6 τ 6 τq+1 into the Stratonovich integrals, we obtain polygonal area/volume
approximations for them. It turns out that the polygonal approximation for J12 is
precisely Ĵ12, while the polygonal volume approximation for J112 is the same as
Ĵ112 up to an additive asymptotically small term 1

12∆t
(
W2(tn+1) − W2(tn)

)
.

We now examine the error in these approximations, in particular for J12(tn, tn+1).
Note that E

[
J12(τq, τq+1)

∣
∣FQ

]
= 1

2∆W1(τq)∆W2(τq). With this in mind,

∥
∥J12(tn, tn+1) − Ĵ12(tn, tn+1)

∥
∥

2

L2 =

Q−1
∑

q=0

E

(

Var
[
J12(τq, τq+1)

∣
∣FQ

]
)

= O
(
h2/Q

)
,

where in the last step we used that Q∆t = h. Clark & Cameron (1980) prove
this is the maximum rate of convergence. Analogous estimates derived for the local
quadrature errors associated with our approximations Ĵ112, Ĵ120 and Ĵ1112 include
terms which involve the conditional error associated with J12, and these are the
terms that give the leading order estimates shown in Table 1. Karhunen–Loève
approximations have analogous rates of convergence but do incur slightly better
multiplicative order one constants (see Kloeden & Platen 1999, page 367). The
convergence for Ĵ10 concurs with Hofmann & Müller-Gronbach (2004).

6. Global error vs computational effort

The global error for an integrator of order M on [0, T ] with Nh = T is

E = KT (M)hM + KQ(M)h
1
2 /
√

Q , (6.1)
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14 Lord, Malham & Wiese

Table 1. Estimates for local quadrature errors and the computational effort associated with
our conditional expectation approximations. The top row indicates how the conditional er-
rors scale, while the bottom three rows indicate the number of quadrature points Q required
for these approximations to be sufficiently accurate representations to the correct order
(locally and therefore globally at a half order less).

Quadrature Ĵ12 Ĵ112 Ĵ10 Ĵ120 Ĵ1112

local error h/
√

Q h3/2/
√

Q h3/2/
√

Q h2/
√

Q h2/
√

Q

O
`

h3/2
´

h−1 · · · · · · · · · · · ·

U O
`

h2
´

h−2 h−1 h−1 · · · · · ·

O
`

h5/2
´

h−3 h−2 h−2 h−1 h−1

where

KT (M) = coefficient in the truncation error ,

KQ(M) = coefficient in the quadrature error for Ĵ12 .

Note that the global quadrature error can be deduced by combining the argu-
ments for the local L2 quadrature error in §5 with those in §3 for computing the
global truncation errors. Also we suppose we have used Q points in each subinterval
[tn, tn+1] to construct Ĵ12. For numerical methods of order 3/2 or higher, we should
also include the quadrature error associated with approximating higher order multi-
dimensional stochastic integrals such as Ĵ112. In practice we will construct Ĵ112 by
only using the minimum number of quadrature points to obtain the correct order
for the global quadrature error. For example the quadrature error associated with
Ĵ112, using Table 1 would be O(h/

√
q). If we choose q = hQ we ensure this error is

of the same order as that for Ĵ12. To account for the additional terms representing
the quadrature error associated with approximating the higher order stochastic in-
tegrals we, with a slight abuse of notation, subsume them into the Ĵ12 error term,
and to emphasize this we write KQ(M)—the coefficient depending on the order M
of the method.

The global computational effort (measured in flops) associated with generating
a Magnus approximation of global order M is for small h,

U =
(
4Q + cM n2 + cE + O(hQ)

)
N , (6.2)

which we have constructed by simply adding up the local effort contributions over
the N subintervals of [0, T ] of length h. The quantities shown are the local compu-
tational efforts (in flops) associated as follows:

4Q = computing the integral approximation Ĵ12 ;

cM n2 = evaluating the truncated Magnus series ;

cE = computing an n × n matrix exponential.

Here note that we use n to denote the size of the system and the flop counts
cM n2 + cE for each Magnus integrator of order M can be found in Table 2. The
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correction term O(hQ) represents the effort associated with any higher order mul-
tiple stochastic integrals such as Ĵ112.

Theorem 6.1 (Global effort vs error). The global computational effort U mea-
sured in flops is related to the global error E for sufficiently small stepsize h by

U =
(
(cM n2 + cE)TK

1/M
E (M)

)
E−1/M

︸ ︷︷ ︸

Ueval

+
(
4T 2K2

E(M)
)
E−2

︸ ︷︷ ︸

Uquad

, (6.3)

where Ueval and Uquad are the computational efforts associated with evaluation and
quadrature, and KE(M) ≡ KQ(M) + KT (M).

Proof. To guarantee a numerical method of global order M in (6.1) we must choose

Q = h1−2M . (6.4)

This ensures Ĵ12 is a sufficiently accurate representation of J12. With this choice
for Q, we have for a sufficiently small stepsize h,

E = KE(M)hM . (6.5)

Combining the results (6.4), (6.5) and that N = T/h with our expression (6.2) for
the global computational effort establishes the theorem.

There are two asymptotic regimes of interest. Firstly, when the evaluation effort
dominates the overall computational effort so that we can ignore the quadrature
effort. And secondly, when quadrature effort dominates the overall computational
effort so that we can ignore the evaluation effort. Ignoring each of the effects men-
tioned in turn in (6.3) establishes the following results.

Corollary 6.2 (Standard scaling). If U eval À Uquad then for a sufficiently small
stepsize h:

E ∼
(
(cM n2 + cE)T

)M
KE(M)U−M .

In other words the log-log plot of global error vs effort has a negative slope given by
the order M of the method.

Corollary 6.3 (Square-root scaling). If Uquad À Ueval then for a sufficiently
small stepsize h:

E ∼ 2TKE(M)U−1/2 .

In a log-log plot of global error vs effort all methods have the same slope of −1/2.

For a given fixed large computational effort, which order Magnus method is
most accurate? Note that for the order 1/2 method there is no quadrature effort.

Corollary 6.4 (Global error vs effort). For the order M = 1/2, 1 and 3/2
Magnus integrators the global errors EM are given in terms of the computational
effort U À 1 by:

E1/2 =
(
(c1/2 n2 + cE)T

)1/2
KE(1/2)U−1/2 ;

E1 ∼ 2TKE(1)U−1/2 ;

E3/2 ∼ 2TKE(3/2)U−1/2 .
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16 Lord, Malham & Wiese

Table 2. Floating point operation counts per step for different order schemes applied to
linear constant coefficient stochastic differential equations driven by two Wiener processes.
The Magnus column includes the 6n3 flops needed to compute the matrix exponential.

For each path Independent of the path

Order Neumann Magnus Neumann Magnus
1

2
9n2 5n2 + 6n3 4n3 n/a

1 13n2 7n2 + 6n3 8n3 4n3

1 1

2
56n2 19n2 + 6n3 50n3 28n3

Further, taking differences of the logarithms of these expressions we have

log E1/2 − log E1 ∼ 1
2 log(c1/2 n2 + cE) − 1

2 log 4T + log KE(1/2) − log KE(1) ,
(6.6)

log E1 − log E3/2 ∼ log KE(1) − log KE(3/2) . (6.7)

In other words the Magnus methods of order 1 and 3/2 converge for U À 1 to
within the fixed gap given by (6.7).

7. Numerical simulations

(a) Linear system

Our first numerical simulation is for a homogeneous and autonomous linear
problem involving two Wiener processes with coefficient matrices

a0 =

(
1
2

1
2

0 1

)

, a1 =

(
0 1

− 1
2 − 51

200

)

and a2 =

(
1 1

1 1
2

)

, (7.1)

and initial data ( 1
2 1)T (we found Higham 2001 a very useful starting point for our

Matlab simulations). In Figure 1 we show how the error scales with CPU clocktime.
We see that the superior accuracy of the Magnus integrators is achieved for the
same computational cost. Note that T = 1 and n = 2. In addition cE ≈ 6n3 = 48
flops—we used a (6, 6) Padé approximation with scaling to compute the matrix
exponential—see Moler & Van Loan (2003) and also Iserles & Zanna (2002). Then
assuming KE(1/2), kU and KE(1) are all strictly order 1, and using that c1/2 = 5

from Table 2, we see from (6.6) that log E1/2 − log E1 ≈ 1
2 log(20 + cE) ≈ 0.9,

which is in good agreement with the difference shown in Figure 1. We can also
see in Figure 1 that there is not too much to choose between the order 1 and
3/2 integrators, they are separated by a fixed small gap theoretically predicted
by (6.7). Note that in Figure 1 the uniformly accurate Magnus integrator and order
1 (unmodified) Magnus integrator yield virtually identical performances. A separate
check of the contribution of the terms in R

mag to the global error for our example
corroborates this observation (for small h).

(b) Riccati system

Our second application is for stochastic Riccati differential systems—some classes
of which can be linearized (see Freiling 2004 and Schiff & Shnider 1999). Such
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Figure 1. Global error vs CPU clocktime for the model problem at time t = 1 with two
Wiener processes. The error corresponding to the largest step size takes the shortest time
to compute.

systems arise in stochastic linear-quadratic optimal control problems, for exam-
ple, mean-variance hedging in finance (see Bobrovnytska & Schweizer 2004 and
Kohlmann & Tang 2003)—though often these are backward problems (which we
intend to investigate in a separate study). Consider for example Riccati equations
of the form

S(t) = I +

d∑

i=0

∫ t

0

(
S(τ)Ai(τ)S(τ) + Bi(τ)S(τ) + S(τ)Ci(τ) + Di(τ)

)
dWi(τ) .

If Ai(t) ≡
(

Bi(t) Di(t)

−Ai(t) −Ci(t)

)

and U = (U V )T satisfies the linear system

U(t) = I +

d∑

i=0

∫ t

0

Ai(τ)U(τ) dWi(τ) ,

then S = UV −1 solves the Riccati equation above—note that I ≡ (I I)T .
We consider here a Riccati problem with two additive Wiener processes, W1

and W2, and coefficient matrices

A0 =

(
−1 1

− 1
2 −1

)

, C0 =

(
− 1

2 0

−1 −1

)

and D0 =

(
1
2

1
2

0 1

)

,

and we take D1 = a1 and D2 = a2, where a1 and a2 are given in (7.1). All other
coefficient matrices are zero. The initial data is the identity matrix (for S and
therefore U and V also).
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Note that for this example the coefficient matrices A1 and A2 are upper right
block triangular and therefore nilpotent of degree 2, and also that A1A2 and A2A1

are identically zero. This means that S1 and s1 are identically zero (see Appendix A)
and the order 3/2 Neumann and Magnus integrators collapse to the simpler forms:

S(tn, tn+1) = I + A1J1 + A2J2 + A0J0 + A0A1J10 + A1A0J01

+ A0A2J20 + A2A0J02 + 1
2 (A0)

2h2 ,

σ(tn, tn+1) = A1J1 + A2J2 + A0J0 + 1
2 [A0, A1](J10 − J01)

+ 1
2 [A0, A2](J20 − J02) − 1

6 (A1A0A1 + A2A0A2)h
2 .

For either integrator, if we include only A1J1 + A2J2 + A0J0 we obtain order 1
integrators. The number of terms in each order 3/2 integrator is roughly equal, and
so for a given stepsize the Magnus integrator should be more expensive to compute
due to the cost of computing the 4 × 4 matrix exponential. Also the order 1 inte-
grators do not involve quadrature effort whilst the order 3/2 integrators involve the
quadrature effort associated with approximating J10—see Table 1. Using arguments
analogous to those at the end of §6 we can deduce the following expressions for the
global errors and efforts for small stepsize h: E1 ∼ KE(1)h, U1 ∼ (c̃1n

2 + c̃E)T h−1

and E3/2 ∼ KE(3/2)h3/2, U3/2 ∼ (8h−1 + c̃3/2n
2 + c̃E)T h−1. Consequently we see

that we expect the slope of a log-log plot of global error vs computational effort to
be −1 for the order 1 integrators, and ignoring the evaluation effort for the order
3/2 integrators, we expect to see a slope of −3/4. Hence for very small stepsize h
the order 3/2 integrators globally perform worse than the order 1 integrators for the
same effort. Further, the slope gets progressively smaller in magnitude for higher
order methods.

For comparison, we use a nonlinear Runge–Kutta type order 3/2 scheme for
the case of two additive noise terms (from page 383 of Kloeden & Platen) applied
directly to the original Riccati equation:

S(tn, tn+1) = S(tn) + f
(
S(tn)

)
h + D1J1 + D2J2

+ h
4

(
f(Y +

1 ) + f(Y −
1 ) + f(Y +

2 ) + f(Y −
2 ) − 4f

(
S(tn)

))

+ 1
2
√

h

((
f(Y +

1 ) − f(Y −
1 )
)
J10 +

(
f(Y +

2 ) − f(Y −
2 )
)
J20

)
, (7.2)

where Y ±
j = S(tn) + h

2 f
(
S(tn)

)
± Dj

√
h and f(S) = SA0S + B0S + SC0 + D0.

In Figure 2 we show the global error vs CPU clocktime for this Riccati problem.
Note that as anticipated, for the same step size (compare respective plot points
starting from the left), the order 1 Magnus integrator is more expensive to compute
and more accurate than the order 1 Neumann integrator. Now compare the order
3/2 integrators. For the nonlinear scheme (7.2), we must evaluate f(S) five times
per step per path costing 20n3 + 54n2 flops—here and subsequently n = 2 refers to
the size of the original system. The Neumann and Magnus integrators the evaluation
costs are 16(2n×n) = 32n2 and 6(2n)3 +11(2n)2 = 48n3 +44n2 flops, respectively
(directly counting from the schemes outlined above). Hence for the same relatively
large stepsize we expect the Neumann integrator to be cheapest and the Magnus
and nonlinear Runge–Kutta integrators to be more expensive. However for much
smaller stepsizes, the quadrature effort should start to dominate and the efforts of
all the order 3/2 integrators are not much different. The Magnus integrator then
outperforms the other two due to its superior accuracy.
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Figure 2. Global error vs CPU clocktime for the Riccati problem at time t = 1.

8. Concluding remarks

Our results suggest the uniformly accurate Magnus integrator is the optimal method
in dynamic programming or filtering applications such as any linear feedback control
system (or some neural or mechanical systems in nature). An important class of
schemes we have not mentioned thusfar are the asymptotically efficient Runge–
Kutta schemes derived by Newton (1991). Such schemes have the optimal minimum
leading error coefficient among all schemes which are FQ-measurable. Castell &
Gaines (1995) state that the order 1/2 Magnus integrator is asymptotically efficient,
and in the case of one Wiener process (take a2 to be the zero matrix) the order 1
uniformly accurate Magnus integrator we present in §4 is asymptotically efficient. In
the case of two or more Wiener processes, we expect our order 1 uniformly accurate
Magnus integrator to be a prime candidate for the corresponding asymptotically
efficient scheme.

Lastly, some extensions of our work that we intend to investigate further are:
(1) implementing a variable step scheme following Gaines & Lyons (1997), using
analytic expressions for the local truncation errors (see Aparicio et al. 2004); (2)
to consider the Lie-group structure preserving properties of Magnus methods in the
stochastic setting (though see Castell & Gaines 1995; Iserles et al. 2000; Kunita
1980; Burrage et al. 2004; Misawa 2001; and also Milstein et al. 2002 for a possible
symplectic application); (3) applications to nonlinear stochastic differential equa-
tions (see Ben Arous 1989 and Castell & Gaines 1995, and Casas & Iserles 2005 in
the deterministic case) and (4) pricing path-dependent options.

We thank Sandy Davie, Per-Christian Moan, Nigel Newton, Tony Shardlow, Josef Teich-
mann and Michael Tretyakov for stimulating discussions. We also thank the anonymous
referees for their helpful suggestions.
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Appendix A.

We present Neumann and Magnus integrators up to global order 2 in the case of
two Wiener processes W1(t) and W2(t), and with constant coefficient matrices ai,
i = 0, 1, 2. The Neumann expansion (1.4) for the solution over an interval [tn, tn+1],
where tn = nh, is

Sneu(tn, tn+1) ≈ I + S1/2 + S1 + S3/2 + S2 , (A 1)

where

S1/2 = a1J1 + a2J2 + a0J0 + a2
1J11 + a2

2J22 ,

S1 = a2a1J12 + a1a2J21 ,

S3/2 = a2
0J00 + a0a1J10 + a1a0J01 + a0a2J20 + a2a0J02

+ a3
1J111 + a2a

2
1J112 + a1a2a1J121 + a2

1a2J211

+ a2
2a1J122 + a2a1a2J212 + a1a

2
2J221 + a3

2J222

+ a2
1a0J011 + a0a

2
1J110 + a2

2a0J022 + a0a
2
2J220

+ a4
1J1111 + a2

2a
2
1J1122 + a2

1a
2
2J2211 + a4

2J2222 ,

S2 = a1a0a1J101 + a2a0a2J202 + a0a1a2J210 + a0a2a1J120

+ a1a0a2J201 + a1a2a0J021 + a2a0a1J102 + a2a1a0J012

+ a2a
3
1J1112 + a2

1a2a1J1121 + a2
1a2a1J1211 + a2a

3
1J2111

+ a1a
3
2J2221 + a2a1a

2
2J2212 + a2

2a1a2J2122 + a3
2a1J1222

+ a2a1a2a1J1212 + a1a2a1a2J2121 + a1a
2
2a1J1221 + a2a

2
1a2J2112 .

The corresponding Magnus expansion with

Smag(tn, tn+1) = exp
(
σ(tn, tn+1)

)
. (A 2)

is
σ(tn, tn+1) ≈ s1/2 + s1 + s3/2 + s2 , (A 3)

where, with [·, ·] as the matrix commutator,

s1/2 = a1J1 + a2J2 + a0J0 ,

s1 = 1
2 [a1, a2](J21 − J12) ,

s3/2 = 1
2 [a0, a1](J10 − J01) + 1

2 [a0, a2](J20 − J02)

+ [a1, [a1, a2]]
(
J112 − 1

2J1J12 + 1
12J2

1J2

)

+ [a2, [a2, a1]]
(
J221 − 1

2J2J21 + 1
12J2

2J1

)

+ [a1, [a1, a0]]
(
J110 − 1

2J1J10 + 1
12J2

1J0

)

+ [a2, [a2, a0]]
(
J220 − 1

2J2J20 + 1
12J2

2J0

)
,

s2 = + [a2, [a1, a0]]
(
J120 + 1

2J1J02 + 1
2J0J21 − 2

3J0J1J2

)

+ [a1, [a2, a0]]
(
J210 + 1

2J2J01 + 1
2J0J12 − 2

3J0J1J2

)

− [a1, [a1, [a1, a2]]]
(
J1112 − 1

2J1J112 + 1
12J2

1J12

)

− [a2, [a2, [a2, a1]]]
(
J2221 − 1

2J2J221 + 1
12J2

2J21

)

+ [a1, [a2, [a1, a2]]]
(

1
24J2

1J2
2 − 1

2J2J112 + 1
6J1J2J21 − 1

2J1J221 + J1122

)
.
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To obtain a numerical scheme of global order M using the Neumann or Magnus
expansion, we must use all the terms up to and including SM or sM , respectively.
The Magnus expansion, up to and including the term s3/2, can be found in Burrage
(1999)—using the Jacobi identity we have one less term. Note that we have explicitly
used the relationships between multi-dimensional stochastic integrals generated by
partial integration (see Gaines 1995 and Kloeden & Platen 1999). This is well
known, indeed Gaines 1995 and Kawski 2001 consider the shuffle algebra associated
with these relations. Using these relations in the Neumann expansion does not
significantly reduce the number of terms. However it is clear that all the higher
order multi-dimensional integrals can be directly expressed in terms of only a few
specific integrals of that order and so the Magnus or Neumann approximations of
order 2 shown above can both be expressed in the computationally favourable basis

{J0, J1, J2, J12, J01, J02, J112, J221, J110, J220, J120, J210, J1112, J2221, J1122} .

Though there are many variants of this basis we could use, the basis we have chosen
reveals explicitly that we should expect to be able to approximate all the higher
order terms by single sums (including J1122).

As an example, to construct a global order 3/2 Magnus integrator, the local
remainder is Rmag

3/2 = ρ3/2 + · · · = s2 + · · · . All the terms in s2 have L2-norm of

order h2. They all have zero expectation as well and so only contribute to the global
error through the diagonal sum in (3.4) generating terms of order h3/2, consistent
with the order of the integrator. Note that in s3/2 we included the two terms (the
last two) with L2-norm of order h2 because they have non-zero expectation though,
as explained at the end of §3, we can replace them by their expectations. Similar
arguments explain the form of the order 3/2 Neumann integrator and how analogous
terms can be replaced by their expectations. Lastly, note that in the case of one
Wiener process, exp(a0t + a1J1) generates a global order 1 Magnus scheme—see
Castell & Gaines (1995).

Suppose that instead of the linear Stratonovich stochastic differential equa-
tion (1.2) we have S = I + K ◦ S + F , where F (t) ≡

∫ t

0
Af (τ) dWf (τ) is a non-

homogeneous term with a Wiener process Wf independent of Wi, for i = 1, . . . , d,
and Af (t) is a given n × n coefficient matrix. The solution S can be decomposed
into its homogeneous and particular integral components, S = SH + SP , where the
homogeneous component SH can be solved as outlined in the introduction and the
non-homogeneous component is SP (t) = (I+K+K

2 +K
3 + · · · ) ◦F or equivalently

SP (t) = SH(t)
∫ t

0
S−1

H (τ)Af (τ) dWf (τ).
For the non-autonomous case, where the coefficient matrices ai(t), i = 0, 1, 2 are

not constant, we assume they have Taylor series expansions on [tn, tn+1] of the form
ai(tn +h) = ãi(tn)+bi(tn)h+ · · · . Then we need to modify the order 2 autonomous
numerical schemes by replacing the ai by ãi at each step, and adding the terms

S̃(tn, tn+1) ≈ b1J01 + b2J02 + 1
2b0J00 + ã1b1J011 + ã1b2J021 + ã2b1J012 + ã2b2J022

to the Neumann expansion, or the following terms to the Magnus expansion

σ̃(tn, tn+1) ≈ b1J01 + b2J02 + 1
2b0J00 + ã1b1(J110 − 1

2J1J10) − 1
2b1ã1J1J01

+ ã2b1(J012 − 1
2J2J01) − 1

2b1ã2J2J01 + ã1b2(J021 − 1
2J1J02)

− 1
2b2ã1J1J02 + ã2b2(J220 − 1

2J2J20) − 1
2b2ã2J2J02 .
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