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Neural dynamics : a source of computational problems

Gabriel Lord (Heriot-Watt University)
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°0. Abstract

We take as an example the Baer-Rinzel model of the dendrites in a single neuron.
Computations show a rich dynamical structure with the co-existence of stable pulses
and multipulses.
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°1. Dendrites on the Neuron

Looking at a model of dendrites of a single neuron

NEURON

DENDRITE

Dendritic spines are prominent in
© Cerebellar cortex, Basal ganglia, Cerebral cortex
© learning and memory, logical computations, pattern matching
© 80% spine heads are excitable
© travelling waves in distal dendritic trees
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´2. Baer & Rinzel Continuum Model [JNeurophys, 65, 1991]

Model of Dendrite :

Take Hodgkin-Huxley (HH) dynamics in the spine heads

which are coupled by a diffusive cable with resistence r.

V(x,t)

HH HH HH

V(x,t)
^

r

spine
head

spine
neckcable

Voltage in cable: V (t) Voltage in spine heads:V̂

Vt = −gL(V − VL) + Vxx + ρ(x)
V̂ − V

r

V̂t = −HH(V̂ , m, n, h) − V̂ − V

r

Conductance variables m, n, h take values between 0 and 1

τXXt = X∞ − X, X ∈ {m, n, h}
Take ρ(x) as constant ρ
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°3. Travelling wave solution: wavespeed c

Seek a travelling wave solution : ξ = x − ct.

V ′ = W

W ′ = cW + gL(V − VL) − ρ(V̂ − V )/r

cV̂ ′ = gL(VL − V̂ ) − (V̂ + V )/r − gKn4(V̂ − Vk) − gNahm3(V̂ − VNa)

cX ′ = (X∞ − X) /τX , X ∈ {m, n, h}

Get a 6D system of ODEs to solve. Key parameters in the system are

• Wave speed c

• Resistance r

• Density ρ

There is a unique fixed point : 5D stable manifold & 1D unstable manifold
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°4. Computation of Connections

Truncate & Rescale ODE system to interval [0, 1]

Apply Projection BC’s [Beyn ’90, Beyn ’93] :

x = 0 Project out linear center-stable manifold

x = 1 Project out linear center-unstable manifold

+ Integral Phase Condition

Baer-Rinzel Model :

Initially seek homoclinic solutions to the unique fixed point:
→ Continue in any 2 of systems parameters
(Homoclinic in a codim 1 subset of parameter space)
Initial Guess for Newton:
(1) Large period approximation
(2) ’Cut and Paste’ solutions together
Continuation of solution as BVP using auto97
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°5. Numerical results

5.1 Wave-speed c vs density ρ
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For small ρ Propagation failure
The speed of H1, H2, H3 and H4 for r = 0.05 as a function of the spine density ρ.
For fixed (small) r multi-pulse solutions can exist at smaller values of ρ than H1.

5.2 Forms of Pulses
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Different forms of pulse solutions to the Baer-Rinzel model. Note there are fast and
slow forms of solutions. It is the fast H1 solution which is stable.

5.3 Wave-speed c vs resistence r
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We show the speed of the pulse H1 as a function of the spine-stem resistance r for
ρ = 25. The open circles denote the limit point of periodics. Note the gaps where
for H2, H3, H4 cease to exist. This small r phenomena is shown in the blow up.

5.4 Density ρ vs resistance r
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Fixed Wave speed c = 0.1 and small density blow up showing gap in solutions.
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Borders of propagation failure for H1
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Continuation of limit points of homoclinics shows the propagation failure of H1. Also
plotted H1–H4 on the same diagram showing propagation failure in the small gap.

5.5 H1 in 3D Parameter space
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Existence of the H1 in 3D parameter space with continuation of the limit points
giving boundary of existence.
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°6. Propagation Failure & Stability

Propagation Failure of pulses for :
© too large a spine stem resistance

© too small a density ρ

Co-existence of multi-pulse solutions :
A small change in parameters result in many different types of pulse solutions.

Stability
Numerics indicate that the pulse H1 is stable (see below). Once stability of this
branch is established the by [Sandstede ’98] infinitely many of the multi-pulse solu-
tions are stable. From a biological point of view this gives a rich structure of pulses.
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°7. Challenges:

A key tool in dynamical systems analysis is the numerical continuation of solutions

as parameters vary. This allows both stable & unstable solutions.

For the Baer-Rinzel model discussed here it would be interesting to have a more com-

plete picture of the dynamics in the system.

As part of these dynamics Heteroclinic connections are also observed.

Some of these can be computed using the techniques outlined in Box 4.
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1. Non-uniform density:

From the biology (Box 1.) the density of

the spines is non-uniform along the dendrite.
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In this figure a sigmoidal density function was taken along the dendrite. There

are interesting questions of computing travelling wave type solutions in non-

heterogenous media [Xin,2000].

If the spine heads are taken at discrete sites then the computation of dynamics

over lattices is important. There are many direct computations on lattices &

some results continuing connections on lattices (eg [Elmer & van Vleck ’99]).

Other models lead to Integro-Differential type models.

2. Structure in dendrites & Neuron

These calculations all assume a single cable and ignore the branching structure

found in the dendrites. Extensions include : more ’realistic’ geometries with

branching (and thickening) of the dendrite and integration into a ’full’ model of

a neuron. However, these lead to complex and large systems.

3. Stability and existence of pulse solutions under stochastic forcing [Kuske & Baer

’01, Xin ’00].

Since no neuron is fully isolated, stochastic forcing may be used to model the

background field. Travelling waves can be generalized to the stochastic case and

can be calculated by direct numerical simulation. Under stochastic forcing with

multiplicative noise there exists a single fixed point - with stable and unstable

manifolds. A natural question is if there exists a homoclinic connection - and

how this might be continued or computed.

4. Need to validate with Biology and Experiments !
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