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Abstract

We consider semi-discrete and fully discrete approximations of nonlinear parabolic equa-
tions in the limit of unbounded domains, which by a scaling argument is equivalent to the
limit of small viscosity. We de£ne the spatial densityeetntropy, topological entropy and
dimension for the attractors and show that these quantities are bounded. We also provide
practical means of computing lower bounds on them. The proof uses the property that so-
lutions lie in Gevrey classes of analyticity, which we de£ne in a way that does not depend
on the size of the spatial domain. As a speci£c example we discuss the complex Ginzburg—
Landau equation.
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1 Introduction

We consider the following general parabolic equation,
ou = vAu~+yu+ F(u) , r € [~Lx, L7]¢, t >0, (1.1)

for a complex valued function = u(z,t) and bounded continuous initial conditiatiz,0) =
uo(x). We restrict ourselves tb € N for convenience. The coefEcients of (1.1) satisfy

veC, Re(v) >0, v € R,
and we assume th&te(F') andIm(F") are real analytic functions dte(u) andIm(u).

We are interested in the large volume limit (- oo) of the long time dynamics (in particular

the attractor) of (1.1) and its approximation by numerical schemes. In the latter case we are
interested in the limit when the mesh size of our discretisation is kept constant while taking the
limit L — oo, thereby obtaining an in£nite-dimensional, but still discrete system (see Section 6

for results of upper semicontinuity of the attractors in terms of the different parameters of the

problem).

We remark that by a scaling transformation, the large volume limit can be interpreted as a small
viscosity limit. The rescaled function(y,t) = u(Ly, t) with y € [—, 7|? satisEes the following
equation
14
Ov = ﬁAv+vv+F(v),

with periodic boundary conditions op-r, 71]¢. It is however easier to work with (1.1) (with
periodic boundary conditions) and take— oo. Indeed, since the problem on the full spae
Is well-posed, we have a priori bounds for &ll< co. In fact, we view the periodic boundary
conditions or{— L, Lx]? for large L as an approximation of the in£nite volume.

For each £xed. < oo, (1.1) generates a semi-ad@y . We discretise this time-evolution spatially

by truncating to a £nite number of (Fourier) modes. We make this truncation by multiplying by a
smooth function in Fourier space (rather than a sharp indicator function), to have a better control
asL — oo (when the spectrum becomes dense). We then discretise in time by a non-stiff explicit
scheme considered in [26]. This scheme is amenable to analysis and also proves to be an efEcient
numerical scheme for smooth initial conditions.

It is not the purpose of this paper to prove the existence of global attractors for (1.1) or for the
discretisations, this has been considered in different setups in a large number of publications (see
for example [27, 24, 3, 1, 29]). Instead, we assume the existence a semi-aow and of a family of
global attractorsA(L), for the continuous and discrete problems (see De£nition 3.2).

We compute bounds on statistical quantities that are valid both for the discrete and continuous
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systems. The £rst of these statistical quantities is the (Kolmogerartropy

L logN(g,ﬁ(L))
H, = hIgl_)S()lip (2Lr) ,

whereV is the minimum number of balls of radiusin the topology ofZ.> that are needed to
cover the attractad (L) (see De£nition 3.3). We prove thét is a £nite number in Theorem 4.3.
We thereby get a bound on the upper density of dimension

dyp = lir? jélp loge1 -
This is to be compared with the results of Kolmogorov and Tikhomirov [14], where they obtain
a bound of the same type for the set of all entire analytic functions of exponential type. This
result follows from a sampling result for such functions (Proposition D.3), namely any of these
analytic functions can be reconstructed by interpolation of a discrete set of values. Although the
functions onA are not entire functions, they are still determined by a discrete sampling.

Remark that it is appropriate to take th& topology, since the diameter Jf(L) does not depend
on L in this topology, unlike the topology of Sobolev spaces of hon-zero order. We remark that
the L topology is stronger than th&* topology, hence our results do not follow from [9, 8, 29].

We also wish to emphasise here that the order of the limits in our de£nitidg, o important.
A more ‘naive’ de£nition would be

—~ . log NV'(e, A(L))
dup = han_)s:ip 111?_%1p Lr)lloge—1

The two limits do not commute in general, see [5]. We believe our approach is more natural from
an experimental/numerical point of view, in the sense thata parameter that can be varied in
a series of measurements/simulations made at a £xed aceuracy

We also consider the density of topological entropy in Section 5. We show that the spatial
densities satisfy the analogue of the following well known inequalities [13, 21]

V S htop S >\dup7

where) is the volume expansion ratkjs the largest Lyapunov exponent,,, is the topological
entropy andl,,, is the upper Hausdorff dimension.

The paper is organised as follows: in the remainder of this section we introduce the notation for
the paper. In Section 2 the semi-discrete and fully discrete approximations to (1.1) are presented.
In Section 3, we de£ne the density fentropy, topological entropy, of upper dimension and

the volume growth rate and state our assumptions on the equation and its approximations. A
key result of the paper is Lemma 4.2 (proved in Appendix A), which states that the evolution
has a fast local smoothing effect, a property which allows us to establish upper bounds on the
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e-entropy (Section 4). This is then applied in Section 5 to show that the topological entropy is

£nite. We also show that it is bounded below by the volume expansion rate (Section 5.2). We
discuss the upper-semicontinuity of the attractors in Section 6. Technical proofs are given at
the end of the paper: Appendix B contains a proof of analyticity for the fully discrete scheme,

Appendix C contains a Lemma on analytic functions and Appendix D recalls some results on
Gevrey and Bernstein classes.

1.1 Notation

We use the following convention3:is the complex conjugate efand|z| = v/zZ its modulus.
A function f = f; + if, with both f; and f, real-analytic is identifed with the vector-valued
function f = (f1, f2). Its analytic extension to the complex plane has the foft-ig:, fo+igs)

and we write| f| = (|f1]> + [fo|* + |91]* + |g2\2)1/2 which, on the real axis, is equal to the
modulus of the complex functiofi The convolution of two functiong, g is denotedf x g(x) :=

[ flx=y)g(y)dy.

If « is a function oft (time) andxz (space), then we consider it either as a function of two
variables with values irC, written u(z,t) € C, or as a function of time with values in the
functions ofz, written u(t) € C,(R?) (the set of bounded continuous functions). A function
in the setC,..([—Lw, L7]?) of 2Lr—periodic continuous functions, will often be identifed (by
periodic extension) with its lift t@, (RY).

The space€,(R?) andC,..(|— L, L]|?) are Banach spaces with the sup ndrml|., and may
be viewed as subspaces @ (R?), || - ||) and (L>([—Lm, Lx]%), || - |l«) respectively. We
also make extensive use of the Gevrey clds&') and the Bernstein clads, (C). These are
both discussed in Appendix D. Ke(f) andIm(f) belong to the Gevrey clask,(C), we use
the notationf € [G,(R)]? (similarly for B,(C")).

We denote byl the standard Fourier transform operator

1 : ,
(THE) = G [ p@in, (T @ = [t
The Fourier series operator fof. 7—periodic functions is denoted with the same symbol:
1 , ,
T = 7/ 6“"0'35/[/ T d.fE, T-1 ) = e—zn~x/L -
(T9), = gy |, @) (T1f) () = ) f

neza

We introduce two different smooth cutoff functions. The £rst of theseacts in real space and
serves as a weight i norms, in order to get bounds that do not depend.on
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De£nition 1.1 Lety be a real-space cutoff function satisfying
d Vo
pl) >0 VreR p(-x) = ¢@), [ =1, [ < oo,

and, moreovery~! is a tempered distributionf(¢ ! f < oo for any Schwartz functioff).

Examples.The function
1

0 = T e
satis£es all of our requirements (hefg, is a normalisation constant determined by the equation
[ ¢ =1, similarly for C;, below). However, the function
1
cosh(Cyxy) - - - cosh(Cyxg) ’
which has a sharper decay at inf£nity, cannot be used because it fails the last prepe(ty) is
not a tempered distribution. The importance of this may be seen in Lemma 4.2.

() =

Note that for (1.1) the function could be used, and would provide sharper bounds in our proofs.
This does not work however with the truncation to a £nite number of modes (such as given by
the semi-discrete system (2.3) or fully discrete system (2.5)).

Our second cutoff functiorg, is de£ned in terms of its Fourier transform. It smoothly truncates
to a £nite set of Fourier modes hence produces a £nite dimensional problem.

De£nition 1.2 Let K > 1 and Ieth be aC* function taking the following values:

~ o [1 if |k <K-1,
5K(’ﬂ)_{o if k| > K.

Its inverse Fourier transforn, = T—l(gK) is an (entire) Schwartz function.

Note that iff is a Schwartz function, thefx « f is a Schwartz function whose Fourier transform
has support if— K, K]%, hence it belongs t8 (C) for someC, see [23].

Acknowledgements. We are grateful to Jan Kristensen for useful discussions, especially in
relation to Lemma C.1. The work of J.R. has been supported by the Fonds National Suisse de la
Recherche Scientifque and the EPSRC GR/R29949/01.

2 Semi-Discrete and Fully-Discrete Approximations

In this section, we propose a spatial discretisation of (1.1) and a fully discrete scheme.
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Figure 1: The cutoff functions of De£nitions 1.1-1.2

2.1 Galerkin Scheme

The semi-discretisation we describe here is a spectral method/NVLetN, then we use the
Fourier cutofft - of De£nition 1.2 withK = N to de£ne the operatoFsY andQ” f := f—PN f
where

PVf = tvx f = T (&T(S) . (2.2)

i.e.,

PY Y e = Y B/

nezd [n|<NL

Notice thatP” truncates tq2N L)? modes, not2N)<. In this way7 (P" f) has support con-
tained in[— N, N]¢ for all L. The operatoP? is not a projector sinceVPY # PV,

The Galerkin approximation is deEned as follows: the solutibn ¢) to (1.1) is replaced by a
£nite Fourier series
uV(a,t) = Y up(t)e (2.2)

In|<NL

The evolution equation is obtained by applyinj to the nonlinear term of (1.1) and to the initial
conditionuy:

o™ = (y+vA) +PYF(u), uN(z,0) = (PNug) (). (2.3)

2.2 Fully Discrete Scheme

In this section we de£ne an explicit, non-stiff (for sufEciently smooth data) full discretisation

of (1.1) introduced in [26]. The time-discretisation is an exact exponential integrator for the
linear part and a simple (ordéj) quadrature for the nonlinear term appearing in the variation

of constants formula. The full discretisation is obtained by applying this time-discretisation to
the Galerkin scheme (2.3). We use this particular scheme because it makes it straightforward to
prove that solutions are (Gevrey) analytic functions (uniformly in the parameters of the scheme,
see Appendix B), a fact that we heavily rely on in the next sections.
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Let £ = v+ vA andK(z, t) be the convolution kernel associated with the operatp(tL):

K(z,t) = / et O—vIER)E g (2.4)

(2m)4

Note that the operatd?”¥ commutes withC x - since both are convolution operators. ket 0
denote the time-step. Then the fully discrete approximatiar(1ot) is defned iteratively by

h
WV ((n+1)h) = K(h)*u™(nh) + (/ PYIC(h — s) ds) * F(u™(nh)).  (2.5)

0
In terms of the Fourier coefEcients, (2.2), we get

h
ul (n+1)h) = e"mul(nh)+ (/ eh=9)Am ds) PNTF(T_luN(nh))m
0

h>\m_1

= "yl (nh) + (*6

" ) gN(m/L)TF(’T_luN(nh))m :

where{\,,}.cz« are the eigenvalues df, namely)\,, = v — v|m|?/L?, n is the time indexm
is the Fourier index, and is the Fourier transform.

For the purposes of analysis, it is useful to consider this scheme in terms of piece-wise solutions
of a linear differential equation. Indeed’ (z, (n + 1)h) is the solution at time = & of

dwu(z,t) = vAu(z,t) + yu(z,t) + PYF (u(z,nh)) (2.6)
with initial conditionu™ (x, nh) att = 0.

Remark. We could apply our techniques to other numerical schemes. We only require the

numerical approximation to belong to the Gevrey clgs&”') of bounded real analytic functions

for somex > 0, C' > 0 (see Appendix D). There exists many wavelet and £nite element schemes

satisfying this requirement, see [7, 17]. In particular, Propositions D.2 and D.3 provide a natural
example of a different basis of analytic functions on which our problem can be decomposed and
then a truncation applied: this basis consists of the functions

3¢ sin (22 — §jm) sin (62 — jn)
(67— jr)? ’

U(r) =

for j,k € Z4. These functions have the advantage of being localised both in real space and in
Fourier space although the numerical implementation is more involved.

3 De£nitions and Assumptions

Since we are interested in the large volume limit we specify this dependence in the de£nitions
below.
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Assumption 3.1 For initial data ug € Cpe([— L, L7|?), we assume that

e equation (1.1) is the generator of a semi-a®{y : ug — u(t);

e forall N > N, the semi-discrete equation (2.3) is the generator of a semidipy : ug —
u(t);

e forall N > Nyandh < hq the fully discrete equation (2.5) is the generator of a semi-aow
®f oy uo > u(t) witht = nh,n € N,

Furthermore we assume for each of the semi-cows above that there exists comstafntand

R > 0, independent andt, such thafRe(u(t)) andIm(u(t)) belong to the Gevrey clagk, (R)

for all t > T'(u) and sou(t) € [G,(R)]?. In other words, the following sets are absorbing balls
for their corresponding semi-cows:

B(L) = Cpar([~Lm, La]") () [Ga(R)? ,
By(L) = PNCpu([—Lm, L)) () [Ga(R
Byn(L) = PYCper([—Lm, L7)*) () [Ga(R

),
)*

Throughout the paper we usk to denote any of the semi-sows (withaken appropriately)
defned above anB(L) to denote the corresponding absorbing balls.

We next de£ne the attractors of the different evolutions introduced above.

De£nition 3.2 We de£ne the following invariant attracting sets for the sows de£ned in Assump-
tion 3.1

AL) = (eL(BL) .

t>0

Ax(L) = ()@ n(Bx(L)) .

t>0

Avi(L) = ()@}, (Bya(L)) .

neN
Throughout the paper we usfé(L) to denote any of the above attracting sets.
Clearly £nite trigonometric sums like (2.2) are entire functions. However, the assumption that

there exists a strip around the real axis wheYds bounded by the same constant for/élls not
trivial. Results of this type are know for a number of parabolic partial differential equations of the
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form (1.1), under the assumptions thais dissipative in an appropriate sense (see for example
[1, 25]). For numerical approximations, existence of semi-cows and global attractors is a well
considered problem (see for example [24]). Gevrey regularity of solutions for numerical schemes
has not been so widely considered, two different approaches are in [16, 26]. Appendix B contains
a sketch of how to obtain this result for the fully discrete scheme given by (2.5). The proof only
relies on an a priori.>® bound on the solutions and the assumption that the nonline@risy
analytic.

We next introduce the notion ef-entropy. The proof that this is a £nite quantity will be given

in Section 4. From this we de£ne the upper density of dimension.

De£nition 3.3 LetY be a subset of a metric spaéé A setd = {U,,...,Uy} of open sets in

-----

Let A(L) be endowed with the metric de£ned by the nfrfj... Let
N(e, A(L)) := inf{card() : U is ane—cover of A(L)} .

We de£ne the—entropyH. as the limit

L log/\/(e,ﬁ(L))
H. = hlzn_)s;ip QL)

The upper density of dimensidp, is de£ned by

dy, = limsu .
w e—0 P loge—1!

Remark. In[4, 5, 6, 22],H. was de£ned with a limit instead of a limit superior. The existence
of the limit followed from a subadditivity argument which cannot be used here because of the
boundary conditions. That is, the sd{L) we are considering here changes withwhereas

in the papers [4, 5, 6, 22], only the topology @hdepended ori, not the set itself. See also
[30, 31] for similar results.

Another, more classical notion of entropy is the topological entropy. It serves to measure to
complexity of a dynamical system. Similarly to the previous de£nition, we consider here the
spatial density of topological entropy. See Section 5 for results on the topological entropy.

De£nition 3.4 For 7 > 0, we defne a pseudo-metg, . onCpe,([— L, L7]%) by

dm(u,v) == max D% (u) — B (v)]|nc -
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An (m, e)—cover ofﬁ(L) is a collection of open sets whose diameter in the melyjc is at
mosts and whose union containé(L). LetM,, , (¢, A(L)) be the cardinality of such a minimal
(m, e)—cover.

The (spatial density of) topological entropy is de£ned as follows:

1 1 ~
htop = lir?jélp hanjogp Wnllféo p— log M, (e, A(L)) . (3.2)

The existence of the £rst limit in (3.1) can be proved by a subadditivity argument, see [4, 6, 13].
A useful way of computing a lower bound on the topological entropy is by measuring the volume
expansion rate (see Section 5.2).

De£nition 3.5 Let L — D(L) be a family of’—dimensional > sub-manifolds of the absorbing
ball B. We de£né&’, the volume expansion rate, by

]. ]_ ~
VY = liILILsip L) hg:s;p P log Vol, (@™ (D(L))) ,

whereVol, is the/—dimensional (Euclidean) volume.

4 Upper Bound on thes—Entropy

We now work towards proving our main result which is a bound oncthentropy. First we
discuss a preliminary result on the smoothing property of the semi-aow which is proved in Ap-
pendix A.

4.1 Smoothing Property of the Semi-Flow

We consider here differences= u — v of two orbitsu andv of the semi-cowd! of Assump-
tion 3.1. We de£ne functions; andG, in such a way thaty satisEes

dw = (v +vA)w+ PY(Gi(u,v)w + Go(u, v)w) (4.1)

for continuous time and
h
w((n+1)h) = K(h)*xw(nh)+ (/o PYK(h — s) ds) *(G1(nh)w(nh)+G2(nh)w(nh)) (4.2)

for discrete time. From now on we vie@; andG, as functions ofc andt (rather than ot: and
v) and we use the following consequence of Assumption 3.1.:
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Lemma 4.1 There existsx > 0 and R > 0, both independent a¥, L, andt¢, such thatw(t),
G4 (t) andG,(t) all belong to[G,,(R)]? for all ¢t > 0 (andt/h € N for (4.2)).

Remark. We may assume without loss of generality that thand thea of Assumption 3.1
and Lemma 4.1 are equal, and that they are also equal for the fully continuous, semi-discrete and
fully discrete equations.

We compute bounds on the weighteét-norm ofw shifted in the complex plane over a £nite time
interval. Instead of taking the usual (vdt} norm over[—Lx, Lr]¢, which would not behave
well in the limit L — oo, we take a norm over the whole &? weighted with the function

¢ from De£nition 1.1. Thereforel, disappears completely from our estimates. However, in
De£nition 3.3, we chose to work with thHe* topology. We therefore use the following bootstrap
argument. From a bound ih> at timet = 0, we get a bound in weightet® at timet = 0.
Using the next lemma we deduce a bound at 1 in a weighted? space on a strip of the
complex plane. This is in turn combined with Lemma C.1 and provides*abound at = 1.

Lemma 4.2 There is a constarit > 0 such that for any; € (—«, ), any N and L, the following
bound holds onv a solution of (4.1) (or (4.2)) as long @s< 1 (and¢/h € N in the case of a
fully discrete scheme):

sup /g@(:z—y)|w(x+iﬁt,t)|2dx < e sup /gp(x — ) |w(z,0)|* dx . (4.3)

ly|<Lw ly|<Lm

The proof of Lemma 4.2 is given in Appendix A.

TheseL? norms shifted in the complex plane can be understood in terms of the classical Gevrey

norms. Consider £rst = 1. Then, using Fourier series and takifig- 0, we see that
1/2 2
[5G+ 2i)2 + 1@ - 2P) do = |[rercs ] (4.

wherel is the bounded invertible operator de£ned by
(T(rf), = L+ e VYT, .

This means that the left-hand side of (4.4) is equivalent to a Gevrey norm (similar norms have
been used in [10, 11]). We apply a non-constant weight fungtiom this norm in order to get
estimates which are independent/ond take the sup ovés| < « to be able to use Lemma C.1.
Similar issues have been raised in the paper [20] but our approach is different in that we never
explicitly work in Fourier space. We note also that the norms used in [20] grow with the domain
size (due to the embedding constant), a problem we avoid here by using thecutoff



Large Volume Limits of Discretised Parabolic Equations 11

4.2 Proof of the Upper Bound
We next show that the-entropyH. (De£nition 3.3) is of ordelog e ! at most.

Theorem 4.3 There exists a constant < oo, independent of such that

H. < Clog (5) ,
€

whereR is the radius of the absorbing baﬁ(L) in Assumption 3.1.

The proof is based the following Lemma:

Lemma 4.4 There is a constant’ > 0 such that for all=: > 0, the following holds:

f}é f; }¥QE'+’(7'

Proof. The proof is a consequence of the smoothness result of the previous section. We give the
proof for the time continuous cases (1.1), (2.3). The time discrete case (2.5) is similar, it only
requires restricting to multiples ofh.

Suppose we are giverta—cover{U, ..., Uy} of A(L). Then by invariance off the set
{'(th),.... ' (Un)}

is a cover of A(L) for all t > 0. Moreover, ifu,v € U;, by Lemma C.1 combined with
Lemma 4.2, we have

sup |(<f>1(u) - cT>1(v))($ +iy)| < Ce.

|z|<Lw,2|y|<a
That s, if we letw = &' (u) — ®'(v), thenw € [Ga/2(Ce))? with C' independent of. ande.

We now use an argument due to Tikhomirov [28], discussed in [§8l],Theorem XXII. By
Proposition D.2v can be written as

w(z) = Z el 2emzy (2) (4.5)

ncZzd

with w, in the Bernstein clasf3,(C’¢)]* (see Appendix D for the de£nition df,). Thus,
splitting the sum in (4.5) in two, we can £ndidindependent of and L, and aw € [Bx (C’¢))?,

such that
19

|hU __iDHoo < 5 .
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If w € [Bx(Ce)]?, then by Proposition D.3,

() = Y @ (wxe(n) Fic(w = wc(n)

nczZd

hence there is @ > 0 depending only orX' such that||w||. < €/2if |w(zk(n))| < e for
all n € Z¢ for whichxx(n) = (n7)/(3K) € [—Lm, Lr]¢. There arex(K)(2Lx)¢ such points,

hence at most (K)(2Lm)’
c(K)(2Lm
(@) _. e
de *

balls of radius: /2 will be needed to covel3, (Ce)]?. This covers all the functiong obtained
from the setb!(U;) by the above construction. Consequendly(U;) can be covered with the
same number of balls of diameter

Repeating the operation with each one of IbféQs,fT(L)) sets of diamete2e of the original
cover{Uy,...,Ux}, we obtain a cover with at most

N(e, A(L)) < N(2e, A(L))CEE*

elements. Taking the logarithm, dividing ¥3L7)¢ and passing to the limit — oo, we obtain
Lemma 4.4.

Proof of Theorem 4.3. It trivially holds that Hz = 0, because\/’(R,/T(L)) = 1 by Assump-
tion 3.1. Letk be the smallest integer larger thiag(R/<)/ log 2, then by Lemma 4.4 we have

H. < Hy+C < -+ < Hu, +Ck < C'logR/e .

This proves Theorem 4.3

5 The Topological Entropy

5.1 Upper Bound by the Dimension

In this section, we prove that the topological entropy of the attractioiss bounded by a mul-
tiple of the upper density of dimension, a quantity related to:thentropy. The corresponding
inequality for £nite dimensional dynamical systems is well-known, see [13].

Theorem 5.1 There is a < oo such that

hiop < by < 00 . (5.1)
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Proof. The right-hand inequality is a direct consequence of Theorem 4.3. The left-hand in-
equality follows from the arguments in [4, 13] that we summarise herep Let) be such that
H. < (du, + p) log1/e forall e < e and then letL, = Lo(z, p) be such that for alL > Lo,

log N (e, A(L))
(2Lm)d

By iterating Lemma C.1 and Lemma 4.2, there ts:a 0 such that for allL and all (sufEciently
small)e > 0, if |[u — v||o < e then fort > 0,

< H.+p < (dup+p)log§+p~

19 (u) — @'(v) ]l < €.

Lete’ = exp(—bT)e. Let ans'—cover of A(L) (in the sense of De£nition 3.3) be given. Then it
is also &'/, )—cover (in the sense of De£nition 3.4), hence

Mzr(e, A(L)) < N(e',A(L)) .
It follows that

log Mz, (e, A(L))

. : .1
htop = hlzljélp han_)solip W jlljgo ?

1 -~
= lir?jélp liin_)s;ip L) irTlf T log M7/, (¢, A(L))

' ) 1 log N (¢, .Z(L))
< sl 7

1 1
< limsup lim sup T ((dup + p) log 7 + p) )

e—0 L—o0o

Sincelog 1/¢’ = VT +log 1 /¢, the limitT — oo andp — 0 leaves onlybd,,, on the r.h.s. above.

5.2 Lower Bound by the Expansion Rate

We provide here a way of computing a lower bound on the topological entropy (hence on the
upper dimensio,,, by Theorem 5.1), based on Yomdin’s Theorem, an account of which may
be found in [21].

Theorem 5.2 Let by, be as in De£nition 3.4. Then for all choices®fL) in De£nition 3.5,
V S htop-
Remark. The lower bound in [5] is in the same spirit. An adequate sequence of sub-manifolds

is chosen (small balls around the trivial solution). The volume expansion rate of that sequence
can be controlled, yielding a lower bound on the)éntropy.
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Proof. The proof follows from the argument by Yomdin and Gromov. By a Lemma of Gromoyv,
there exists & > 0 such that if®” isC", then

Volo (" (D(L))) € Mo (2, A(L))(C| DD [|)™"
hence

1 N
lianHs;ip 2L linr?jolip p log Vol (®™7(D(L)))

1 1 {/r
< hILILS;ip (2Lm)d llgfipm—longr(€ ./4( ))—i_han—gp (22 }a log(Cl/THD(IDTHl/T)

Sincer can be arbitrarily large, the constaridrops out, and sincéT is C*, the second term is
arbitrarily small by letting — oo. The £rst term tends th,, upon lettinge — 0.

6 Upper Semicontinuity of the In£nite Volume Attractors

In this section we discuss four different invariant sets and their mutual relationship. The £rst
two invariant sets arely ,(L) and.A(L) from De£nition 3.2. Then we also introduce two large

volume limits: o
.ANh U .ANh .A(OO) = U .A(L) ,
LeN LeN
where the closure is taken in the uniformly local topology of [18]. We de£ne the distance between
a point and a set and between two sets in the standard way

dist(U, V) = &%QHU— Voo (= L,y 5
dist(U,V) ‘= sup dist(U, V) )
Ueu
We claim that
quioni_» dist (Ann(L), A(L)) = 0, N—»lion}ﬁodlbt(ANh< 00), A(0)) = 0, (6.1)

and the following relations are straightforward
Llim diSt(.ANﬁ(L),.AN,h(OO)) =

0,
Jim dist (A(L), A(0)) = 0.
Hence we obtain the following diagram, in which each arrow represents a relation of upper semi-
continuity:

Ann(L) X=25 A(L)

h—0

L—>ool \LL—N}O

ANh( )N—>A( ) .

h—0
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The relation (6.1) is a consequence of the following @ee[12, 16, 18, 19]).

Theorem 6.1 For all € > 0, there is aly, an h; and anN; such that if,. < hy and N > Ny,
thenforallL € N
®T v, (Bua(L)) C U(A(L)) VT >T,,

whereld.(A(L)) is thee—neighbourhood afA(L) in L.

Proof. The proof is by induction using the attracting property of the attractor and a £nite time
error estimate.

By the attraction property ofl(L), there exists & such thatv'T > T}
O (B(L)UByna(L)) C Usp(AL)),
for all L € N. Hence for anyy, € By (L) we have

dist (q’TILfN,h(Uo), A(L)) = ueiﬁ(fL) ||CI)T£],IN,h<u0) — Ul

< inf @8 (ug) — ulleo + [ @5y 4 (1) — B (o)
ucA(L)

E n n.
< 5 + HCDL},ZN,h(UO) — @ (uo) oo (6.2)

providednh > T.

We next show thalV, h can be chosen in such a way that the second term above is smaller than
e/2forT € (0,273].

Let v(t) = @} (uo) andw(nh + s) = ;@' , (uo) Whereds, is the solution semi-sow of
(2.6). We thus have for < h

I (v(nh+s) —w(nh+s)) =
(v+vA) (v(nh+s) —w(nh +s)) + PY (F(v(nh +5)) — F(w(nh+ s)))

+PY <F(w(nh +5)) — F(w(nh))> + QVF(v(nh +s)) .

Using Proposition D.2 we see that

sup [|QYF (v(nh + 5))[le < C(R)e™

s<h

and similarly (see [26]) that

’PN (F(w(nh+s)) — F(w(nh))))“ < C(R)Wh,

e}

sup
s<h
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whereR is the radius of the absorbing ball. Hence, using the same analysis as in the proof of
Lemma 4.2, we obtain

lo((n +1)h) = w((n+1h)[lw < e o(nh) —w(nh)|w + C(R)(A? + e h).
By iteration, this gives
[v(nh) —w(nh)|e < e™|[v(0) — w(0)||o + C(R)e™ (h*/* + e Nh) . (6.3)

Taking N large enough and small enough, we can make the second term of (6.2) smaller than
e/2forT € (0,217].

To complete the induction we note that the absorbing ball is positively invariant and so we can
repeat the argument far > 27;.

7 Discussion: The Complex Ginzburg—Landau Equation

An interesting example to which our results apply is the (cubic) complex Ginzburg—Landau
equation ind = 1 space dimension

ou(x,t) = (1 +ia)0Pu(z,t) + ulz,t) — (1 +ib)|u(z, t)Pu(z,t) .
In terms of the notations of (1.1), this means:
d=1, v=1+ia, v=1, F(u) = —(1+ib)|ul’u.

The equation for the differenae = u — v of two solutionsu andv that we use in Section 4.1
admits a simple expression:

w(x,t) = (1+ia)d2w(x, t) +w(z,t) + / & =) (G (y, Oy, ) + Galy, H(y, 1) ) dy .
where

Gi(z,t) = —(1+1ib) (Ju(z, t)]* + |v(z, t]?) Go(z,t) = —(1+ib)u(z, t)v(z,t) .

Assumption 3.1 for the continuous case follows from the works [2, 1, 25]. Remark that these
papers deal with the equation on the whole space without boundary conditions, but their results
obviously remain true on the set of spatially periodic solutions, which is invariant under the time
evolution.

The time discretisation of the scheme was considered in [26] on a £xed length interval. Although
there is no formal proof of existence of a semi-cow and global attractor for the modi£ed Galerkin
scheme considered here, this can be seen to be true. By iterating the error bound 6.3 and the
uniform bounds proved in [2] for £nite time intervals, we obtain existence of a global semi-aow.
The existence of the absorbing balls of Assumption 3.1 follows from Appendix B.



Large Volume Limits of Discretised Parabolic Equations 17
A Proof of Lemma 4.2

We £rst consider the time-continuous case (4.1). We write the analytic extensicasa vector
valued function with components, andw; (each of which is complex-valued) and its complex
arguments + iy is also written as a vector of reals. Namely

w(z+iy,t) = (wi(z,y;t), wi(z,y;t)) .
As a preparation for the proof, we estimate the following expression:
Rey/gp(x) <@r(x, y; ) Agwy(z,y; t) + wi(z, y; £) Apwi(z, y; t)) dx
+Reif / () (m(% yi ) Vywe(, y; t) + wi(x, y; 1) Vywi(z, y; t)) dz (A.1)
By using the Cauchy—Riemann equatiof¥ fu. ;| = |V.u,;|), we obtain:
Rev / gp(@rAxwr + @iAIwi> dr + Reif3 / go(@rvywr + mvywi> dx
= —Rev / go(|Vgcwr|2 + |wai|2) dx — Re V/ngo<wrvxwr + @ivxwi> dx

+Reif / go(@rvywr + @ivywi> dx

v

< Rev [ oV + [Vawf) do + o —SDH [l + V) do

+161 [ o(Jul| V] + ]| 7,0 di

Iﬁl2+|V|2||V90/s0H§o/ 2 2
< .
< SRey gp(\wr| + |w]| )dx
=: bo/go<|wr|2+ wil?) da . (A.2)

Defne
py(x) = plr—y), &) = En(r—y),

wherep and&y are as in De£nitions 1.1-1.2. We next compute the time-derivative of the left-
hand side of (4.3). The expression (A.1) is the linear part of the time-derivative, hence we simply
insert the bound (A.2) and compute the non-linear part:

1 1
S0ksup / py(a)w(z +iBt P dr < supd, / ey (@)w(z + Bt 1) do
) Yy

< (e to)sup [ gy (@lue + ot do
)
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oy (z)w(x +1ift,1)

(/g Gl (z+if0t, t)w(z + 16t 1) + Ga(z + ift, t)w(z + i5t, t))dz) dx‘

IN

(v + bo) sup / oy (z)|w(x + Bt t)|* dx
)
+sup/s0y(x)|w(:c+wt,t)|

X ( Jj;\/ (\G (z+ift,t)| + |Go(2 +ift, t)|)|w(z+i6t,t)]dz> dx

At this point, we apply the Cauchy—Schwarz Inequality to each of the two integrals on the right-
hand side. Using Lemma 4.1 we know that

sup sup sup (|Gi (x + i, 1)] + [Ga(z + i, 1)]) < 2R.

|B]<a t<1 zeRe

This gives
1
g0 [yl + it 0P ds < (v )sup [ o)l + it do
Yy Y

+sup ( / @y(x)|w(x+iﬂt,t)|2dx) v ( / o(z) dz / iv((;)) dz) v

)
1/2
x 2R <sup/g0x(z)]w(z +i3t, t)|? dz>

1/2
< <7+bo+zz-z ( / %V) )sup et + st 0P ds
Yy

=: bsup/goy(a:)|w(x+iﬁt,t)|2 dx ,
y

where we used that by De£nition 1.L£3, /¢ < oo becausé&?, is a Schwartz function ant)/¢
a Schwartz distribution. Equation (4.3) now follows from Gronwall's Lemma.
In the discrete case, we solve the linear differential equation (see (2.6))
dw(nh +1t) = (v + vA)w(nh +t) + &y * (Gi(nh)w(nh) + Ga(nh)w(nh))
fort € [0,h), and then we iterate far = 0 ton = [1/h] + 1. Over one time-step, the same
calculations as in the continuous case give

sup [ oo = e + 8-+ b (n+ DR do

ly|<Lw

< e sup /gp(x —y)|w(x + iBnh,nh)|*dx

ly|<Lm
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hence by iteration

sup /cp(m—y)]w(:v—i—zﬂnh,nh)]Q dr < e sup /(p(yc—y)]w(av,O)]2 dx .

ly| <L ly|<Lm

This completes the proof of Lemma 4.2.

B Analyticity for the Fully Discrete Scheme

The full discretisation discussed in Section 2.2 was introduced in [26] where Gevrey regularity
is proved. We give here another simple and direct proof that the semi-group generated by (2.5)
maps intoG,, (C) (see Appendix D) for some andC' independent ofV and L. Our proof is

in the spirit of Collet [1] or Take et al.[25]. We assume that the solutiaiz, nh) of (2.5) has
reached an absorbing ball ii7°, hence there is ai > 0 such that|u(nh)||. < R irrespective

of uy andn. We then use a contraction argument to show that for Smdtr nh < [0, T, there

is a unique solution to (2.5) in the metric space of functions satisfyfiriy < R, where

7l = max  sup |f(z +ivVnh,nh)|.

nhel0,T) |z|<Lm

Remark that ifl” < h, there is nothing to prove (the solutions are entire functions anyway). The
purpose of this section is to provide bounds on the radius of analyticity which are independent
of h and N, hence we may assume&o be small.

We seek a solution to the equatiomh) = Y (u, uo) (nh) with Y dened by

n—1

V(7o) ) = K« o= 3 ([ WK (bt = = 9)ds )+ FUIGH)

wherelC is given by (2.4).

It is easy to see that for small > 0, J(-, fy) is a contraction:

V(. fo) (@ + iVnh,nh) — Y(g, fo) (x + iv/nh,nh)]
< 3 [ [ APy~ =T~ 3 b - ) ds

% |F(f(z + /b, jh)) = F(g(= +iy/jh. jh)
[T/h]+1

< (PRI =gl - [ [ ARG i = /7R, o = = 5)lds da

dz
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(hereLip(F, R) is the Lipschitz constant of in the ball of radiusR) hence by taking” small
enough (depending ohip(F, R) only) the solution to the £xed point problem exists and is
unique. Since: belongs to an absorbing ball @f, the argument can be iterated inde£nitely,
henceu is analytic for all times thereafter.

C Uniform Bounds on Complex Analytic Functions

In this section we show that at? bound in a strip of the complex plane providesi/zh bound
in a smaller strip.

Lemma C.1 Letp > 1. There is a constant’ = C(,d) such that any functiorf analytic in
|Im(z)| < 0 satis£es:

Fly+iz)PP < Csup / oz — )| f(z + )P da

[v1<é

forally € RYand|z| < §/2.

Proof. We takey = 0 andd = 1 for simplicity. The general case is obtained by translation and
scaling. Since analytic functions are harmonic the following Mean Value Property holds (see
[15]). Let D be the unit ball centred &tin then—dimensional complex space, then

1

£(0) = W/pf(ftﬂv)dxdv-

We apply Jensen’s inequality and use that theredisfar which

|z]<1
(see De£nition 1.1), to obtain
|£0)]P < Voll(D) Dyf(x+z>y)\pdm
< S I
< ) p [+ mp s
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D Gevrey and Bernstein Classes of Analytic Functions

We introduce here the metric spadgsC') (the Bernstein class) ar@,(C) (the Gevrey class)
and recall two properties of functions belonging to these spaces (see [7, 14, 17] for details).

De£nition D.1 The Bernstein clas8,(C) is the set of all functiong having an analytic exten-
sion to the whole of? with exponential growth along the imaginary directions:
f(z+iy)| < Ce™M V(z,y) € RT x RY.

The Gevrey clas§, (C) is the set of all functiong admitting an analytic extension to a strip of
width 2« around the real axes and which are uniformly bounded in this strip:

[f(z+iy)| < C,V(z,y) € R x [~a,a]’.
The £rst result states that any functiorgin(C') can be written as a sum of entire functions:

Proposition D.2 Let f € G,(C). Then there exists @ depending o only such that
f(z) = Y eMe™af(2)
nezd

with £, € Bo(C).

The second resultis a classical sampling formula (see [7] or [14] where it is called the Cartwright
formula).

Proposition D.3 For all f € B,(C), the following identity holds:

fz) = > fzo(n) Fo(z — wo(n))
where

nm sin(3ox) sin(ox
ro(m) = 1T ) - SB0)sinlon)

References

[1] P. CoLLET, Nonlinear parabolic evolutions in unbounded domainsDynamics, bifurca-
tion and symmetry (Cadge, 1993), Kluwer Acad. Publ., Dordrecht, 1994, pp. 97—104.



Large Volume Limits of Discretised Parabolic Equations 22

[2] ——, Thermodynamic limit of the Ginzburg-Landau equatjoN®nlinearity, 7 (1994),
pp. 1175-1190.

[3] ——, Extended dynamical systens Proceedings of the International Congress of Mathe-
maticians, Vol. lll (Berlin, 1998), Doc. Math., 1998, pp. 123-132.

[4] P. COLLET AND J.-P. EEKMANN, The de£nition and measurement of the topological en-
tropy per unit volume in parabolic PDESBlonlinearity, 12 (1999), pp. 451-473.

[5] P. COLLET AND J.-P. EEKMANN, Extensive properties of the complex Ginzburg-Landau
equation Comm. Math. Phys., 200 (1999), pp. 699-722.

[6] P. CoLLET AND J.-P. EEKMANN, Topological entropy and-entropy for damped hyper-
bolic equationsAnn. Henri Poinca, 1 (2000), pp. 715-752.

[7] |I. DAUBECHIES, Ten lectures on waveletSIAM, Philadelphia, PA, 1992.

[8] C. R. DOERING, J. D. GBBON, D. D. HOLM, AND B. NICOLAENKO, Low-dimensional
behaviour in the complex Ginzburg-Landau equatidanlinearity, 1 (1988), pp. 279-309.

[9] J.-M. GHIDAGLIA AND B. HERON, Dimension of the attractors associated to the
Ginzburg-Landau partial differential equatipRhys. D, 28 (1987), pp. 282-304.

[10] Z. GRUJIC AND |. KUKAVICA, Space analyticity for the Navier-Stokes and related equa-
tions with initial data inZ?, J. Funct. Anal., 152 (1998), pp. 447-466.

[11] ——, Space analyticity for the nonlinear heat equation in a bounded dgrdaifferential
Equations, 154 (1999), pp. 42-54.

[12] J. HALE, X.-B. LIN, AND G. RAUGEL, Upper—semicontinuity of attractors for approxi-
mations of semigroups and partial differential equatiokathematics of Computation, 50
(1988), pp. 89-123.

[13] A. KATOK AND B. HASSELBLATT, Introduction to the modern theory of dynamical sys-
tems Cambridge University Press, Cambridge, 1995.

[14] A. N. KOLMOGOROV AND V. M. TIKHOMIROV, e-entropy ance-capacity of sets in func-
tional spacein Selected works of A. N. Kolmogorov, Vol. lll, A. N. Shiryayev, ed., Dor-
drecht, 1993, Kluwer, pp. 86-170.

[15] S. G. KRANTZ, Function theory of several complex variahl¥gadsworth & Brooks/Cole,
Pacifc Grove, CA, second ed., 1992.

[16] G. J. LORD AND A. M. STUART, Discrete Gevrey regularity, attractors and upper-
semicontinuity for a £nite difference approximation to the complex Ginzburg-Landau equa-
tion, Num. Func. Anal. Opt., 16 (1995), pp. 1003—-1049.

[17] Y. MEYER, Wavelets and operatgr€ambridge University Press, Cambridge, 1992.



Large Volume Limits of Discretised Parabolic Equations 23

[18] A. MIELKE, The complex Ginzburg-Landau equation on large and unbounded domains:
sharper bounds and attractqrilonlinearity, 10 (1997), pp. 199-222.

[19] A. MIELKE AND G. SCHNEIDER, Attractors for modulation equations on unbounded
domains—existence and comparishionlinearity, 8 (1995), pp. 743—-768.

[20] M. OLIVER AND E. S. TiTI, On the domain of analyticity for solutions of second order
analytic nonlinear differential equation§1999). Preprint.

[21] M. PoLLICOTT, Lectures on ergodic theory and Pesin theory on compact man;fCkis-
bridge University Press, Cambridge, 1993.

[22] J. ROUGEMONT, e—entropy estimates for driven parabolic equatiof000). Preprint.
[23] L. SCHWARTZ, Théorie des distributiondHermann, Paris, 1966.

[24] A. M. STUART AND A. R. HUMPHRIES Dynamical systems and numerical analysiam-
bridge University Press, Cambridge, 1996.

[25] P. TAKAE, P. BOLLERMAN, A. DOELMAN, A. VAN HARTEN, AND E. S. TiTI, Analyt-
icity of essentially bounded solutions to semilinear parabolic systems and validity of the
Ginzburg-Landau equatiQiSIAM J. Math. Anal., 27 (1996), pp. 424-448.

[26] P. TAKA& AND A. JUNGEL, A nonstiff Euler discretization of the complex Ginzburg-
Landau equation in one space dimensiS8hAM J. Numer. Anal., 38 (2000), pp. 292—-328.

[27] R. TEMAM, InEnite-dimensional dynamical systems in mechanics and phy&icsger-
Verlag, New York, second ed., 1997.

[28] V. M. TIKHOMIROV, On thees-entropy of some classes of analytic functidbekl. Akad.
Nauk SSSR (N.S.), 117 (1957), pp. 191-194.

[29] Y. YAN, Dimensions of attractors for discretizations for Navier-Stokes equatihndy-
nam. Differential Equations, 4 (1992), pp. 275-340.

[30] S. V. ZELIK, An attractor of a nonlinear system of reaction-diffusion equatior’"irand
estimates for its-entropy Mat. Zametki, 65 (1999), pp. 941-944.

[31] ——, The attractor of a quasilinear hyperbolic equation with dissipatioRin dimension
ande-entropy Mat. Zametki, 67 (2000), pp. 304—-308.



